Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (117)

Search Parameters:
Keywords = functional hemispheric lateralization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2289 KB  
Case Report
Anatomically Precise Microsurgical Resection of a Posterior Fossa Cerebellar Metastasis in an Elderly Patient with Preservation of Venous Outflow, Dentate Nucleus, and Cerebrospinal Fluid Pathways
by Nicolaie Dobrin, Felix-Mircea Brehar, Daniel Costea, Adrian Vasile Dumitru, Alexandru Vlad Ciurea, Octavian Munteanu and Luciana Valentina Munteanu
Diagnostics 2025, 15(24), 3131; https://doi.org/10.3390/diagnostics15243131 - 9 Dec 2025
Viewed by 327
Abstract
Background and Clinical Significance: Adults suffering from cerebellar metastases are often at high risk for rapid deterioration of their neurological status because the posterior fossa has limited compliance and the location of these metastases are close to the brain stem and important [...] Read more.
Background and Clinical Significance: Adults suffering from cerebellar metastases are often at high risk for rapid deterioration of their neurological status because the posterior fossa has limited compliance and the location of these metastases are close to the brain stem and important cerebrospinal fluid (CSF) pathways. In this paper, we present a longitudinal, patient-centered report on the history of an elderly individual who suffered from cognitive comorbidities and experienced a sudden loss of function in her cerebellum. Our goal in reporting this case is to provide a comparison between the patient’s pre-operative and post-operative neurological examinations; the imaging studies she had before and after surgery; the surgical techniques utilized during her operation; and the outcome of her post-operative course in a way that will be helpful to other patients who have experienced a similar situation. Case Presentation: We report the case of an 80-year-old woman who initially presented with progressive ipsilateral limb-trunk ataxia, impaired smooth pursuit eye movement, and rebound nystagmus, but preserved pyramidal and sensory functions. Her quantitative bedside assessments included some of the components of the Scale for the Assessment and Rating of Ataxia (SARA), and a National Institute of Health Stroke Scale (NIHSS) score of 3. These findings indicated dysfunction of the left neocerebellar hemisphere and possible dentate nucleus involvement. The patient’s magnetic resonance imaging (MRI) results demonstrated an expansive mass with surrounding vasogenic edema and marked compression and narrowing of the exits of the fourth ventricle which placed the patient’s CSF pathways at significant risk of occlusion, while the aqueduct and inlets were patent. She then underwent a left lateral suboccipital craniectomy with controlled arachnoidal CSF release, preservation of venous drainage routes, subpial corticotomy oriented along the lines of the folia, stepwise internal debulking, and careful protection of the cerebellar peduncles and dentate nucleus. Dural reconstruction utilized a watertight pericranial graft to restore the cisternal compartments. Her post-operative intensive care unit (ICU) management emphasized optimal venous outflow, normoventilation, and early mobilization. Histopathology confirmed the presence of metastatic carcinoma, and staging suggested that the most likely source of the primary tumor was the lungs. Immediately post-operation, computed tomography (CT) imaging revealed a smooth resection cavity with open foramina of Magendie and Luschka, intact contours of the brain stem, and no evidence of bleeding or hydrocephalus. The patient’s neurological deficits, including dysmetria, scanning dysarthria, and ataxic gait, improved gradually during the first 48 h post-operatively. Upon discharge, the patient demonstrated an improvement in her limb-kinetic subscore on the International Cooperative Ataxia Rating Scale (ICARS) and demonstrated independent ambulation. At two weeks post-operation, CT imaging revealed decreasing edema and stable cavity size, and the patient’s modified Rankin scale had improved from 3 upon admission to 1. There were no episodes of CSF leakage, wound complications, or new cranial nerve deficits. A transient post-operative psychotic episode that was likely secondary to her underlying Alzheimer’s disease was managed successfully with short-course pharmacotherapy. Conclusions: The current case study demonstrates the value of anatomy-based microsurgical planning, preservation of venous and CSF pathways, and targeted peri-operative management to facilitate rapid recovery of function in older adults who suffer from cerebellar metastasis and cognitive comorbidities. The case also demonstrates the importance of early multidisciplinary collaboration to allow for timely initiation of both adjuvant stereotactic radiosurgery and molecularly informed systemic therapy. Full article
(This article belongs to the Special Issue Brain/Neuroimaging 2025–2026)
Show Figures

