Dual-Driven Learning-Based Multiple-Input Multiple-Output Signal Detection for Unmanned Aerial Vehicle Air-to-Ground Communications
Abstract
:1. Introduction
- 1.
- We introduce a dual-driven learning-based network for massive MIMO symbol detection in UAV AG communications. The use of a data-driven network reduces detection errors, and the model-driven component is an OAMP-Net network. We design an iterative algorithm for the dual-driven network to enable joint parameter updates in both the data-driven and model-driven modules during each iteration.
- 2.
- We develop the structure of the symbol correction network, which contains fully connected layers with nonlinear activation functions to minimize detection errors.
2. Methods
2.1. System Model
2.2. The MIMO Signal Detection Problem
2.3. Dual-Driven Learning-Based MIMO Signal Detection
3. Numerical Results and Discussion
3.1. Simulation Settings
3.2. Baselines
3.3. Channel Estimation Errors
Algorithm 1 The proposed dual-driven learning-based MIMO symbol detection algorithm |
|
3.4. BER versus SNR
3.5. BER versus MSE
3.6. BER versus Layers
3.7. Computational Complexity
3.8. Engineering Benefits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MIMO | Multiple-Input Multiple-Output |
UAV | Unmanned Aerial Vehicle |
AG | Air-to-Ground |
6G | Sixth-Generation Cellular Network |
mm-wave | millimeter-wave |
OAMP-Net | Orthogonal Approximate Message Passing Network |
MMSE | Minimum Mean Square Error |
OAMP | Orthogonal Approximate Message Passing |
SNR | Signal-to-Noise Ratio |
SER | Symbol Error Rate |
SAGIN | Space–Air–Ground Integrated Network |
3GPP | Third-Generation Partnership Project |
NR | New Radio |
UE | User Equipment |
AA | Air-to-Air |
LMMSE | Linear Minimum Mean Square Error |
AMP | Approximate Message Passing |
CG-OAMP-Net | Conjugate Gradient OAMP-Net |
NN | Neural Network |
ADC | Analog-to-Digital Converter |
GS | Ground Station |
LOS | Line Of Sight |
NLOS | Non-Line Of Sight |
Rx | Receiving |
Tx | Transmitting |
CSI | Channel State Information |
QAM | Quadrature Amplitude Modulation |
PSK | Phase Shift Keying |
IFFT | Inverse Fast Fourier Transform |
CP | Cyclic Prefix |
LE | Linear Estimator |
NLE | Nonlinear Estimater |
NMSE | Normalized Mean Square Error |
BER | Bit Error Rate |
UPA | Uniform Planar Array |
Adam | Adaptive Moment estimation |
References
- Liu, W.; Zhang, T.; Huang, S.; Li, K. A hybrid optimization framework for UAV reconnaissance mission planning. Comput. Ind. Eng. 2022, 173, 108653. [Google Scholar] [CrossRef]
- Yaacoub, J.P.; Noura, H.; Salman, O.; Chehab, A. Security analysis of drones systems: Attacks, limitations, and recommendations. Internet Things 2020, 11, 100218. [Google Scholar] [CrossRef]
- Li, B.; Fei, Z.; Zhang, Y. UAV communications for 5G and beyond: Recent advances and future trends. IEEE Internet Things J. 2018, 6, 2241–2263. [Google Scholar] [CrossRef]
- Chiang, W.C.; Li, Y.; Shang, J.; Urban, T.L. Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization. Appl. Energy 2019, 242, 1164–1175. [Google Scholar] [CrossRef]
- Alotaibi, E.T.; Alqefari, S.S.; Koubaa, A. Lsar: Multi-uav collaboration for search and rescue missions. IEEE Access 2019, 7, 55817–55832. [Google Scholar] [CrossRef]
- Ouamri, M.A.; Alkanhel, R.; Gueguen, C.; Alohali, M.A.; Ghoneim, S.S. Modeling and analysis of uav-assisted mobile network with imperfect beam alignment. CMC-Comput. Mater. Contin. 2023, 74, 453–467. [Google Scholar] [CrossRef]
- Liu, J.; Shi, Y.; Fadlullah, Z.M.; Kato, N. Space-air-ground integrated network: A survey. IEEE Commun. Surv. Tutor. 2018, 20, 2714–2741. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Wang, W.; Yang, L.; Zhang, W. Research challenges and opportunities of UAV millimeter-wave communications. IEEE Wirel. Commun. 2019, 26, 58–62. [Google Scholar] [CrossRef]
- Geraci, G.; Garcia-Rodriguez, A.; Azari, M.M.; Lozano, A.; Mezzavilla, M.; Chatzinotas, S.; Chen, Y.; Rangan, S.; Di Renzo, M. What will the future of UAV cellular communications be? A flight from 5G to 6G. IEEE Commun. Surv. Tutor. 2022, 24, 1304–1335. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef]
