Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (639)

Search Parameters:
Keywords = fungal incidence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 301 KiB  
Review
The Impact of Genital Infections on Women’s Fertility
by Sara Occhipinti, Carla Ettore, Giosuè Giordano Incognito, Chiara Gullotta, Dalila Incognito, Roberta Foti, Giuseppe Nunnari and Giuseppe Ettore
Acta Microbiol. Hell. 2025, 70(3), 33; https://doi.org/10.3390/amh70030033 (registering DOI) - 7 Aug 2025
Abstract
Sexually transmitted infections (STIs) are a significant global health concern, affecting millions of people worldwide, particularly sexually active adolescents and young adults. These infections, caused by various pathogens, including bacteria, viruses, parasites, and fungi, can have profound implications for women’s reproductive health and [...] Read more.
Sexually transmitted infections (STIs) are a significant global health concern, affecting millions of people worldwide, particularly sexually active adolescents and young adults. These infections, caused by various pathogens, including bacteria, viruses, parasites, and fungi, can have profound implications for women’s reproductive health and fertility. This review explores the role of vaginal and uterine infections in women’s infertility, focusing on the most common pathogens and their impact on reproductive outcomes. Bacterial infections, such as those caused by intracellular bacteria (Mycoplasma, Ureaplasma, and Chlamydia), Neisseria gonorrhoeae, and bacterial vaginosis, are among the most prevalent causes of infertility in women. Studies have shown that these infections can lead to pelvic inflammatory disease, tubal occlusion, and endometrial damage, all of which can impair fertility. Mycobacterium tuberculosis, in particular, is a significant cause of genital tuberculosis and infertility in high-incidence countries. Viral infections, such as Human papillomavirus (HPV) and Herpes simplex virus (HSV), can also affect women’s fertility. While the exact role of HPV in female infertility remains unclear, studies suggest that it may increase the risk of endometrial implantation issues and miscarriage. HSV may be associated with unexplained infertility. Parasitic infections, such as trichomoniasis and schistosomiasis, can directly impact the female reproductive system, leading to infertility, ectopic pregnancy, and other complications. Fungal infections, such as candidiasis, are common but rarely have serious outcomes related to fertility. The vaginal microbiome plays a crucial role in maintaining reproductive health, and alterations in the microbial balance can increase susceptibility to STIs and infertility. Probiotics have been proposed as a potential therapeutic strategy to restore the vaginal ecosystem and improve fertility outcomes, although further research is needed to establish their efficacy. In conclusion, vaginal and uterine infections contribute significantly to women’s infertility, with various pathogens affecting the reproductive system through different mechanisms. Early diagnosis, appropriate treatment, and preventive measures are essential to mitigate the impact of these infections on women’s reproductive health and fertility. Full article
37 pages, 910 KiB  
Review
Invasive Candidiasis in Contexts of Armed Conflict, High Violence, and Forced Displacement in Latin America and the Caribbean (2005–2025)
by Pilar Rivas-Pinedo, Juan Camilo Motta and Jose Millan Onate Gutierrez
J. Fungi 2025, 11(8), 583; https://doi.org/10.3390/jof11080583 - 6 Aug 2025
Abstract
Invasive candidiasis (IC), characterized by the most common clinical manifestation of candidemia, is a fungal infection with a high mortality rate and a significant impact on global public health. It is estimated that each year there are between 227,000 and 250,000 hospitalizations related [...] Read more.
Invasive candidiasis (IC), characterized by the most common clinical manifestation of candidemia, is a fungal infection with a high mortality rate and a significant impact on global public health. It is estimated that each year there are between 227,000 and 250,000 hospitalizations related to IC, with more than 100,000 associated deaths. In Latin America and the Caribbean (LA&C), the absence of a standardized surveillance system has led to multicenter studies documenting incidences ranging from 0.74 to 6.0 cases per 1000 hospital admissions, equivalent to 50,000–60,000 hospitalizations annually, with mortality rates of up to 60% in certain high-risk groups. Armed conflicts and structural violence in LA&C cause forced displacement, the collapse of health systems, and poor living conditions—such as overcrowding, malnutrition, and lack of sanitation—which increase vulnerability to opportunistic infections, such as IC. Insufficient specialized laboratories, diagnostic technology, and trained personnel impede pathogen identification and delay timely initiation of antifungal therapy. Furthermore, the empirical use of broad-spectrum antibiotics and the limited availability of echinocandins and lipid formulations of amphotericin B have promoted the emergence of resistant non-albicans strains, such as Candida tropicalis, Candida parapsilosis, and, in recent outbreaks, Candidozyma auris. Full article
Show Figures