Figure 1

13 pages, 511 KB  
Article
White Matter Tract Integrity and Cognitive, Emotional, and Social Outcomes After Acquired Brain Injury: Exploratory Tractography Findings for Personalized Neurorehabilitation
by Rosario Bordón-Guerra, Eilin Ferreiro-Díaz-Velis, Coralia Sosa-Pérez, Sara Bisshopp-Alfonso, José Luis Hernández-Fleta, Jesús Morera-Molina and Wenceslao Peñate-Castro
Life 2025, 15(12), 1849; https://doi.org/10.3390/life15121849 - 1 Dec 2025
Viewed by 259
Abstract
Background: Acquired brain injury (ABI) leads to cognitive, emotional, and social impairments that substantially affect quality of life. Although cortical lesions have traditionally received more attention, increasing evidence highlights the importance of the integrity of major white matter association tracts. However, few studies [...] Read more.
Background: Acquired brain injury (ABI) leads to cognitive, emotional, and social impairments that substantially affect quality of life. Although cortical lesions have traditionally received more attention, increasing evidence highlights the importance of the integrity of major white matter association tracts. However, few studies have simultaneously examined cognitive, affective, and social domains within a tractography framework. Methods: In this exploratory pilot study, ten ABI patients underwent diffusion-based tractography of the principal association tracts—the superior and inferior longitudinal fasciculi, the uncinate fasciculus, the inferior fronto-occipital fasciculus, and the cingulum—together with a comprehensive neuropsychological battery covering global cognition, executive functions, memory, emotional symptoms, and empathy. Results: Marked interindividual variability was observed in both tract profiles and neuropsychological outcomes. Findings revealed paradoxical associations, such as larger volumes of the left superior longitudinal fasciculus being linked to poorer cognitive performance, suggesting maladaptive reorganization. Hemispheric lateralization patterns were also identified, with the uncinate fasciculus showing differential contributions to immediate memory and working memory across hemispheres. Notably, empathy scores consistently correlated with volumes of the inferior longitudinal fasciculus, the uncinate fasciculus, and the cingulum, in line with recent evidence on the structural basis of socio-emotional outcomes after ABI. Conclusions: Although limited by sample size, this study provides novel evidence regarding the structure–function paradox, hemispheric specialization, and the clinical relevance of empathy in ABI. Overall, the results support the integration of tractography of the main association tracts with neuropsychological assessment as complementary tools to advance personalized neurorehabilitation. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

19 pages, 2160 KB  
Article
DTI-Based Structural Connectome Analysis of SCLC Patients After Chemotherapy via Machine Learning
by Stavros Theofanis Miloulis, Ioannis Kakkos, Ioannis Zorzos, Ioannis A. Vezakis, Eleftherios Kontopodis, Ourania Petropoulou, Errikos M. Ventouras, Yu Sun and George K. Matsopoulos
Appl. Sci. 2025, 15(23), 12458; https://doi.org/10.3390/app152312458 - 24 Nov 2025
Viewed by 318
Abstract
Small-cell lung cancer (SCLC) is an aggressive malignancy that exhibits high prevalence for brain metastases. Furthermore, chemotherapy and metastasis-preventive approaches are also linked to neurotoxicity, further aggravating cognitive impairment. Despite evidence supporting structural and functional brain alterations in SCLC, the application of machine [...] Read more.
Small-cell lung cancer (SCLC) is an aggressive malignancy that exhibits high prevalence for brain metastases. Furthermore, chemotherapy and metastasis-preventive approaches are also linked to neurotoxicity, further aggravating cognitive impairment. Despite evidence supporting structural and functional brain alterations in SCLC, the application of machine learning (ML) to new connectivity biomarkers has remained unexplored. This study is—to the best of our knowledge—the first to apply ML to structural brain connectomics in SCLC, using diffusion tensor imaging (DTI) to identify features discriminating between post-chemotherapy SCLC patients and healthy controls. Specifically, we constructed structural networks via deterministic tractography, applying an adapted feature reduction technique to identify the most informative connections without selection bias. This process isolated 16 connections involving 26 brain regions, predominantly in the frontal, temporal, and parietal lobes, showcasing primarily intra-hemispheric and left-lateralized alterations. Our optimal model leveraged a Gaussian Support Vector Machine (SVM), achieving a weighted accuracy of 0.92, a sensitivity of 0.93, a specificity of 0.91, and an area under the curve of 0.94. The selected feature subset retained high performance when tested with other classifiers, confirming its robustness. Our findings differ from prior studies based on statistically derived features, highlighting the ML-driven connectomics’ potential in uncovering DTI-derived SCLC patterns, offering interpretable insights for neuroimaging-based diagnostics. Full article
(This article belongs to the Special Issue Advanced Technologies in Medical/Health Informatics)
Show Figures

