Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = fungicidal synergism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3039 KiB  
Article
Combined Cytotoxic Effects of the Fungicide Azoxystrobin and Common Food-Contaminating Mycotoxins
by Cristina Fuentes, Veronica Zingales, José Manuel Barat and María-José Ruiz
Foods 2025, 14(7), 1226; https://doi.org/10.3390/foods14071226 - 31 Mar 2025
Viewed by 701
Abstract
This study assessed the cytotoxicity of the individual and combined exposure to the fungicide azoxystrobin (AZX) and the three common mycotoxins found in food: ochratoxin A (OTA), deoxynivalenol (DON), and T-2 toxin. Cytotoxic effects were evaluated using the resazurin and MTT assays in [...] Read more.
This study assessed the cytotoxicity of the individual and combined exposure to the fungicide azoxystrobin (AZX) and the three common mycotoxins found in food: ochratoxin A (OTA), deoxynivalenol (DON), and T-2 toxin. Cytotoxic effects were evaluated using the resazurin and MTT assays in human hepatocarcinoma (HepG2) cells after 24 h of exposure, and the type of interaction between the compounds was determined using the isobologram method. Results showed that T-2 was the most cytotoxic compound, followed by DON, OTA, and AZX. The compound ratios in the mixture were calculated using three sublethal concentrations (IC50/2, IC50/4, and IC50/8) to achieve equal toxicity for each compound. Interaction analysis revealed that the nature of the interaction varied across components and concentrations. The AZX and DON mixture produced an antagonistic effect at all the analyzed effect levels. AZX and OTA or T2 mixtures, and tertiary combinations displayed antagonism at low effect values but additivity at high effect levels. Importantly, the quaternary mixture demonstrated synergism at all the effect levels. These findings highlight that the co-occurrence of fungicides and mycotoxins in food commodities can lead to complex exposure scenarios that may result in combined toxic effects on the organism. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

25 pages, 17779 KiB  
Article
Geraniol Potentiates the Effect of Fluconazole against Planktonic and Sessile Cells of Azole-Resistant Candida tropicalis: In Vitro and In Vivo Analyses
by Gislaine Silva-Rodrigues, Isabela Madeira de Castro, Paulo Henrique Guilherme Borges, Helena Tiemi Suzukawa, Joyce Marinho de Souza, Guilherme Bartolomeu-Gonçalves, Marsileni Pelisson, Cássio Ilan Soares Medeiros, Marcelle de Lima Ferreira Bispo, Ricardo Sérgio Couto de Almeida, Kelly Ishida, Eliandro Reis Tavares, Lucy Megumi Yamauchi and Sueli Fumie Yamada-Ogatta
Pharmaceutics 2024, 16(8), 1053; https://doi.org/10.3390/pharmaceutics16081053 - 9 Aug 2024
Cited by 2 | Viewed by 1645
Abstract
Candida tropicalis is regarded as an opportunistic pathogen, causing diseases ranging from superficial infections to life-threatening disseminated infections. The ability of this yeast to form biofilms and develop resistance to antifungals represents a significant therapeutic challenge. Herein, the effect of geraniol (GER), alone [...] Read more.
Candida tropicalis is regarded as an opportunistic pathogen, causing diseases ranging from superficial infections to life-threatening disseminated infections. The ability of this yeast to form biofilms and develop resistance to antifungals represents a significant therapeutic challenge. Herein, the effect of geraniol (GER), alone and combined with fluconazole (FLZ), was evaluated in the planktonic and sessile cells of azole-resistant C. tropicalis. GER showed a time-dependent fungicidal effect on the planktonic cells, impairing the cell membrane integrity. Additionally, GER inhibited the rhodamine 6G efflux, and the molecular docking analyzes supported the binding affinity of GER to the C. tropicalis Cdr1 protein. GER exhibited a synergism with FLZ against the planktonic and sessile cells, inhibiting the adhesion of the yeast cells and the viability of the 48-h biofilms formed on abiotic surfaces. C. tropicalis biofilms treated with GER, alone or combined with FLZ, displayed morphological and ultrastructural alterations, including a decrease in the stacking layers and the presence of wilted cells. Moreover, neither GER alone nor combined with FLZ caused toxicity, and both treatments prolonged the survival of the Galleria mellonella larvae infected with azole-resistant C. tropicalis. These findings indicate that the combination of GER and FLZ may be a promising strategy to control azole-resistant C. tropicalis infections. Full article
Show Figures