Figure 1

20 pages, 8975 KiB  
Article
Transcriptome Analysis of Potato (Solanum tuberosum L.) Seedlings with Varying Resistance Levels Reveals Diverse Molecular Pathways in Early Blight Resistance
by Jiangtao Li, Jie Li, Hongfei Shen, Rehemutula Gulimila, Yinghong Jiang, Hui Sun, Yan Wu, Binde Xing, Ruwei Yang and Yi Liu
Plants 2025, 14(15), 2422; https://doi.org/10.3390/plants14152422 - 5 Aug 2025
Viewed by 74
Abstract
Early blight, caused by the pathogen Alternaria solani, is a major fungal disease impacting potato production globally, with reported yield losses of up to 40% in susceptible varieties. As one of the most common diseases affecting potatoes, its incidence has been steadily [...] Read more.
Early blight, caused by the pathogen Alternaria solani, is a major fungal disease impacting potato production globally, with reported yield losses of up to 40% in susceptible varieties. As one of the most common diseases affecting potatoes, its incidence has been steadily increasing year after year. This study aimed to elucidate the molecular mechanisms underlying resistance to early blight by comparing gene expression profiles in resistant (B1) and susceptible (D30) potato seedlings. Transcriptome sequencing was conducted at three time points post-infection (3, 7, and 10 dpi) to identify differentially expressed genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) and pathway enrichment analyses were performed to explore resistance-associated pathways and hub genes. Over 11,537 DEGs were identified, with the highest number observed at 10 dpi. Genes such as LOC102603761 and LOC102573998 were significantly differentially expressed across multiple comparisons. In the resistant B1 variety, upregulated genes were enriched in plant–pathogen interaction, MAPK signaling, hormonal signaling, and secondary metabolite biosynthesis pathways, particularly flavonoid biosynthesis, which likely contributes to biochemical defense against A. solani. WGCNA identified 24 distinct modules, with hub transcription factors (e.g., WRKY33, MYB, and NAC) as key regulators of resistance. These findings highlight critical molecular pathways and candidate genes involved in early blight resistance, providing a foundation for further functional studies and breeding strategies to enhance potato resilience. Full article
(This article belongs to the Special Issue Advances in Plant Genetics and Breeding Improvement)
Show Figures

Figure 1

21 pages, 22173 KiB  
Article
Nature Nano-Barrier: HPMC/MD-Based Lactobacillus plantarum Pickering Emulsion to Extend Cherry Tomato Shelf Life
by Youwei Yu, Tian Li, Shengwang Li, Silong Jia, Xinyu Yang, Yaxuan Cui, Hui Ma, Shuaishuai Yan and Shaoying Zhang
Foods 2025, 14(15), 2729; https://doi.org/10.3390/foods14152729 - 5 Aug 2025
Viewed by 153
Abstract
To improve the postharvest preservation of cherry tomatoes and combat pathogenic, both bacterial and fungal contamination (particularly Alternaria alternata), a novel biodegradable coating was developed based on a water-in-water (W/W) Pickering emulsion system. The emulsion was stabilized by L. plantarum (Lactobacillus [...] Read more.
To improve the postharvest preservation of cherry tomatoes and combat pathogenic, both bacterial and fungal contamination (particularly Alternaria alternata), a novel biodegradable coating was developed based on a water-in-water (W/W) Pickering emulsion system. The emulsion was stabilized by L. plantarum (Lactobacillus plantarum), with maltodextrin (MD) as the dispersed phase and hydroxypropyl methylcellulose (HPMC) as the continuous phase. Characterization of emulsions at varying concentrations revealed that the optimized W/W-PL^8 film exhibited superior stability, smooth morphology, and low water vapor permeability (WVP = 220.437 g/(m2·24 h)), making it a promising candidate for fruit and vegetable preservation. Furthermore, the coating demonstrated strong antioxidant activity, with scavenging rates of 58.99% (ABTS) and 94.23% (DPPH), along with potent antimicrobial effects, showing inhibition rates of 12.8% against Escherichia coli and 23.7% against Staphylococcus aureus. Applied to cherry tomatoes, the W/W-PL^8 coating significantly reduced respiration rates, minimized decay incidence, and maintained nutritional quality during storage. Remarkably, the coating successfully controlled Alternaria alternata contamination, enhancing the storage duration of cherry tomatoes. These findings highlight the potential of W/W-PL^8 as an eco-friendly and functional packaging material for fresh produce preservation. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