Figure 1

26 pages, 1221 KB  
Article
Theta Cordance Decline in Frontal and Temporal Cortices: Longitudinal Evidence of Regional Cortical Aging
by Selami Varol Ülker, Metin Çınaroğlu, Eda Yılmazer and Sultan Tarlacı
J. Clin. Med. 2025, 14(23), 8341; https://doi.org/10.3390/jcm14238341 - 24 Nov 2025
Viewed by 401
Abstract
Background: Theta-band cordance is a quantitative EEG (qEEG) metric that integrates absolute and relative spectral power and correlates with regional cerebral perfusion. Although widely applied in psychiatric and neurophysiological research, its longitudinal trajectory in healthy adults remains largely unknown. This study aimed [...] Read more.
Background: Theta-band cordance is a quantitative EEG (qEEG) metric that integrates absolute and relative spectral power and correlates with regional cerebral perfusion. Although widely applied in psychiatric and neurophysiological research, its longitudinal trajectory in healthy adults remains largely unknown. This study aimed to characterize multi-year changes in theta cordance across cortical regions, determine which areas show stability versus decline, and evaluate whether individuals maintain a trait-like cordance profile over time. Methods: Nineteen cognitively healthy, medication-free adults underwent resting-state EEG recordings at two time points, separated by an average of 6.4 years (range: 1.9–14.8). Theta cordance (4–8 Hz) was computed at 19 scalp electrodes using the Leuchter algorithm and aggregated into eight lobar regions (left/right frontal, temporal, parietal, occipital). Paired-samples t-tests assessed longitudinal changes. Inter-regional Pearson correlations examined evolving connectivity patterns. Canonical correlation analysis (CCA), validated via LOOCV and bootstrap confidence intervals, evaluated multivariate stability between baseline and follow-up cordance profiles. Results: Theta cordance remained normally distributed at both time points. Significant longitudinal decreases emerged in the right temporal (t(18) = 5.34, p < 0.001, d = 1.23) and right frontal (t(18) = 2.65, p = 0.016, d = 0.61) regions, while other lobes showed no significant change. Midline Cz demonstrated a robust increase over time (p < 0.001). CCA revealed a strong cross-time association (Rc = 0.999, p = 0.029), indicating preservation of a stable, frontally anchored cordance profile despite regional right-hemisphere decline. Inter-regional correlation matrices showed both preserved posterior synchrony and emerging inverse anterior–posterior and cross-hemispheric relationships, suggesting age-related reorganization of cortical connectivity. Conclusions: Theta cordance exhibits a mixed pattern of trait-like stability and region-specific aging effects. A dominant, stable fronto-central profile persists across years, yet the right frontal and right temporal cortices show significant decline, consistent with lateralized vulnerability in normative aging. Evolving inter-regional correlation patterns further indicate network-level reorganization. Longitudinal cordance assessment may provide a noninvasive marker of functional brain aging and help differentiate normal aging trajectories from early pathological change. This longitudinal quantitative EEG (qEEG) study examined theta-band cordance dynamics across cortical regions in healthy adults over an average follow-up of 6.4 years (range: 1.9–14.8). Resting-state EEGs were recorded at two time points from 19 participants and analyzed using Leuchter’s cordance algorithm across 19 scalp electrodes. Regional cordance values were computed for frontal, temporal, parietal, and occipital lobes. Paired-samples t-tests revealed significant longitudinal decreases in theta cordance in the right frontal (p = 0.016, d = 0.61) and right temporal lobes (p < 0.001, d = 1.23), while other regions remained stable. Inter-regional Pearson correlations showed strong bilateral synchrony in posterior regions and emergent inverse anterior–posterior relationships over time. Canonical correlation analysis revealed a robust multivariate association (Rc = 0.999, p = 0.029) between baseline and follow-up patterns. Partial correlations (controlling for follow-up interval) identified region-specific trait stability, highest in left occipital and right frontal cortices. These findings suggest that theta cordance reflects both longitudinally stable neural traits and regionally specific aging effects in cortical physiology. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

21 pages, 4970 KB  
Article
Measuring Phase–Amplitude Coupling Effect with OPM-MEG
by Yong Li, Hao Lu, Chunhui Wang, Fuzhi Cao, Jianzhi Yang, Binyi Su, Ying Liu and Xiaolin Ning
Photonics 2025, 12(11), 1070; https://doi.org/10.3390/photonics12111070 - 29 Oct 2025
Viewed by 589
Abstract
Optically pumped magnetometers (OPMs) present a promising opportunity to advance magnetoencephalography (MEG), enhancing the accuracy of neuronal activity recordings due to their high spatiotemporal resolution. However, to fully realize the potential of OPM-MEG as an emerging brain functional imaging technology, it is essential [...] Read more.
Optically pumped magnetometers (OPMs) present a promising opportunity to advance magnetoencephalography (MEG), enhancing the accuracy of neuronal activity recordings due to their high spatiotemporal resolution. However, to fully realize the potential of OPM-MEG as an emerging brain functional imaging technology, it is essential to measure key indicators of neural dynamics, particularly phase–amplitude coupling (PAC). PAC is a fundamental mechanism for integrating information across different frequency bands and plays an important role in various cognitive functions and neurological disorders. Therefore, measuring PAC with OPM-MEG is a crucial step toward expanding its applications. In this study, brain signals under pitch sequence stimulation were recorded using OPM-MEG to analyze the PAC effect in the primary auditory cortex (Aud) and the inferior frontal gyrus (IFG), as well as the functional connectivity between brain regions. The findings were validated through EEG control experiments. The results indicated that the PAC effect measured by OPM-MEG was largely consistent with that measured by EEG, with OPM-MEG appearing to detect PAC more prominently under the current experimental conditions. The PAC of Aud exhibited a trend of initially increasing and then decreasing centered on the target pitch, showing hemispheric symmetry. The PAC of IFG showed variations under different pitch conditions and displayed right hemisphere lateralization. Functional connectivity analysis provided convergent evidence for the mechanisms underlying the PAC effect and suggested the reliability of the OPM-MEG system in capturing cross-frequency neural dynamics. To our knowledge, this study provides the first task-based evidence that OPM-MEG can measure PAC effects in cortical regions, offering an initial foundation for future investigations of brain dynamics using this technology. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