Figure 1

18 pages, 3543 KiB  
Article
Synergistic Effect of Essential Oils and Antifungal Agents in Fighting Resistant Clinical Isolates of Candida auris
by Lorenza Cavallo, Francesca Menotti, Janira Roana, Cristina Costa, Fabio Longo, Claudia Pagano, Antonio Curtoni, Alessandro Bondi, Giuliana Banche, Valeria Allizond and Narcisa Mandras
Pharmaceutics 2024, 16(7), 957; https://doi.org/10.3390/pharmaceutics16070957 - 19 Jul 2024
Cited by 3 | Viewed by 1843
Abstract
Recently, a large number of nosocomial infections have been caused by an emerging pathogen that is rising as a worldwide issue in human health: Candida auris. This yeast is considered resistant to antifungals of the first-line therapies, and consequently it is related [...] Read more.
Recently, a large number of nosocomial infections have been caused by an emerging pathogen that is rising as a worldwide issue in human health: Candida auris. This yeast is considered resistant to antifungals of the first-line therapies, and consequently it is related to morbidity and mortality. Therefore, the aim of this research was to determine the in vitro anti-C. auris activity against twenty-three resistant clinical strains of different essential oils (EOs), pure or in combination with traditional antifungal agents, mainly caspofungin, fluconazole, micafungin and 5-flucytosine. Broth dilution assay was performed to evaluate the fungistatic and fungicidal effectiveness of fifteen EOs towards all the C. auris isolates. The data demonstrated that EOs were able to prevent C. auris growth, with MIC values ranging from 0.03 to 1% for the efficacious EOs (thyme, cinnamon, geranium, clove bud, lemongrass and mentha of Pancalieri), whereas the MICs were >1% for the ineffective ones. Thereafter, the six most effective EOs were used to perform the checkerboard experiments by assaying simultaneously the activity of EOs and traditional antifungals towards two selected strains. The most promising synergic combinations towards C. auris, depending on the isolate, were those with micafungin and geranium, thyme, cinnamon, lemongrass or clove bud EOs, with fluconazole and mentha of Pancalieri EO, and with 5-flucytosine and mentha of Pancalieri EO. These EOs and their combinations with antifungal drugs may provide a useful therapeutic alternative that could reduce the dose of the individual components, limiting the overall side effects. These associations might be a prospective option for the future treatment of infections, thus helping to overcome the challenging issue of resistance in C. auris. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

11 pages, 18030 KiB  
Article
Potential Antifungal Effect of Copper Oxide Nanoparticles Combined with Fungicides against Botrytis cinerea and Fusarium oxysporum
by Javiera Parada, Gonzalo Tortella, Amedea B. Seabra, Paola Fincheira and Olga Rubilar
Antibiotics 2024, 13(3), 215; https://doi.org/10.3390/antibiotics13030215 - 26 Feb 2024
Cited by 10 | Viewed by 3939
Abstract
Copper oxide nanoparticles (NCuO) have emerged as an alternative to pesticides due to their antifungal effect against various phytopathogens. Combining them with fungicides represents an advantageous strategy for reducing the necessary amount of both agents to inhibit fungal growth, simultaneously reducing their environmental [...] Read more.
Copper oxide nanoparticles (NCuO) have emerged as an alternative to pesticides due to their antifungal effect against various phytopathogens. Combining them with fungicides represents an advantageous strategy for reducing the necessary amount of both agents to inhibit fungal growth, simultaneously reducing their environmental release. This study aimed to evaluate the antifungal activity of NCuO combined with three fungicide models separately: Iprodione (IPR), Tebuconazole (TEB), and Pyrimethanil (PYR) against two phytopathogenic fungi: Botrytis cinerea and Fusarium oxysporum. The fractional inhibitory concentration (FIC) was calculated as a synergism indicator (FIC ≤ 0.5). The NCuO interacted synergistically with TEB against both fungi and with IPR only against B. cinerea. The interaction with PYR was additive against both fungi (FIC > 0.5). The B. cinerea biomass was inhibited by 80.9% and 93% using 20 mg L−1 NCuO + 1.56 mg L−1 TEB, and 40 mg L−1 NCuO + 12 µg L−1 IPR, respectively, without significant differences compared to the inhibition provoked by 160 mg L−1 NCuO. Additionally, the protein leakage and nucleic acid release were also evaluated as mechanisms associated with the synergistic effect. The results obtained in this study revealed that combining nanoparticles with fungicides can be an adequate strategy to significantly reduce the release of metals and agrochemicals into the environment after being used as antifungals. Full article
(This article belongs to the Section Antimicrobial Materials and Surfaces)
Show Figures