20 pages, 3604 KiB  
Article
Analysis of the Differences in Rhizosphere Microbial Communities and Pathogen Adaptability in Chili Root Rot Disease Between Continuous Cropping and Rotation Cropping Systems
by Qiuyue Zhao, Xiaolei Cao, Lu Zhang, Xin Hu, Xiaojian Zeng, Yingming Wei, Dongbin Zhang, Xin Xiao, Hui Xi and Sifeng Zhao
Microorganisms 2025, 13(8), 1806; https://doi.org/10.3390/microorganisms13081806 - 1 Aug 2025
Viewed by 229
Abstract
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. [...] Read more.
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. In this study, we analyzed the composition and characteristics of rhizosphere soil microbial communities under chili continuous cropping (CC) and chili–cotton crop rotation (CR) using high-throughput sequencing technology. CR treatment reduced the alpha diversity indices (including Chao1, Observed_species, and Shannon index) of bacterial communities and had less of an effect on fungal community diversity. Principal component analysis (PCA) revealed distinct compositional differences in bacterial and fungal communities between the treatments. Compared with CC, CR treatment has altered the structure of the soil microbial community. In terms of bacterial communities, the relative abundance of Firmicutes increased from 12.89% to 17.97%, while the Proteobacteria increased by 6.8%. At the genus level, CR treatment significantly enriched beneficial genera such as RB41 (8.19%), Lactobacillus (4.56%), and Bacillus (1.50%) (p < 0.05). In contrast, the relative abundances of Alternaria and Fusarium in the fungal community decreased by 6.62% and 5.34%, respectively (p < 0.05). Venn diagrams and linear discriminant effect size analysis (LEfSe) further indicated that CR facilitated the enrichment of beneficial bacteria, such as Bacillus, whereas CC favored enrichment of pathogens, such as Firmicutes. Fusarium solani MG6 and F. oxysporum LG2 are the primary chili root-rot pathogens. Optimal growth occurs at 25 °C, pH 6: after 5 days, MG6 colonies reach 6.42 ± 0.04 cm, and LG2 5.33 ± 0.02 cm, peaking in sporulation (p < 0.05). In addition, there are significant differences in the utilization spectra of carbon and nitrogen sources between the two strains of fungi, suggesting their different ecological adaptability. Integrated analyses revealed that CR enhanced soil health and reduced the root rot incidence by optimizing the structure of soil microbial communities, increasing the proportion of beneficial bacteria, and suppressing pathogens, providing a scientific basis for microbial-based soil management strategies in chili cultivation. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

28 pages, 5986 KiB  
Review
Natural Neuroinflammatory Modulators: Therapeutic Potential of Fungi-Derived Compounds in Selected Neurodegenerative Diseases
by Agnieszka Godela, Diana Rogacz, Barbara Pawłowska and Robert Biczak
Molecules 2025, 30(15), 3158; https://doi.org/10.3390/molecules30153158 - 28 Jul 2025
Viewed by 193
Abstract
Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis remain incurable. Current therapeutic strategies primarily focus on slowing disease progression, alleviating symptoms, and improving patients’ quality of life, including the management of comorbid conditions. Over the past few [...] Read more.
Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis remain incurable. Current therapeutic strategies primarily focus on slowing disease progression, alleviating symptoms, and improving patients’ quality of life, including the management of comorbid conditions. Over the past few decades, the incidence of diagnosed neurodegenerative disorders has risen significantly. As the number of affected individuals continues to grow, so does the urgent need for effective treatments that can halt or mitigate the progression of these diseases. Among the most promising therapeutic resources are bioactive compounds derived from fungi. The high quality of proteins, polysaccharides, unsaturated fatty acids, triterpenoids, sterols, and secondary metabolites found in fungi have attracted growing interest from researchers across multiple disciplines. One intensively studied direction involves the use of naturally occurring fungi-derived nutraceuticals in the treatment of various diseases, including neurodegenerative conditions. This article provides an overview of recent findings on fungal compounds—such as phenolic compounds, carbohydrates, peptides and proteins, and lipids—that may have potential applications in the treatment of neurodegenerative diseases and the alleviation of their symptoms. Full article
(This article belongs to the Special Issue Role of Natural Products in Inflammation)
Show Figures