15 pages, 510 KB  
Article
Menstrual Cycle Modulation of Verbal Performance and Hemispheric Asymmetry
by Ivana Hromatko and Meri Tadinac
Brain Sci. 2025, 15(11), 1141; https://doi.org/10.3390/brainsci15111141 - 24 Oct 2025
Viewed by 567
Abstract
Background/Objectives: It has been postulated that sex differences in certain types of verbal abilities arise from sex-dimorphic patterns of hemispheric activation, and that these patterns might be modulated by circulating levels of sex hormones. The aim of this study was to explore [...] Read more.
Background/Objectives: It has been postulated that sex differences in certain types of verbal abilities arise from sex-dimorphic patterns of hemispheric activation, and that these patterns might be modulated by circulating levels of sex hormones. The aim of this study was to explore the activational effects of sex hormones (throughout the menstrual cycle) on both verbal performance and functional hemispheric asymmetries (qEEG laterality) in three types of verbal tasks: sex-differentiated (verbal fluency and semantic decision) vs. sex-neutral (verbal reasoning) tasks. Methods: A group (n = 32) of healthy young women was tested twice, once during the mid-luteal (high levels of circulating sex hormones) and once during the early follicular (low levels of sex hormones) phases of the menstrual cycle. A comparable group of healthy young men (n = 32) was tested once. EEG was continuously recorded. The differences in alpha power on homologous sites of the left and right hemispheres were then calculated. Results: We found a clear congruence between performance on a task and laterality score: for sex-differentiated tasks, the activational effects of sex hormones were observed in both performance and laterality scores, while there were neither performance nor laterality scores shifts throughout the menstrual cycle for the sex-neutral task. Interestingly, measures of functional asymmetry were higher in the luteal compared to the menstrual phase. Conclusions: These findings suggest that sex hormones modulate verbal performance through their influence on hemispheric asymmetry. Full article
(This article belongs to the Special Issue Language Perception and Processing)
Show Figures

Figure 1

12 pages, 1171 KB  
Article
Is Pupil Response to Speech and Music in Toddlers with Cochlear Implants Asymmetric?
by Amanda Saksida, Marta Fantoni, Sara Ghiselli and Eva Orzan
Audiol. Res. 2025, 15(4), 108; https://doi.org/10.3390/audiolres15040108 - 14 Aug 2025
Cited by 1 | Viewed by 764 | Correction
Abstract
Background: Ear advantage (EA) reflects hemispheric asymmetries in auditory processing. While a right-ear advantage (REA) for speech and a left-ear advantage (LEA) for music are well documented in typically developing individuals, it is unclear how these patterns manifest in young children with cochlear [...] Read more.
Background: Ear advantage (EA) reflects hemispheric asymmetries in auditory processing. While a right-ear advantage (REA) for speech and a left-ear advantage (LEA) for music are well documented in typically developing individuals, it is unclear how these patterns manifest in young children with cochlear implants (CIs). This study investigated whether pupillometry could reveal asymmetric listening efforts in toddlers with bilateral CIs when listening to speech and music under monaural stimulation. Methods: Thirteen toddlers (mean age = 36.2 months) with early bilateral CIs participated. Pupillary responses were recorded during passive listening to speech and music stimuli, presented in quiet or with background noise. Each child was tested twice, once with only the left CI active and once with only the right CI active. Linear mixed-effects models assessed the influence of session (left/right CI), signal type (speech/music), and background noise. Results: A significant interaction between session and signal type was observed (p = 0.047). Speech elicited larger pupil sizes when processed through the left CI, while music showed no significant lateralized effects. Age and speech therapy frequency moderated pupil responses in speech and music trials, respectively. Conclusions: Pupillometry reveals subtle asymmetric listening effort in young CI users depending on the listening ear, suggesting early emerging functional lateralization despite sensory deprivation and device-mediated hearing. Full article
(This article belongs to the Section Hearing)
Show Figures