Graphical abstract

16 pages, 3228 KiB  
Communication
Molecular Real-Time PCR Monitoring of Onion Fusarium Basal Rot Chemical Control
by Elhanan Dimant and Ofir Degani
J. Fungi 2023, 9(8), 809; https://doi.org/10.3390/jof9080809 - 30 Jul 2023
Cited by 10 | Viewed by 2695
Abstract
Fusarium basal rot disease (FBR) is a destructive threat to onion crops around the globe. It causes seedlings’ death, development disruption, and pre- and post-harvest bulb infection and rotting, with a concern for toxin infestation. It is an emerging disease in Israel, with [...] Read more.
Fusarium basal rot disease (FBR) is a destructive threat to onion crops around the globe. It causes seedlings’ death, development disruption, and pre- and post-harvest bulb infection and rotting, with a concern for toxin infestation. It is an emerging disease in Israel, with new reports from farms nationwide. Recently, we reported on a full-season pot experiment to protect two leading commercial cultivars against FBR chemically. Here, we present new real-time qPCR molecular tracking of the pathogens inside the host plant and compare the infection levels to a deep analysis of the impacts of this experiment’s treatments on plant growth and health indexes. The new findings reveal variations within each treatment’s effectiveness regarding sprout development and bulb ripening stages. For instance, in the yellow Orlando cv., high protection was obtained with Azoxystrobin + Tebuconazole (Az-Te) in sprouts against F. oxysporum f. sp. cepae and with Fludioxonil + Sedaxen in mature plants against Fusarium acutatum. Thus, combining these fungicides may protect plants throughout their lifecycle. Also, Prochloraz at low dose was highly efficient in the Orlando cv. Still, to shield red Noam cv. plants from both pathogens, increasing this fungicide concentration towards the season-ending should be preferred. The qPCR tracking showed that all chemical treatments tested could reduce infection from pathogens by 80–90%, even with compounds such as Az-Te that were less effective. This implies that the pesticide was effective but probably phytotoxic to the plants, and thus, lower dosages must be considered. The molecular-based analysis discloses the high infection ability of F. oxysporum f. sp. cepae compared to F. acutatum in both cultivars. It also indicates an antagonism between those species in the Orlando cv. and synergism in the Noam cv. The current work reveals weak and strong points in chemical FBR protection and offers new ways to improve its application. The qPCR-based method enables us to closely monitor the pathogenesis and efficacy of chemical-preventing treatments and optimize crop-protection protocols. Full article
Show Figures