Figure 1

13 pages, 2332 KiB  
Article
Biocontrol Potential of a Mango-Derived Weissella paramesenteroides and Its Application in Managing Strawberry Postharvest Disease
by Xiyu Zhang and Bang An
J. Fungi 2025, 11(7), 538; https://doi.org/10.3390/jof11070538 - 19 Jul 2025
Viewed by 393
Abstract
Postharvest fungal diseases are a major cause of fruit spoilage and economic losses, particularly in perishable commodities like strawberries. In this study, a plant-derived Weissella paramesenteroides strain R2 was isolated from the mango fruit surface and evaluated for its antifungal potential. Dual-culture assays [...] Read more.
Postharvest fungal diseases are a major cause of fruit spoilage and economic losses, particularly in perishable commodities like strawberries. In this study, a plant-derived Weissella paramesenteroides strain R2 was isolated from the mango fruit surface and evaluated for its antifungal potential. Dual-culture assays revealed the strong inhibitory activity of strain R2 against key postharvest pathogens, including Botrytis cinerea, Colletotrichum gloeosporioides, and Fusarium oxysporum. Notably, cell-free fermentation broth exhibited no antifungal activity, whereas the volatile organic compounds (VOCs) produced by R2 significantly suppressed fungal growth in sealed plate assays. GC-MS analysis identified 84 VOCs, with pyrazines as the dominant group. Three major compounds, 2,5-dimethylpyrazine, 2,4-di-tert-butylphenol, and 2-furanmethanol, were validated for their antifungal activity. The application of R2 VOCs in strawberry preservation significantly reduced disease incidence and severity during storage. These findings highlight W. paramesenteroides R2 as a promising, food-safe biocontrol agent for postharvest disease management via VOC-mediated mechanisms. Full article
(This article belongs to the Special Issue Control of Postharvest Fungal Diseases, 2nd Edition)
Show Figures

Figure 1

32 pages, 2479 KiB  
Review
Fungal Biofilm: An Overview of the Latest Nano-Strategies
by Andrea Giammarino, Laura Verdolini, Giovanna Simonetti and Letizia Angiolella
Antibiotics 2025, 14(7), 718; https://doi.org/10.3390/antibiotics14070718 - 17 Jul 2025
Viewed by 589
Abstract
Background/Objectives: There is an increasing incidence of fungal infections in conjunction with the rise in resistance to medical treatment. Antimicrobial resistance is frequently associated with virulence factors such as adherence and the capacity of biofilm formation, which facilitates the evasion of the [...] Read more.
Background/Objectives: There is an increasing incidence of fungal infections in conjunction with the rise in resistance to medical treatment. Antimicrobial resistance is frequently associated with virulence factors such as adherence and the capacity of biofilm formation, which facilitates the evasion of the host immune response and resistance to drug action. Novel therapeutic strategies have been developed to overcome antimicrobial resistance, including the use of different type of nanomaterials: metallic (Au, Ag, Fe3O4 and ZnO), organic (e.g., chitosan, liposomes and lactic acid) or carbon-based (e.g., quantum dots, nanotubes and graphene) materials. The objective of this study was to evaluate the action of nanoparticles of different synthesis and with different coatings on fungi of medical interest. Methods: Literature research was conducted using PubMed and Google Scholar databases, and the following terms were employed in articles published up to June 2025: ‘nanoparticles’ in combination with ‘fungal biofilm’, ‘Candida biofilm’, ‘Aspergillus biofilm’, ‘Cryptococcus biofilm’, ‘Fusarium biofilm’ and ‘dermatophytes biofilm’. Results: The utilization of nanoparticles was found to exert a substantial impact on the reduction in fungal biofilm, despite the presence of substantial variability in minimum inhibitory concentration (MIC) values attributable to variations in nanoparticle type and the presence of capping agents. It was observed that the MIC values were lower for metallic nanoparticles, particularly silver, and for those synthesized with polylactic acid compared to the others. Conclusions: Despite the limited availability of data concerning the stability and biocompatibility of nanoparticles employed in the treatment of fungal biofilms, it can be posited that these results constitute a significant initial step. Full article
Show Figures