Figure 1

15 pages, 2818 KB  
Article
Hemodynamic Response Asymmetry During Motor Imagery in Stroke Patients: A Novel NIRS-BCI Assessment Approach
by Mikhail Isaev, Pavel Bobrov, Olesya Mokienko, Irina Fedotova, Roman Lyukmanov, Ekaterina Ikonnikova, Anastasiia Cherkasova, Natalia Suponeva, Michael Piradov and Ksenia Ustinova
Sensors 2025, 25(16), 5040; https://doi.org/10.3390/s25165040 - 14 Aug 2025
Viewed by 1120
Abstract
Understanding patterns of interhemispheric asymmetry is crucial for monitoring neuroplastic changes during post-stroke motor rehabilitation. However, conventional laterality indices often pose computational challenges when applied to functional near-infrared spectroscopy (fNIRS) data due to the bidirectional hemodynamic responses. In this study, we analyze fNIRS [...] Read more.
Understanding patterns of interhemispheric asymmetry is crucial for monitoring neuroplastic changes during post-stroke motor rehabilitation. However, conventional laterality indices often pose computational challenges when applied to functional near-infrared spectroscopy (fNIRS) data due to the bidirectional hemodynamic responses. In this study, we analyze fNIRS recordings from 15 post-stroke patients undergoing motor imagery brain–computer interface training across multiple sessions. We compare traditional laterality coefficients with a novel task response asymmetry coefficient (TRAC), which quantifies differential hemispheric involvement during motor imagery tasks. Both indices are calculated for oxygenated and deoxygenated hemoglobin responses using general linear model coefficients, and their day-to-day dynamics are assessed with linear regression. The proposed TRAC demonstrates greater sensitivity than conventional measures, revealing significantly higher oxygenated hemoglobin TRAC values (0.18 ± 0.19 vs. −0.05 ± 0.20, p < 0.05) and lower deoxygenated hemoglobin TRAC values (−0.15 ± 0.27 vs. 0.04 ± 0.23, p < 0.05) in lesioned compared to intact hemispheres. Among patients who exhibit substantial motor recovery, distinct daily TRAC dynamics were observed, with statistically significant temporal trends. Overall, the novel TRAC metric offers enhanced discrimination of interhemispheric asymmetry patterns and captures temporal neuroplastic changes not detected by conventional indices, providing a more sensitive biomarker for tracking rehabilitation progress in post-stroke brain–computer interface applications. Full article
Show Figures

Graphical abstract

21 pages, 1842 KB  
Article
Acute Stroke Severity Assessment: The Impact of Lesion Size and Functional Connectivity
by Karolin Weigel, Christian Gaser, Stefan Brodoehl, Franziska Wagner, Elisabeth Jochmann, Daniel Güllmar, Thomas E. Mayer and Carsten M. Klingner
Brain Sci. 2025, 15(7), 735; https://doi.org/10.3390/brainsci15070735 - 9 Jul 2025
Viewed by 2160
Abstract
Background/Objectives: Early and accurate prediction of stroke severity is crucial for optimizing guided therapeutic decisions and improving outcomes. This study investigates the predictive value of lesion size and functional connectivity for neurological deficits, assessed by the National Institutes of Health Stroke Scale (NIHSS [...] Read more.
Background/Objectives: Early and accurate prediction of stroke severity is crucial for optimizing guided therapeutic decisions and improving outcomes. This study investigates the predictive value of lesion size and functional connectivity for neurological deficits, assessed by the National Institutes of Health Stroke Scale (NIHSS score), in patients with acute or subacute subcortical ischemic stroke. Methods: Forty-four patients (mean age: 68.11 years, 23 male, and admission NIHSS score 4.30 points) underwent high-resolution anatomical and resting-state functional Magnetic Resonance Imaging (rs-fMRI) within seven days of stroke onset. Lesion size was volumetrically quantified, while functional connectivity within the motor, default mode, and frontoparietal networks was analyzed using seed-based correlation methods. Multiple linear regression and cross-validation were applied to develop predictive models for stroke severity. Results: Our results showed that lesion size explained 48% of the variance in NIHSS scores (R2 = 0.48, cross-validated R2 = 0.49). Functional connectivity metrics alone were less predictive but enhanced model performance when combined with lesion size (achieving an R2 = 0.71, cross-validated R2 = 0.73). Additionally, left hemisphere connectivity features were particularly informative, as models based on left-hemispheric connectivity outperformed those using right-hemispheric or bilateral predictors. This suggests that the inclusion of contralateral hemisphere data did not enhance, and in some configurations, slightly reduced, model performance—potentially due to lateralized functional organization and lesion distribution in our cohort. Conclusions: The findings highlight lesion size as a reliable early marker of stroke severity and underscore the complementary value of functional connectivity analysis. Integrating rs-fMRI into clinical stroke imaging protocols offers a potential approach for refining prognostic models. Future research efforts should prioritize establishing this approach in larger cohorts and analyzing additional biomarkers to improve predictive models, advancing personalized therapeutic strategies for stroke management. Full article
Show Figures