Graphical abstract

14 pages, 2371 KiB  
Article
Combined Application of Tacrolimus with Cyproconazole, Hymexazol and Novel {2-(3-R-1H-1,2,4-triazol-5-yl)phenyl}amines as Antifungals: In Vitro Growth Inhibition and In Silico Molecular Docking Analysis to Fungal Chitin Deacetylase
by Lyudmyla Antypenko, Fatuma Meyer, Zhanar Sadyk, Konstyantyn Shabelnyk, Sergiy Kovalenko, Karl Gustav Steffens and Leif-Alexander Garbe
J. Fungi 2023, 9(1), 79; https://doi.org/10.3390/jof9010079 - 5 Jan 2023
Cited by 7 | Viewed by 2788
Abstract
Agents with antifungal activity play a vital role as therapeutics in health care, as do fungicides in agriculture. Effectiveness, toxicological profile, and eco-friendliness are among the properties used to select suitable substances. Furthermore, a steady supply of new agents with different modes of [...] Read more.
Agents with antifungal activity play a vital role as therapeutics in health care, as do fungicides in agriculture. Effectiveness, toxicological profile, and eco-friendliness are among the properties used to select suitable substances. Furthermore, a steady supply of new agents with different modes of action is required to counter the well-known potential of human and phyto-pathogenic fungi to develop resistance against established antifungals. Here, we use an in vitro growth assay to investigate the activity of the calcineurin inhibitor tacrolimus in combination with the commercial fungicides cyproconazole and hymexazol, as well as with two earlier reported novel {2-(3-R-1H-1,2,4-triazol-5-yl)phenyl}amines, against the fungi Aspergillus niger, Colletotrichum higginsianum, Fusarium oxysporum and the oomycete Phytophthora infestans, which are notoriously harmful in agriculture. When tacrolimus was added in a concentration range from 0.25 to 25 mg/L to the tested antifungals (at a fixed concentration of 25 or 50 mg/L), the inhibitory activities were distinctly enhanced. Molecular docking calculations revealed triazole derivative 5, (2-(3-adamantan-1-yl)-1H-1,2,4-triazol-5-yl)-4-chloroaniline), as a potent inhibitor of chitin deacetylases (CDA) of Aspergillus nidulans and A. niger (AnCDA and AngCDA, respectively), which was stronger than the previously reported polyoxorin D, J075-4187, and chitotriose. The results are discussed in the context of potential synergism and molecular mode of action. Full article
(This article belongs to the Special Issue Biological Activity of Fungi: Interaction with the Environment)
Show Figures

Graphical abstract

24 pages, 1203 KiB  
Review
Prospects for Increasing the Efficacy of Plant Resistance Inducers Stimulating Salicylic Acid
by Laurent Urban, Félicie Lauri, Douae Ben Hdech and Jawad Aarrouf
Agronomy 2022, 12(12), 3151; https://doi.org/10.3390/agronomy12123151 - 12 Dec 2022
Cited by 25 | Viewed by 4649
Abstract
Systemic acquired resistance is a powerful mechanism, based on the salicylic acid (SA) signaling pathway, which allows plants to resist to a wide range of pathogens. High SA, moreover, plays a key role in plant tolerance to abiotic stress. It seems, therefore, desirable [...] Read more.
Systemic acquired resistance is a powerful mechanism, based on the salicylic acid (SA) signaling pathway, which allows plants to resist to a wide range of pathogens. High SA, moreover, plays a key role in plant tolerance to abiotic stress. It seems, therefore, desirable to supply analogs of SA or stimulate the production of endogenous SA. Unfortunately, the chemical substances or physical means used for this effect often display a variable efficacy. After providing a review of them, we defend three major ideas: (i) plant resistance inducers (PRIs) must be combined for higher efficacy, notably for exploiting synergic effects between the SA and other signaling pathways, (ii) disease pressure can be reduced by exploiting the fungicidal properties displayed by some PRIs, (iii) biostimulants and crop management techniques should be used to ensure that plants have the resources they need to synthesize the compounds and structures required for efficient and lasting resistance. Some PRIs could also be used for their biostimulant effects in stress conditions. It could be concluded that holistic approaches which jointly address the issues of defense and tolerance stimulation, disease pressure and resource availability in plants are the ones that will allow for substantial reduction in fungicide use without sacrificing crop performance. Full article
Show Figures