Figure 1

17 pages, 308 KiB  
Review
Non-Pharmacological Interventions to Prevent Oropharyngeal Candidiasis in Patients Using Inhaled Corticosteroids: A Narrative Review
by Leonardo Arzayus-Patiño and Vicente Benavides-Córdoba
Healthcare 2025, 13(14), 1718; https://doi.org/10.3390/healthcare13141718 - 17 Jul 2025
Viewed by 652
Abstract
Inhaled corticosteroids (ICSs) are widely used to manage chronic respiratory conditions such as asthma, chronic obstructive pulmonary disease (COPD), and human immunodeficiency virus (HIV). However, prolonged use of ICS is associated with the development of oropharyngeal candidiasis, a fungal infection primarily caused by [...] Read more.
Inhaled corticosteroids (ICSs) are widely used to manage chronic respiratory conditions such as asthma, chronic obstructive pulmonary disease (COPD), and human immunodeficiency virus (HIV). However, prolonged use of ICS is associated with the development of oropharyngeal candidiasis, a fungal infection primarily caused by Candida albicans, due to local immunosuppression in the oral cavity. The incidence of oropharyngeal candidiasis varies depending on geographic region, patient age, and comorbidities, with immunocompromised individuals, those with diabetes, and the elderly being particularly vulnerable. Key risk factors include high ICS doses, poor oral hygiene, and improper use of inhalers. Prevention is the cornerstone of managing oropharyngeal candidiasis associated with the chronic use of inhaled corticosteroids. Patient education on proper inhaler technique and oral hygiene is essential to reduce the risk of fungal overgrowth in the oral cavity. Additional preventive strategies include the use of spacers, mouth rinsing after inhalation, and proper denture care. In cases where these measures fail to prevent the infection, prompt detection and early intervention are crucial to prevent progression or recurrence. This narrative review aims to analyze the most effective prophylactic measures to prevent oropharyngeal candidiasis associated with the chronic use of inhaled corticosteroids, emphasizing patient education, oral hygiene, and proper use of inhalation devices. Full article
(This article belongs to the Section Preventive Medicine)
23 pages, 2535 KiB  
Article
Defining Soilborne Pathogen Complexes Provides a New Foundation for the Effective Management of Faba Bean Root Diseases in Ethiopia
by Solomon Yilma, Berhanu Bekele, Joop Van Leur, Ming Pei You, Seid-Ahmed Kemal, Danièle Giblot-Ducray, Kelly Hill, Thangavel Selvaraji, Alemu Lencho, Lemma Driba and Martin J. Barbetti
Pathogens 2025, 14(7), 695; https://doi.org/10.3390/pathogens14070695 - 14 Jul 2025
Viewed by 803
Abstract
Soilborne diseases cause losses of 45–70% in faba bean in Ethiopia. Studies were undertaken to define soilborne pathogens and their complexes in Ethiopia. First, the severity of root rot was assessed in 150 field sites across seven Ethiopian regions. Soil samples were collected, [...] Read more.
Soilborne diseases cause losses of 45–70% in faba bean in Ethiopia. Studies were undertaken to define soilborne pathogens and their complexes in Ethiopia. First, the severity of root rot was assessed in 150 field sites across seven Ethiopian regions. Soil samples were collected, and the DNA of 29 pests and pathogens was quantified using a commercial quantitative PCR (qPCR) soil testing service. There was a very high incidence rate of Macrophomina phaseolina, as well as Pythium clades F and I. The other detected species in order of incidence included Fusarium redolens, Rhizoctonia solani, Aphanomyces euteiches, Phytophthora megasperma, Sclerotinia sclerotiorum and S. minor, and Verticillium dahliae, as well as low levels of Thielaviopsis basicola. Five anastomosis groups (AG) of R. solani, namely AG2.1, AG2.2, AG3, AG4, and AG5, were detected, of which AG2.2 and AG4 were most prevalent. We believe this is the first report of occurrence for Ethiopia of A. euteiches, Ph. megasperma, T. basicola, and the five AGs for R. solani. There were very high incidence rates of the foliar pathogens Botrytis cinerea, B. fabae, Didymella pinodes, and Phoma pinodella and of the nematode Pratylenchus thornei, followed by P. neglectus and P. penetrans. The root rot severity and distribution varied significantly across regions, as well as with soil types, soil pH, and soil drainage. Subsequently, metabarcoding of the soil DNA was undertaken using three primer pairs targeting fungi (ITS2), Fusarium species (TEF1 α), and Oomycetes (ITS1Oo). The ITS2 and TEF1α primers emphasized F. oxysporum as the most abundant soilborne fungal pathogen and highlighted F. ananatum, F. brachygibbosum, F. brevicaudatum, F. clavum, F. flagelliforme, F. keratoplasticum, F. napiforme, F. nelsonii, F. neocosmosporiellum, F. torulosum, and F. vanettenii as first reports of occurrence for Ethiopia. The ITS1Oo primer confirmed Pythium spp. as the most prevalent of all Oomycetes. Full article
(This article belongs to the Special Issue An Update on Fungal Infections)
Show Figures