Graphical abstract

15 pages, 2902 KB  
Article
Transcranial Doppler-Based Neurofeedback to Improve Hemispheric Lateralization
by Rosita Rabbito, Leonardo Ermini, Caterina Guiot and Silvestro Roatta
Appl. Sci. 2025, 15(10), 5763; https://doi.org/10.3390/app15105763 - 21 May 2025
Cited by 1 | Viewed by 881
Abstract
Functional transcranial Doppler (fTCD) ultrasound can detect cerebral blood flow lateralization to the left/right hemisphere during different tasks. This study aims to test the effectiveness of neurofeedback in improving the individual capacity to lateralize blood flow with mental activity. Bilateral monitoring of blood [...] Read more.
Functional transcranial Doppler (fTCD) ultrasound can detect cerebral blood flow lateralization to the left/right hemisphere during different tasks. This study aims to test the effectiveness of neurofeedback in improving the individual capacity to lateralize blood flow with mental activity. Bilateral monitoring of blood velocity (CBV) in the middle cerebral arteries was performed in 14 subjects engaged in 15 min of training, followed by a 15 min test in each of four sessions. A ball, displayed on a screen, moved right or left, according to the current right/left difference in normalized CBVs, thus providing a visual neurofeedback of lateralization. The subjects were invited to control the left/right movement of the depicted ball by appropriately orienting their mental activity, freely exploring different strategies. These attempts were completely free and unsupervised during training, while during the test, the subjects were required to follow randomized left/right cues lasting 35 s. Performance was assessed using receiver operating characteristic (ROC) analysis. With training, responses to left and right cues diverged more rapidly and consistently. Accuracy improved significantly from 0.51 to 0.65, and the area under the ROC increased from 0.55 to 0.69. These results demonstrate the effectiveness of neurofeedback in improving lateralization capacity, with implications for the development of fTCD-based brain–computer interfaces. Full article
Show Figures

Figure 1

9 pages, 2391 KB  
Communication
Resting State of Dementia of the Alzheimer’s Type and Healthy Older Adults Using fNIRS
by In-sop Kim, Jaejin Hwang, Chorong Oh and Richard J. Morris
Pathophysiology 2025, 32(2), 20; https://doi.org/10.3390/pathophysiology32020020 - 2 May 2025
Viewed by 944
Abstract
Background/Objectives: This study explores variations in brain activity between individuals with dementia of the Alzheimer’s type (DAT) and healthy older adults during a resting state using functional near-infrared spectroscopy (fNIRS). Methods: FNIRS measured brain activity in ten AD patients and six healthy individuals. [...] Read more.
Background/Objectives: This study explores variations in brain activity between individuals with dementia of the Alzheimer’s type (DAT) and healthy older adults during a resting state using functional near-infrared spectroscopy (fNIRS). Methods: FNIRS measured brain activity in ten AD patients and six healthy individuals. A device with 16 channels was placed on each participant’s forehead to measure oxygenation levels while they kept their eyes closed. The data were analyzed using a support vector machine (SVM) model. Results: The results indicated differences in oxygenated hemoglobin (HbO) levels between the two groups. Specifically, HbO levels were generally higher in the dementia group in the left hemisphere, with a sharp increase after 26 s. Conversely, HbO levels were consistently lower in the right hemisphere of the dementia group. The SVM analysis demonstrated high accuracy in differentiating between the AD and healthy groups based on HbO levels. Conclusions: The study indicates that differences in brain activity during resting state can potentially distinguish people with DAT from healthy individuals. We found relatively reduced hemoglobin activity in the prefrontal areas of those with DAT. Furthermore, the concentration changes in the HbO in the left lateral prefrontal and right medial brain regions emerged as the most informative in distinguishing individuals with DAT from healthy individuals. The results of the current study show that this method could improve current DAT diagnostic practices due to its efficiency. Full article
Show Figures