Figure 1

20 pages, 5776 KiB  
Article
Facile Green Synthesis of Zinc Oxide Nanoparticles with Potential Synergistic Activity with Common Antifungal Agents against Multidrug-Resistant Candidal Strains
by Mohamed Taha Yassin, Ashraf Abdel-Fattah Mostafa, Abdulaziz Abdulrahman Al-Askar and Fatimah O. Al-Otibi
Crystals 2022, 12(6), 774; https://doi.org/10.3390/cryst12060774 - 26 May 2022
Cited by 61 | Viewed by 6138
Abstract
The high incidence of fungal resistance to antifungal drugs represents a global concern, contributing to high levels of morbidity and mortality, especially among immunocompromised patients. Moreover, conventional antifungal medications have poor therapeutic outcomes, as well as possible toxicities resulting from long-term administration. Accordingly, [...] Read more.
The high incidence of fungal resistance to antifungal drugs represents a global concern, contributing to high levels of morbidity and mortality, especially among immunocompromised patients. Moreover, conventional antifungal medications have poor therapeutic outcomes, as well as possible toxicities resulting from long-term administration. Accordingly, the aim of the present study was to investigate the antifungal effectiveness of biogenic zinc oxide nanoparticles (ZnO NPs) against multidrug-resistant candidal strains. Biogenic ZnO NPs were characterized using physicochemical methods, such as UV-vis spectroscopy, transmission electron microscopy (TEM), energy-dispersive X ray (EDX) spectroscopy, FTIR (Fourier transform infrared) spectroscopy and X-ray powder diffraction (XRD) analysis. UV spectral analysis revealed the formation of two absorption peaks at 367 and 506 nm, which preliminarily indicated the successful synthesis of ZnO NPs, whereas TEM analysis showed that ZnO NPs exhibited an average particle size of 22.84 nm. The EDX spectrum confirmed the successful synthesis of ZnO nanoparticles free of impurities. The FTIR spectrum of the biosynthesized ZnO NPs showed different absorption peaks at 3427.99, 1707.86, 1621.50, 1424.16, 1325.22, 1224.67, 1178.22, 1067.69, 861.22, 752.97 and 574.11 cm−1, corresponding to various functional groups. The average zeta potential value of the ZnO NPs was −7.45 mV. XRD analysis revealed the presence of six diffraction peaks at 2θ = 31.94, 34.66, 36.42, 56.42, 69.54 and 76.94°. The biogenic ZnO NPs (100 µg/disk) exhibited potent antifungal activity against C. albicans, C. glabrata and C. tropicalis strains, with suppressive zone diameters of 24.18 ± 0.32, 20.17 ± 0.56 and 26.35 ± 0.16 mm, respectively. The minimal inhibitory concentration (MIC) of ZnO NPs against C. tropicalis strain was found to be 10 μg/mL, whereas the minimal fungicidal concentration (MFC) was found to be 20 μg/mL. Moreover, ZnO NPs revealed a potential synergistic efficiency with fluconazole, nystatin and clotrimazole antifungal drugs against C. albicans strain, whereas terbinafine, nystatin and itraconazole antifungal drugs showed a potential synergism with ZnO NPs against C. glabrata as a multidrug-resistant strain. In conclusion, pomegranate peel extract mediated green synthesis of ZnO NPs with potential physicochemical features and antimicrobial activity. The biosynthesized ZnO NPs could be utilized for formulation of novel drug combinations to boost the antifungal efficiency of commonly used antifungal agents. Full article
(This article belongs to the Special Issue Novel Nanomaterials for Catalytic and Biological Applications)
Show Figures

Figure 1

17 pages, 1009 KiB  
Article
A Study on the Efficiency of Sustainable Wine Grape Vineyard Management Strategies
by Rita Perria, Alice Ciofini, William Antonio Petrucci, Mauro Eugenio Maria D’Arcangelo, Paolo Valentini, Paolo Storchi, Giuseppe Carella, Andrea Pacetti and Laura Mugnai
Agronomy 2022, 12(2), 392; https://doi.org/10.3390/agronomy12020392 - 4 Feb 2022
Cited by 18 | Viewed by 5118
Abstract
Crop protection strategies based on cupric products and mainly adopted in organic viticulture produce a consistent environmental impact due to the persistence of copper in soils and its negative effects on edaphic biodiversity. In this work, trials were carried out during the crop [...] Read more.
Crop protection strategies based on cupric products and mainly adopted in organic viticulture produce a consistent environmental impact due to the persistence of copper in soils and its negative effects on edaphic biodiversity. In this work, trials were carried out during the crop years 2018–2020 in a vineyard with an organic management by a low-copper strategy and in a conventional IPM management with an IPM strategy with reduced use of fungicides. Phytosanitary treatments have been strictly planned according to forecasting models, and fungicides have been partially substituted with substances improving the resistance mechanisms of plants. Different strategies of green manure management, in order to improve the health of vines, were also adopted. Results suggest the efficacy of the “GreenGrapes” plant protection strategy in conditions of low downy mildew pressure. Furthermore, no declines in the production quality have been recorded; conversely, the synergic effect of the green manure and the tested biostimulant substances (“GreenGrapes” protocols) and the green manure management improved yield and grape quality, compared with conventional conduction (IPM and Organic) with a grass covering. Full article
Show Figures