Figure 1

14 pages, 566 KiB  
Article
Impact of RSV Infection in Transplant and Immunocompromised Population: Incidence and Co-Infections: Retrospective Analysis of a Single Centre
by Paolo Solidoro, Antonio Curtoni, Sara Minuto, Nour Shbaklo, Francesco Giuseppe De Rosa, Alessandro Bondi, Francesca Sidoti, Filippo Patrucco, Elisa Zanotto, Silvia Corcione, Massimo Boffini, Matteo Marro, Cristina Costa and Rocco Francesco Rinaldo
J. Clin. Med. 2025, 14(13), 4803; https://doi.org/10.3390/jcm14134803 - 7 Jul 2025
Viewed by 468
Abstract
Respiratory syncytial virus (RSV) represents one of the main respiratory infections found among immunocompromised patients. Objective: The study analyzes the incidence of RSV infection in different populations of immunocompromised patients as organ transplant recipients (lung, other solid organs, hematopoietic stem cells) and [...] Read more.
Respiratory syncytial virus (RSV) represents one of the main respiratory infections found among immunocompromised patients. Objective: The study analyzes the incidence of RSV infection in different populations of immunocompromised patients as organ transplant recipients (lung, other solid organs, hematopoietic stem cells) and oncologic patients (solid organ malignancy and hematological malignancy) compared to a group of non-immunocompromised patients. We also assessed the prevalence of viral, bacterial, and mycotic coinfection. Moreover, we aimed at evaluating the efficacy of ribavirin treatment in terms of mortality reduction. Methods: We conducted a retrospective analysis on a total of 466 transplant patients undergoing bronchoscopy with bronchoalveolar lavage for suspected viral disease or surveillance between 2016 and 2023, compared to 460 controls. Results: The incidence of RSV was significantly higher in immunocompromised patients, particularly in those with lung and bone marrow transplants. Among RSV+ patients, a higher prevalence of viral (influenza virus), bacterial (S. pneumoniae, M. pneumoniae, Nocardia spp.), and fungal (Aspergillus spp.) coinfections were observed. The efficacy of ribavirin in reducing mortality did not show significant differences compared to supportive therapy alone. Conclusions: The results of our exploratory study suggest that immunocompromised patients are particularly vulnerable to RSV infection and coinfections. Our hypothesis-generating data warrant the need for future studies aimed at exploring preventive and therapeutic strategies for RSV infection in these high-risk patient groups. Full article
(This article belongs to the Special Issue Lung Transplantation: Current Strategies and Future Directions)
Show Figures