Figure 1

19 pages, 11005 KB  
Article
The Bulb, the Brain and the Being: New Insights into Olfactory System Anatomy, Organization and Connectivity
by Anton Stenwall, Aino-Linnea Uggla, David Weibust, Markus Fahlström, Mats Ryttlefors and Francesco Latini
Brain Sci. 2025, 15(4), 368; https://doi.org/10.3390/brainsci15040368 - 31 Mar 2025
Cited by 2 | Viewed by 4107
Abstract
Background/Objectives: Olfaction is in many ways the least understood sensory modality. Its organization and connectivity are still under debate. The aim of this study was to investigate the anatomy of the olfactory system by using a cadaver fiber dissection technique and in vivo [...] Read more.
Background/Objectives: Olfaction is in many ways the least understood sensory modality. Its organization and connectivity are still under debate. The aim of this study was to investigate the anatomy of the olfactory system by using a cadaver fiber dissection technique and in vivo tractography to attain a deeper understanding of the subcortical connectivity and organization. Methods: Ten cerebral hemispheres were used in this study for white matter dissection according to Klingler’s technique. Measurements of different cortical structures and interhemispheric symmetry were compared. Diffusion tensor imaging sequences from twenty-five healthy individuals from the Human Connectome Project dataset were used to explore the connectivity of the olfactory system using DSI Studio. White matter connectivity between the following were reconstructed in vivo: (1) Olfactory bulb to primary olfactory cortices; (2) Olfactory bulb to secondary olfactory cortices; (3) Primary to secondary olfactory cortices. The DTI metrics of the identified major associative, projection and commissural pathways were subsequently correlated with olfactory function and cognition in seventy-five healthy individuals with Spearman’s rank correlation and the Benjamini–Hochberg method for false discoveries (CI 95%, p < 0.05) using R. Results: 1. The dissection showed that the lateral stria was significantly longer on the left side and projected towards the amygdala, the entorhinal and piriform cortex. 2. The medial stria was not evident as a consistent white matter structure. 3. Both dissection and tractography showed that major associative white matter pathways such as the uncinate fasciculus, the inferior fronto-occipital fasciculus and cingulum supported the connectivity between olfactory areas together with the anterior commissure. 4. No significant correlation was found between DTI metrics and sensory or cognition test results. Conclusions: We present the first combined fiber dissection analysis and tractography of the olfactory system. We propose a novel definition where the primary olfactory network is defined by the olfactory tract/bulb and primary olfactory cortices through the lateral stria only. The uncinate fasciculus, inferior fronto-occipital fasciculus and cingulum are the associative pathways supporting the connectivity between primary and secondary olfactory areas together with the anterior commissure. We suggest considering these structures as a secondary olfactory network. Further work is needed to attain a deeper understanding of the pathological and physiological implications of the olfactory system. Full article
(This article belongs to the Special Issue Plasticity and Regeneration in the Olfactory System)
Show Figures

Figure 1

17 pages, 7312 KB  
Article
Altered Hemispheric Asymmetry of Functional Hierarchy in Schizophrenia
by Yi Zhen, Hongwei Zheng, Yi Zheng, Zhiming Zheng, Yaqian Yang and Shaoting Tang
Brain Sci. 2025, 15(3), 313; https://doi.org/10.3390/brainsci15030313 - 16 Mar 2025
Cited by 1 | Viewed by 1827
Abstract
Background/Objectives: Schizophrenia is a severe psychiatric disorder characterized by deficits in perception and advanced cognitive functions. Prior studies have reported abnormal lateralization in cortical morphology and functional connectivity in schizophrenia. However, it remains unclear whether schizophrenia affects hemispheric asymmetry in the hierarchical organization [...] Read more.
Background/Objectives: Schizophrenia is a severe psychiatric disorder characterized by deficits in perception and advanced cognitive functions. Prior studies have reported abnormal lateralization in cortical morphology and functional connectivity in schizophrenia. However, it remains unclear whether schizophrenia affects hemispheric asymmetry in the hierarchical organization of functional connectome. Methods: Here, we apply a gradient mapping framework to the hemispheric functional connectome to estimate the first three gradients, which characterize unimodal-to-transmodal, visual-to-somatomotor, and somatomotor/default mode-to-multiple demand hierarchy axes. We then assess between-group differences in intra- and inter-hemispheric asymmetries of these three functional gradients. Results: We find that, compared to healthy controls, patients with schizophrenia exhibit significantly altered hemispheric asymmetry in functional gradient across multiple networks, including the dorsal attention, ventral attention, visual, and control networks. Region-level analyses further reveal that patients with schizophrenia show significantly abnormal hemispheric gradient asymmetries in several cortical regions in the dorsal prefrontal gyrus, medial superior frontal gyrus, and somatomotor areas. Lastly, we find that hemispheric asymmetries in functional gradients can differentiate between patients and healthy controls and predict the severity of positive symptoms in schizophrenia. Conclusions: Collectively, these findings suggest that schizophrenia is associated with altered hemispheric asymmetry in functional hierarchy, providing novel perspectives for understanding the atypical brain lateralization in schizophrenia. Full article
(This article belongs to the Section Neuropsychiatry)
Show Figures