Figure 1

17 pages, 6392 KiB  
Article
Control of the Verticillium Wilt on Tomato Plants by Means of Olive Leaf Extracts Loaded on Chitosan Nanoparticles
by Elisabetta Mazzotta, Rita Muzzalupo, Adriana Chiappetta and Innocenzo Muzzalupo
Microorganisms 2022, 10(1), 136; https://doi.org/10.3390/microorganisms10010136 - 10 Jan 2022
Cited by 11 | Viewed by 4430
Abstract
In this research, a new ecofriendly and sustainable fungicide agent, with the ability to control Verticillium wilt, was developed. To this purpose, a green extract of olive leaf (OLE) was prepared by ultrasound-assisted extraction (UAE) and characterized in terms of polyphenol content and [...] Read more.
In this research, a new ecofriendly and sustainable fungicide agent, with the ability to control Verticillium wilt, was developed. To this purpose, a green extract of olive leaf (OLE) was prepared by ultrasound-assisted extraction (UAE) and characterized in terms of polyphenol content and antioxidant activity. Then, OLE was loaded in chitosan nanoparticles (CTNPs) to combine the antifungal activity of CTNPs and phenolic compounds to obtain an important synergic effect. Nanoparticles were synthetized using the ionic gelation technique and characterized in terms of sizes, polydispersity index, Z-potential, encapsulation efficiency, and release profile. Qualitative and quantitative analyses of OLE were performed by the HPLC method. OLE-loaded CTNPs exhibited good physicochemical properties, such as a small size and positive surface charge that significantly contributed to a high antifungal efficacy against Verticillum dahliae. Therefore, their antifungal activity was evaluated in vitro, using the minimal inhibition concentration (MIC) assay in a concentration range between 0.071 and 1.41 mg/mL. Free OLE, blank CTNPs, and OLE-loaded CTNPs possessed MIC values of 0.35, 0.71, and 0.14 mg/mL, respectively. These results suggest an important synergic effect when OLE was loaded in CTNPs. Thereafter, we tested the two higher concentrations on tomato plants inoculated with V. dahliae, where no fungal growth was observed in the in vitro experiment, 0.71 and 1.41 mg/mL. Interestingly, OLE-loaded CTNPs at the higher concentration used, diminished the symptoms of Verticillium wilt in tomato plants inoculated with V. dahliae and significantly enhanced plant growth. This research offers promising results and opens the possibility to use OLE-loaded CTNPs as safe fungicides in the control strategies of Verticillium wilt at open field. Full article
(This article belongs to the Special Issue Genetic, Metabolic and Microbial Activity in Plants)
Show Figures

Graphical abstract

11 pages, 2767 KiB  
Article
Biocontrol of Large Patch Disease in Zoysiagrass (Zoysia japonica) by Bacillus subtilis SA-15: Identification of Active Compounds and Synergism with a Fungicide
by Young-Sun Kim, Kyo-Suk Lee, Hong-Gi Kim and Geung-Joo Lee
Horticulturae 2022, 8(1), 34; https://doi.org/10.3390/horticulturae8010034 - 29 Dec 2021
Cited by 8 | Viewed by 2802
Abstract
Bacillus subtilis SA-15 is a plant growth-promoting bacterium isolated from non-farming soil. We aimed to identify lipopeptides produced by B. subtilis SA-15 and evaluate the control efficacy of B. subtilis SA-15 against large patch disease caused by Rhizoctonia solani AG 2-2 (IV) in [...] Read more.
Bacillus subtilis SA-15 is a plant growth-promoting bacterium isolated from non-farming soil. We aimed to identify lipopeptides produced by B. subtilis SA-15 and evaluate the control efficacy of B. subtilis SA-15 against large patch disease caused by Rhizoctonia solani AG 2-2 (IV) in zoysiagrass (Zoysia japonica). Bacillus subtilis SA-15 inhibited mycelial growth of R. solani AG 2-2 (IV) in vitro and produced fengycin A and dehydroxyfengycin A, which are antifungal compounds. Fengycin A and deghydroxyfengycin A inhibited R. solani mycelial growth by 30.4 and 63.2%, respectively. We formulated B. subtilis SA-15 into a wettable powder and determined its control efficiency against large patch in a field trial. The control efficacy was 51.2–92.0%. Moreover, when B. subtilis SA-15 powder was applied together with half the regular dose of the fungicide pecycuron, the control efficacy was 88.5–100.0%. These results indicate that B. subtilis SA-15 can be used to control soil-borne diseases, including large patch caused by R. solani, because of lipopeptide production. The use of this bacterium can also reduce the amount of fungicide needed, providing an eco-friendly management option for turfgrass. Full article
Show Figures