Figure 1

15 pages, 573 KiB  
Article
Five-Year Analysis of Microbial Keratitis Incidence, Isolates, and In Vitro Antimicrobial Sensitivity in the South West of England: An Epidemiological Study
by Poonam Sharma, Chimwemwe Chipeta, Kieran O’Kane, Alexander Whiteman, Bryher Francis, Richard Thornton, Indy Sian, Charlotte Buscombe, Jennifer Court, Nathaniel Knox-Cartwright and Harry Roberts
Microorganisms 2025, 13(7), 1578; https://doi.org/10.3390/microorganisms13071578 - 4 Jul 2025
Viewed by 281
Abstract
To determine the incidence, causative organisms, and treatment effectiveness for microbial keratitis (MK) in the Southwest of England. Retrospective analysis of 872 corneal scrapes (January 2018–December 2022). Microbiology results were evaluated for organism growth and antimicrobial sensitivity. Data were divided into two groups [...] Read more.
To determine the incidence, causative organisms, and treatment effectiveness for microbial keratitis (MK) in the Southwest of England. Retrospective analysis of 872 corneal scrapes (January 2018–December 2022). Microbiology results were evaluated for organism growth and antimicrobial sensitivity. Data were divided into two groups for trend analysis (A: 2018–2020, B: 2021–2022). Of the 872 scrapes, 357 (39.6%) were culture positive. Bacteria accounted for 90.2% of cases, followed by viruses (2.8%), fungi (2.5%), mixed bacterial growth (2.5%), and Acanthamoeba (2.0%). The estimated incidence of MK was 9.69/100,000/year. Group B had a significantly higher overall MK incidence, with no change in pathogen distribution. Pseudomonas aeruginosa was the most frequent isolate (69 cases, 19.3%). In vitro sensitivity to fluoroquinolones was 94.4% for Gram-positive and 98.6% for Gram-negative bacteria. All fungal isolates were sensitive to at least one antifungal. Bacterial pathogens dominate MK in the Southwest of England, with over 90% sensitivity to chloramphenicol, fluoroquinolones, and aminoglycosides, indicating low antimicrobial resistance. Fluoroquinolones remain the recommended first-line therapy for MK. Fungal and protozoal keratitis are rare (<3% of cases), supporting bacteria-focused empirical treatment with close monitoring. Full article
(This article belongs to the Special Issue The Central Role of Microbiota in Eye Health)
Show Figures

Figure 1

11 pages, 623 KiB  
Article
Pneumocystis Pneumonia in Cirrhosis: An Underrecognized Fungal Infection in a Vulnerable Host
by Aaron M. Pulsipher, Michele Barnhill, Holenarasipur R. Vikram, Michael B. Gotway, Rodrigo Cartin-Ceba, Kevin Zhou, Emily R. Thompson, Andrew H. Limper, Bashar Aqel and Kealy Ham
J. Fungi 2025, 11(7), 500; https://doi.org/10.3390/jof11070500 - 3 Jul 2025
Cited by 1 | Viewed by 543
Abstract
Pneumocystis pneumonia (PCP) is a serious fungal infection affecting immunocompromised hosts. Decompensated cirrhosis leads to cirrhosis-associated immune dysfunction (CAID), a form of impaired cellular immunity that may predispose patients to opportunistic infections such as PCP. We conducted a retrospective review of 727 patients [...] Read more.
Pneumocystis pneumonia (PCP) is a serious fungal infection affecting immunocompromised hosts. Decompensated cirrhosis leads to cirrhosis-associated immune dysfunction (CAID), a form of impaired cellular immunity that may predispose patients to opportunistic infections such as PCP. We conducted a retrospective review of 727 patients with proven or probable PCP from 2017 to 2025. Of these, 33 had decompensated cirrhosis. These patients were stratified into two groups: Cirrhosis Only (n = 16) and Cirrhosis with Additional Immunocompromising Conditions (n = 17). Among the patients with cirrhosis, the overall mortality was 48%, with the 90-day mortality reaching 57.6% (95% CI: 39.2–74.5%). Compared with those without cirrhosis, the patients with cirrhosis had a higher risk of mortality (OR: 4.08, 95% CI: 2.01–8.30, p < 0.001), increased intensive care unit (ICU) admission (87% vs. 42%, p < 0.001), and greater need for renal replacement therapy (54.6% vs. 7.5%, p < 0.001). These findings suggest that decompensated cirrhosis alone may represent a sufficient and underrecognized risk factor for PCP, with a high associated mortality. Given the preventable nature of this infection, future studies are needed to assess the incidence, define the risk, and investigate the role of prophylaxis in this vulnerable population. Full article
Show Figures