- Zeng, Y.; Wu, Q.; Zhang, R. Accessing from the sky: A tutorial on UAV communications for 5G and beyond. Proc. IEEE 2019, 107, 2327–2375. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Mobile unmanned aerial vehicles (UAVs) for energy-efficient Internet of Things communications. IEEE Trans. Wirel. Commun. 2017, 16, 7574–7589. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, F.; Ding, G.; Zhang, T.; Jia, W.; Nallanathan, A. Integrating communications and control for UAV systems: Opportunities and challenges. IEEE Access 2018, 6, 67519–67527. [Google Scholar] [CrossRef]
- 3GPP. Study on Channel Model for Frequencies from 0.5 to 100 GHz (Release 17); TR 38.901 V17.1.0; 3GPP, Technical Report; 3GPP Mobile Competence Centre: Sophia Antipolis, France, 2023. [Google Scholar]
- 3GPP. Study on Enhanced LTE Support for Aerial Vehicles (Release 15); TR 36.777 V15.0.0; 3GPP, Technical Report; 3GPP Mobile Competence Centre: Sophia Antipolis, France, 2017. [Google Scholar]
- Gupta, L.; Jain, R.; Vaszkun, G. Survey of important issues in UAV communication networks. IEEE Commun. Tutor. 2015, 18, 1123–1152. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, Z.; Pan, X.; Luo, X.; Cheng, Y. Joint Channel Estimation and Symbol Detection for UAV-Assisted Systems Using Tensor Framework. In Proceedings of the 2022 IEEE 22nd International Conference on Communication Technology (ICCT), Nanjing, China, 11–14 November 2022. [Google Scholar]
- Luo, X.; Du, J.; Wang, Y.; Chen, Y.; Jin, L. A robust tensor-based receiver for joint channel estimation and symbol detection in UAV assisted communication systems. In Proceedings of the 2021 IEEE 21st International Conference on Communication Technology (ICCT), Tianjin, China, 13–16 October 2021. [Google Scholar]
- Khawaja, W.; Guvenc, I.; Matolak, D.W.; Fiebig, U.C.; Schneckenburger, N. A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles. IEEE Commun. Surv. Tutor. 2019, 21, 2361–2391. [Google Scholar] [CrossRef]
- Khuwaja, A.A.; Chen, Y.; Zhao, N.; Alouini, M.S.; Dobbins, P. A survey of channel modeling for UAV communications. IEEE Commun. Surv. Tutor. 2018, 20, 2804–2821. [Google Scholar] [CrossRef]
- Damen, M.O.; El Gamal, H.; Caire, G. On maximum-likelihood detection and the search for the closest lattice point. IEEE Trans. Inf. Theory 2003, 49, 2389–2402. [Google Scholar] [CrossRef]
- Miller, S.L.; Rainbolt, B.J. MMSE detection of multicarrier CDMA. IEEE J. Sel. Areas Commun. 2000, 18, 2356–2362. [Google Scholar] [CrossRef]
- Donoho, D.L.; Maleki, A.; Montanari, A. Message-passing algorithms for compressed sensing. Proc. Natl. Acad. Sci. USA 2009, 106, 18914–18919. [Google Scholar] [CrossRef]
- Ma, J.; Ping, L. Orthogonal amp. IEEE Access 2017, 5, 2020–2033. [Google Scholar] [CrossRef]
- He, H.; Wen, C.K.; Jin, S.; Li, G.Y. A model-driven deep learning network for MIMO detection. In Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 26–29 November 2018. [Google Scholar]
- He, H.; Wen, C.K.; Jin, S.; Li, G.Y. Model-driven deep learning for MIMO detection. IEEE Trans. Signal Process. 2020, 68, 1702–1715. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, J.; Syu, C.W.; Wen, C.K.; Zhang, J.; Jin, S. Model-driven deep learning-based MIMO-OFDM detector: Design, simulation, and experimental results. IEEE Trans. Commun. 2022, 70, 5193–5207. [Google Scholar] [CrossRef]
- Khani, M.; Alizadeh, M.; Hoydis, J.; Fleming, P. Adaptive neural signal detection for massive MIMO. IEEE Trans. Wirel. Commun. 2020, 19, 5635–5648. [Google Scholar] [CrossRef]
- Ye, H.; Li, G.Y.; Juang, B.H. Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wirel. Commun. Lett. 2017, 7, 114–117. [Google Scholar] [CrossRef]
- Samuel, N.; Diskin, T.; Wiesel, A. Deep MIMO detection. In Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 26–29 November 2018. [Google Scholar]