Figure 1

14 pages, 4333 KiB  
Article
Detection and Control of Fusarium oxysporum from Soft Rot in Dendrobium officinale by Loop-Mediated Isothermal Amplification Assays
by Caiyun Xiao and Rongyu Li
Biology 2021, 10(11), 1136; https://doi.org/10.3390/biology10111136 - 5 Nov 2021
Cited by 14 | Viewed by 3348
Abstract
Soft rot causing Fusarium oxysporum is one of the most destructive diseases of Dendrobium officinale Kimura et Migo in China that reduces D. officinale yield and quality. A key challenge for an integrated management strategy for this disease is the rapid and accurate [...] Read more.
Soft rot causing Fusarium oxysporum is one of the most destructive diseases of Dendrobium officinale Kimura et Migo in China that reduces D. officinale yield and quality. A key challenge for an integrated management strategy for this disease is the rapid and accurate detection of F. oxysporum on D. officinale. Therefore, a new loop-mediated isothermal amplification (LAMP) assay was developed for this purpose. In this study, the primers were selected and designed using the translation elongation factor-1α (TEF-1α) gene region as the target DNA sequence in order to screen the best system of reaction of LAMP to detect F. oxysporum through optimizing different conditions of the LAMP reaction, including time, temperature, concentrations of MgSO4, and concentrations of inner and outer primers. The optimized system was able to efficiently amplify the target gene at 62 °C for 60 min with 1.2 μM internal primers, 0.4 μM external primers, 7 mM Mg2+, and 5 fg/µL minimum detection concentration of DNA for F. oxysporum. The amplified products could be detected with the naked eye after completion of the reaction with SYBR green I. We were better able to control the effect of soft rot in D. officinale using fungicides following a positive test result. Additionally, the control effect of synergism combinations against soft rot was higher than 75%. Thus, LAMP assays could detect F. oxysporum in infected tissues of D. officinale and soils in field, allowing for early diagnosis of the disease. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

11 pages, 977 KiB  
Article
The In Vitro Potential of 1-(1H-indol-3-yl) Derivatives against Candida spp. and Aspergillus niger as Tyrosinase Inhibitors
by Teresa Gervasi, Giovanna Ginestra, Francesca Mancuso, Davide Barreca, Laura De Luca and Giuseppina Mandalari
Microorganisms 2021, 9(10), 2070; https://doi.org/10.3390/microorganisms9102070 - 1 Oct 2021
Cited by 3 | Viewed by 2165
Abstract
Given the increased antimicrobial resistance, global effort is currently focused on the identification of novel compounds, both of natural and chemical origin. The present study reports on the antifungal potential of 1-(1H-indol-3-yl) derivatives, previously known as tyrosinase inhibitors. The effect of [...] Read more.
Given the increased antimicrobial resistance, global effort is currently focused on the identification of novel compounds, both of natural and chemical origin. The present study reports on the antifungal potential of 1-(1H-indol-3-yl) derivatives, previously known as tyrosinase inhibitors. The effect of seven compounds (indicated as 3ag) was determined against Candida albicans ATCC 10531, three clinical isolates of Candida albicans, two clinical isolates of Candida glabrata, two clinical isolates of Candida parapsilosis and Aspergillus niger ATCC 16404. The effect of these derivatives on tyrosinase enzymatic activity was also evaluated. Results showed a fungicidal activity of compounds 3b, 3c and 3e against all tested strains at concentrations ranging between 0.250 and 1 mg/mL. Furthermore, the association between 3c and fluconazole and between 3b and caspofungin showed a trend of indifference tending toward synergism. Compound 3c was also able to inhibit microbial tyrosinase up to ~28% at the concentration of 0.250 mg/mL. These data could help provide novel therapeutics for topical use to treat fungal infections and increase the potential effectiveness of the association between novel compounds and commercial antifungals in order to combat drug resistance. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