Figure 1

14 pages, 2755 KB  
Article
Assessing Language Lateralization through Gray Matter Volume: Implications for Preoperative Planning in Brain Tumor Surgery
by Daniel Solomons, Maria Rodriguez-Fernandez, Francisco Mery-Muñoz, Leonardo Arraño-Carrasco, Francisco Sahli Costabal and Carolina Mendez-Orellana
Brain Sci. 2024, 14(10), 954; https://doi.org/10.3390/brainsci14100954 - 24 Sep 2024
Viewed by 1525
Abstract
Background/Objectives: Functional MRI (fMRI) is widely used to assess language lateralization, but its application in patients with brain tumors can be hindered by cognitive impairments, compensatory neuroplasticity, and artifacts due to patient movement or severe aphasia. Gray matter volume (GMV) analysis via voxel-based [...] Read more.
Background/Objectives: Functional MRI (fMRI) is widely used to assess language lateralization, but its application in patients with brain tumors can be hindered by cognitive impairments, compensatory neuroplasticity, and artifacts due to patient movement or severe aphasia. Gray matter volume (GMV) analysis via voxel-based morphometry (VBM) in language-related brain regions may offer a stable complementary approach. This study investigates the relationship between GMV and fMRI-derived language lateralization in healthy individuals and patients with left-hemisphere brain tumors, aiming to enhance accuracy in complex cases. Methods: The MRI data from 22 healthy participants and 28 individuals with left-hemisphere brain tumors were analyzed. Structural T1-weighted and functional images were obtained during three language tasks. Language lateralization was assessed based on activation in predefined regions of interest (ROIs), categorized as typical (left) or atypical (right or bilateral). The GMV in these ROIs was measured using VBM. Linear regressions explored GMV-lateralization associations, and logistic regressions predicted the lateralization based on the GMV. Results: In the healthy participants, typical left-hemispheric language dominance correlated with higher GMV in the left pars opercularis of the inferior frontal gyrus. The brain tumor participants with atypical lateralization showed increased GMV in six right-hemisphere ROIs. The GMV in the language ROIs predicted the fMRI language lateralization, with AUCs from 80.1% to 94.2% in the healthy participants and 78.3% to 92.6% in the tumor patients. Conclusions: GMV analysis in language-related ROIs effectively complements fMRI for assessing language dominance, particularly when fMRI is challenging. It correlates with language lateralization in both healthy individuals and brain tumor patients, highlighting its potential in preoperative language mapping. Further research with larger samples is needed to refine its clinical utility. Full article
(This article belongs to the Special Issue Brain Magnetic Resonance Imaging in Neurological Disorders)
Show Figures

Figure 1

24 pages, 2488 KB  
Article
MRI Diffusion Connectomics-Based Characterization of Progression in Alzheimer’s Disease
by David Mattie, Lourdes Peña-Castillo, Emi Takahashi and Jacob Levman
Appl. Sci. 2024, 14(16), 7001; https://doi.org/10.3390/app14167001 - 9 Aug 2024
Cited by 2 | Viewed by 2448
Abstract
Characterizing Alzheimer’s disease (AD) progression remains a significant clinical challenge. The initial stages of AD are marked by the accumulation of amyloid-beta plaques and Tau tangles, with cognitive functions often appearing normal, and clinical symptoms may not manifest until up to 20 years [...] Read more.
Characterizing Alzheimer’s disease (AD) progression remains a significant clinical challenge. The initial stages of AD are marked by the accumulation of amyloid-beta plaques and Tau tangles, with cognitive functions often appearing normal, and clinical symptoms may not manifest until up to 20 years after the prodromal period begins. Comprehensive longitudinal studies analyzing brain-wide structural connectomics in the early stages of AD, especially those with large sample sizes, are scarce. In this study, we investigated a longitudinal diffusion-weighted imaging dataset of 264 subjects to assess the predictive potential of diffusion data for AD. Our findings indicate the potential of a simple prognostic biomarker for disease progression based on the hemispheric lateralization of mean tract volume for tracts originating from the supramarginal and paracentral regions, achieving an accuracy of 86%, a sensitivity of 86%, and a specificity of 93% when combined with other clinical indicators. However, diffusion-weighted imaging measurements alone did not provide strong predictive accuracy for clinical variables, disease classification, or disease conversion. By conducting a comprehensive tract-by-tract analysis of diffusion-weighted characteristics contributing to the characterization of AD and its progression, our research elucidates the potential of diffusion MRI as a tool for the early detection and monitoring of neurodegenerative diseases and emphasizes the importance of integrating multi-modal data for enhanced predictive analytics. Full article
(This article belongs to the Special Issue Computational and Mathematical Methods for Neuroscience)
Show Figures

Figure 1

Back to TopTop