- Takabe, S.; Imanishi, M.; Wadayama, T.; Hayakawa, R.; Hayashi, K. Trainable projected gradient detector for massive overloaded MIMO channels: Data-driven tuning approach. IEEE Access 2019, 7, 93326–93338. [Google Scholar] [CrossRef]
- Zheng, S.; Wu, S.; Jiang, C.; Zhang, W.; Jing, X. Hybrid Driven Learning for Channel Estimation in Intelligent Reflecting Surface Aided Millimeter Wave Communications. IEEE Trans. Wirel. Commun. 2023; early access. [Google Scholar]
- Li, H.; Wu, S.; Zheng, S.; Jiang, C.; Yang, H.; Zhang, W. Dual-Driven Learning for Channel Estimation of Massive MIMO Systems with One-Bit ADCs. IEEE Wirel. Commun. Lett. 2024; early access. [Google Scholar]
- Basha, S.S.; Dubey, S.R.; Pulabaigari, V.; Mukherjee, S. Impact of fully connected layers on performance of convolutional neural networks for image classification. Neurocomputing 2020, 378, 112–119. [Google Scholar] [CrossRef]
Notation | Definition |
---|---|
the number of transmitting antennas (also the number of UAVs) | |
the number of receiving antennas | |
received signal vector at the k-th subcarrier | |
channel for the k-th subcarrier | |
symbols for the k-th subcarrier | |
complex Gaussian noise vector at the k-th subcarrier | |
detected symbols at the k-th subcarrier | |
received signal vector | |
channel | |
symbols | |
complex Gaussian noise vector | |
output of the linear estimator at the t-th iteration | |
output of the nonlinear estimator at the t-th iteration | |
decorrelated matrix in the t-th iteration | |
nonlinear divergence-free estimator | |
noise variance of | |
linear estimation error vector at the t-th iteration | |
nonlinear estimation error vector at the t-th iteration | |
error variance estimators of | |
error variance estimators of | |
decorrelated coefficient at the t-th iteration | |
LMMSE matrix | |
four trainable variables in OAMP-Net | |
noise-cleaned output of the linear estimator at the t-th iteration | |
the function expression of the symbol correction network | |
the number of layers in the symbol correction network | |
output vector of the l-th layer in the symbol correction network | |
weights matrix of the l-th layer in the symbol correction network | |
the input vector of the l-th layer in the symbol correction network | |
the bias term of the l-th layer in the symbol correction network | |
symbol correction network parameters | |
constant | |
complex Gaussian noise vector with as the noise variance |
Input: | ||
---|---|---|
Layers | Operations | Output Size |
Denoising | Fully Connected+Nonlinear (Leaky ReLU) | |
Denoising | Fully Connected+Nonlinear (Leaky ReLU) | |
Reconstruction | Fully Connected | |
Output: |
Parameter | Value |
---|---|
16 | |
64 | |
GS Height | 25 m |
UAV Height | 1–100 m |
Carrier Center Frequency | 73 GHz |
Bandwidth | 100 MHz |
Subcarrier spacing | 60 kHz |
FFT/IFFT size | 1024 |
Modulation | 4QAM |
UAV Mobility | 30 km/h |
Batch Size | 100 |
Learning Rate | // |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; He, Y.; Zheng, S.; Zhou, F.; Yang, H. Dual-Driven Learning-Based Multiple-Input Multiple-Output Signal Detection for Unmanned Aerial Vehicle Air-to-Ground Communications. Drones 2024, 8, 180. https://doi.org/10.3390/drones8050180
Li H, He Y, Zheng S, Zhou F, Yang H. Dual-Driven Learning-Based Multiple-Input Multiple-Output Signal Detection for Unmanned Aerial Vehicle Air-to-Ground Communications. Drones. 2024; 8(5):180. https://doi.org/10.3390/drones8050180
Chicago/Turabian StyleLi, Haihan, Yongming He, Shuntian Zheng, Fan Zhou, and Hongwen Yang. 2024. "Dual-Driven Learning-Based Multiple-Input Multiple-Output Signal Detection for Unmanned Aerial Vehicle Air-to-Ground Communications" Drones 8, no. 5: 180. https://doi.org/10.3390/drones8050180
APA StyleLi, H., He, Y., Zheng, S., Zhou, F., & Yang, H. (2024). Dual-Driven Learning-Based Multiple-Input Multiple-Output Signal Detection for Unmanned Aerial Vehicle Air-to-Ground Communications. Drones, 8(5), 180. https://doi.org/10.3390/drones8050180