15 pages, 16942 KiB  
Article
Antifungal Efficacy of Redox-Active Natamycin against Some Foodborne Fungi—Comparison with Aspergillus fumigatus
by Jong H. Kim, Christina C. Tam, Kathleen L. Chan, Luisa W. Cheng, Kirkwood M. Land, Mendel Friedman and Perng-Kuang Chang
Foods 2021, 10(9), 2073; https://doi.org/10.3390/foods10092073 - 2 Sep 2021
Cited by 10 | Viewed by 4920
Abstract
The fungal antioxidant system is one of the targets of the redox-active polyene antifungal drugs, including amphotericin B (AMB), nystatin (NYS), and natamycin (NAT). Besides medical applications, NAT has been used in industry for preserving foods and crops. In this study, we investigated [...] Read more.
The fungal antioxidant system is one of the targets of the redox-active polyene antifungal drugs, including amphotericin B (AMB), nystatin (NYS), and natamycin (NAT). Besides medical applications, NAT has been used in industry for preserving foods and crops. In this study, we investigated two parameters (pH and food ingredients) affecting NAT efficacy. In the human pathogen, Aspergillus fumigatus, NAT (2 to 16 μg mL−1) exerted higher activity at pH 5.6 than at pH 3.5 on a defined medium. In contrast, NAT exhibited higher activity at pH 3.5 than at pH 5.6 against foodborne fungal contaminants, Aspergillus flavus, Aspergillus parasiticus, and Penicillium expansum, with P. expansum being the most sensitive. In commercial food matrices (10 organic fruit juices), food ingredients differentially affected NAT antifungal efficacy. Noteworthily, NAT overcame tolerance of the A. fumigatus signaling mutants to the fungicide fludioxonil and exerted antifungal synergism with the secondary metabolite, kojic acid (KA). Altogether, NAT exhibited better antifungal activity at acidic pH against foodborne fungi; however, the ingredients from commercial food matrices presented greater impact on NAT efficacy compared to pH values. Comprehensive determination of parameters affecting NAT efficacy and improved food formulation will promote sustainable food/crop production, food safety, and public health. Full article
Show Figures

Figure 1

19 pages, 2251 KiB  
Review
Synergistic Field Crop Pest Management Properties of Plant-Derived Essential Oils in Combination with Synthetic Pesticides and Bioactive Molecules: A Review
by Mackingsley Kushan Dassanayake, Chien Hwa Chong, Teng-Jin Khoo, Adam Figiel, Antoni Szumny and Chee Ming Choo
Foods 2021, 10(9), 2016; https://doi.org/10.3390/foods10092016 - 27 Aug 2021
Cited by 52 | Viewed by 7575 | Correction
Abstract
The management of insect pests and fungal diseases that cause damage to crops has become challenging due to the rise of pesticide and fungicide resistance. The recent developments in studies related to plant-derived essential oil products has led to the discovery of a [...] Read more.
The management of insect pests and fungal diseases that cause damage to crops has become challenging due to the rise of pesticide and fungicide resistance. The recent developments in studies related to plant-derived essential oil products has led to the discovery of a range of phytochemicals with the potential to combat pesticide and fungicide resistance. This review paper summarizes and interprets the findings of experimental work based on plant-based essential oils in combination with existing pesticidal and fungicidal agents and novel bioactive natural and synthetic molecules against the insect pests and fungi responsible for the damage of crops. The insect mortality rate and fractional inhibitory concentration were used to evaluate the insecticidal and fungicidal activities of essential oil synergists against crop-associated pests. A number of studies have revealed that plant-derived essential oils are capable of enhancing the insect mortality rate and reducing the minimum inhibitory concentration of commercially available pesticides, fungicides and other bioactive molecules. Considering these facts, plant-derived essential oils represent a valuable and novel source of bioactive compounds with potent synergism to modulate crop-associated insect pests and phytopathogenic fungi. Full article
(This article belongs to the Special Issue Chemistry of Essential Oils and Food Flavours)
Show Figures

Figure 1

Back to TopTop