Figure 1

15 pages, 1607 KiB  
Article
Caspofungin for Primary Antifungal Prophylaxis in Acute Myeloid Leukemia: A Real-Life Study from an Academic Center
by Francesco Grimaldi, Mara Memoli, Simona Avilia, Carlangela Causa, Maria Luisa Giannattasio, Italia Conversano, Dario Lisi, Daniela D’Angelo, Raffaella Iannotta, Nicola Schiano Moriello, Giulio Viceconte, Emanuela Zappulo, Ivan Gentile, Marco Picardi and Fabrizio Pane
Cancers 2025, 17(13), 2184; https://doi.org/10.3390/cancers17132184 - 28 Jun 2025
Viewed by 476
Abstract
Background: Invasive fungal infections (IFIs) are a major complication in patients with acute myeloid leukemia (AML), particularly during chemotherapy-induced neutropenia. Posaconazole is the standard drug for primary antifungal prophylaxis (PAP), but its use is limited by oral bioavailability and CYP3A4 interactions. Study Objective: [...] Read more.
Background: Invasive fungal infections (IFIs) are a major complication in patients with acute myeloid leukemia (AML), particularly during chemotherapy-induced neutropenia. Posaconazole is the standard drug for primary antifungal prophylaxis (PAP), but its use is limited by oral bioavailability and CYP3A4 interactions. Study Objective: This study aims to evaluate the clinical efficacy and safety of intravenous caspofungin versus oral posaconazole as PAP in AML patients during their first cycle of chemotherapy and assess their subsequent impact on clinical outcomes. Methods: A retrospective, monocentric study was conducted on 75 consecutive AML patients treated at the Federico II University Medical School of Naples, Italy (2021–2025). Patients received either caspofungin or posaconazole as PAP based on the drug–drug interaction risk or clinical conditions. IFIs were diagnosed using EORTC/MSG criteria. Logistic and Cox regression models were used to assess risk factors and overall survival (OS). Results: IFI incidence was 13.3% overall (9.4% proven/probable). No significant difference was found between the caspofungin and posaconazole groups (six vs. four IFIs; p = 0.878). Post-chemotherapy refractory AML (OR = 11.9; p = 0.003) and liver disease (OR = 30.4; p = 0.004) independently predicted IFI development. Median OS did not significantly differ in patients receiving caspofungin versus posaconazole (29.3 vs. 32.1 months, p = 0.6). Conclusions: Caspofungin appears clinically comparable to posaconazole for PAP in AML during the induction phase, especially when azole use is contraindicated. Prospective studies are warranted to refine prophylactic strategies in the era of new AML therapies. Full article
(This article belongs to the Section Infectious Agents and Cancer)
Show Figures

Figure 1

19 pages, 1144 KiB  
Article
Antifungal Efficacy of Ethanolic Extracts from Four Medicinal Plants Against Major Postharvest Fungal Pathogens of Apple Fruit
by Khadija Benamar, Rachid Lahlali, Rachid Ezzouggari, Mohammed El Ouassete, Ilham Dehbi, Mohammed Khadiri, Mohammed Radi, Lhoussain Ait Haddou, Saad Ibnsouda Koraichi, Saad Benamar, Abdellatif Boukir, Essaid Ait Barka and Kawtar Fikri-Benbrahim
Agronomy 2025, 15(7), 1577; https://doi.org/10.3390/agronomy15071577 - 27 Jun 2025
Viewed by 381
Abstract
The apple tree (Malus domestica), a member of the Rosaceae family, holds significant economic value but faces postharvest challenges, like blue mold caused by Penicillium expansum and gray mold caused by Botrytis cinerea. While synthetic fungicides are widely used, their [...] Read more.
The apple tree (Malus domestica), a member of the Rosaceae family, holds significant economic value but faces postharvest challenges, like blue mold caused by Penicillium expansum and gray mold caused by Botrytis cinerea. While synthetic fungicides are widely used, their limitations highlight the need for sustainable alternatives. This study explores the antifungal properties of extracts from Celtis australis, Olea europea var. sylvestris, Chamaerops humilis, and Asparagus albus against these pathogens. In vitro tests assessed mycelial growth inhibition, whereas in vivo trials consisted of measurement of weight loss, firmness, total soluble solids, titratable acidity, and maturity index. Moreover, the phytochemical traits of the extracts were determined using the Folin–Ciocalteu method and HPLC. The results revealed notable antifungal activity, particularly for Celtis australis extract at a concentration of 300 g L−1, which led to significant mycelial growth inhibition (61% for P. expansum and 41% for B. cinerea), a reduction in diseases’ severity (39% and 50%), and a notable decrease in diseases’ incidence (43% and 48%), respectively. Phytochemical analysis reflected the presence of phenols and flavonoids in the tested extracts. Importantly, the natural treatments helped preserve the apples’ quality during storage. Molecular docking studies further revealed that major compounds in Celtis australis extract inhibit the 14α-demethylase enzyme, a key target in fungal sterols biosynthesis. Full article
Show Figures

Figure 1

Back to TopTop