Measuring Phase–Amplitude Coupling Effect with OPM-MEG
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects and Experiments
2.2. Data Acquisition System
2.2.1. OPM-MEG System
2.2.2. EEG System
2.3. Data Collection and Preprocessing
2.3.1. Data Collection
2.3.2. Preprocessing
2.4. Source Reconstruction
2.5. Source-Level Time Series Extraction and Analysis
2.6. PAC Analysis
2.6.1. Calculation Method
2.6.2. tPAC Statistical Analysis
2.7. Connectivity Analysis
3. Results
3.1. Results of the Source-Level Evoked Responses Analysis
3.2. Results of the Algorithm Robustness Test
3.3. Results of the PAC Analysis
3.4. Results of the Connectivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, W.; Liao, P.; Cao, M.; White, D.J.; Lyu, B.; Gao, J.-H. Facilitating cognitive neuroscience research with 80-sensor optically pumped magnetometer magnetoencephalography (OPM-MEG). NeuroImage 2025, 311, 121182. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, B.; Li, J.; Li, R.; Zhai, Y. Flow Rate Estimation Based on Magnetic Particle Detection Using a Miniatured High-Sensitivity OPM. IEEE Trans. Instrum. Meas. 2025, 74, 9518010. [Google Scholar] [CrossRef]
- Oelsner, G.; IJsselsteijn, R.; Scholtes, T.; Krüger, A.; Schultze, V.; Seyffert, G.; Werner, G.; Jäger, M.; Chwala, A.; Stolz, R. Integrated optically pumped magnetometer for measurements within Earth’s magnetic field. Phys. Rev. Appl. 2022, 17, 024034. [Google Scholar] [CrossRef]
- Zhang, R. Influence of Atomic Magnetometer’s Orientation on Its Frequency Response. Sensors 2025, 25, 1364. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, T.; Zhu, W.; Liu, L.; Zhuang, X.; Fang, G.; Zhang, X. Recent progress of atomic magnetometers for geomagnetic applications. Sensors 2023, 23, 5318. [Google Scholar] [CrossRef]
- Borna, A.; Carter, T.R.; Colombo, A.P.; Jau, Y.-Y.; McKay, J.; Weisend, M.; Taulu, S.; Stephen, J.M.; Schwindt, P.D. Non-invasive functional-brain-imaging with an OPM-based magnetoencephalography system. PLoS ONE 2020, 15, e0227684. [Google Scholar] [CrossRef]
- Wang, C.; Cao, F.; Wang, W.; Xu, W.; Li, W.; Gao, Z.; An, N. Methods for improving movement compatibility of wearable OPM-MEG: A Review. IEEE Sens. J. 2023, 23, 30037–30050. [Google Scholar] [CrossRef]
- Pedersen, M.; Abbott, D.F.; Jackson, G.D. Wearable OPM-MEG: A changing landscape for epilepsy. Epilepsia 2022, 63, 2745–2753. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; He, X.; Ruan, L.; Liu, F.; Zhang, Z.; Weng, J.; Yan, Q.; Zhang, G.; Li, K.; Zheng, W. Drug monitoring by optically pumped atomic magnetometer. IEEE Photonics J. 2022, 14, 1–5. [Google Scholar] [CrossRef]
- Seymour, R.A.; Alexander, N.; Mellor, S.; O’Neill, G.C.; Tierney, T.M.; Barnes, G.R.; Maguire, E.A. Using OPMs to measure neural activity in standing, mobile participants. NeuroImage 2021, 244, 118604. [Google Scholar] [CrossRef]
- Rea, M.; Boto, E.; Holmes, N.; Hill, R.; Osborne, J.; Rhodes, N.; Leggett, J.; Rier, L.; Bowtell, R.; Shah, V. A 90-channel triaxial magnetoencephalography system using optically pumped magnetometers. Ann. N. Y. Acad. Sci. 2022, 1517, 107–124. [Google Scholar] [CrossRef]
- Daume, J.; Kamiński, J.; Schjetnan, A.G.; Salimpour, Y.; Khan, U.; Kyzar, M.; Reed, C.M.; Anderson, W.S.; Valiante, T.A.; Mamelak, A.N. Control of working memory by phase–amplitude coupling of human hippocampal neurons. Nature 2024, 629, 393–401. [Google Scholar] [CrossRef]
- Aliramezani, M.; Farrokhi, A.; Constantinidis, C.; Daliri, M.R. Delta-alpha/beta coupling as a signature of visual working memory in the prefrontal cortex. Iscience 2024, 27, 110453. [Google Scholar] [CrossRef]
- Tang, W.; Jiang, J.; Wang, H. Brain functional differences among ADHD subtypes in children revealed by phase-amplitude coupling analysis of resting-state EEG. Int. J. Psychophysiol. 2025, 215, 113222. [Google Scholar] [CrossRef]
- Borderie, A.; Caclin, A.; Lachaux, J.-P.; Perrone-Bertollotti, M.; Hoyer, R.S.; Kahane, P.; Catenoix, H.; Tillmann, B.; Albouy, P. Cross-frequency coupling in cortico-hippocampal networks supports the maintenance of sequential auditory information in short-term memory. PLoS Biol. 2024, 22, e3002512. [Google Scholar] [CrossRef]
- Fatemi, S.N.; Sedghizadeh, M.J.; Aghajan, H. Theta-gamma phase-amplitude coupling explains the advantage of auditory plus visual gamma entrainment in Alzheimer’s therapy. Alzheimer’s Dement. 2021, 17, e053451. [Google Scholar] [CrossRef]
- An, K.-m.; Ikeda, T.; Hasegawa, C.; Yoshimura, Y.; Tanaka, S.; Saito, D.N.; Yaoi, K.; Iwasaki, S.; Hirosawa, T.; Jensen, O. Aberrant brain oscillatory coupling from the primary motor cortex in children with autism spectrum disorders. NeuroImage Clin. 2021, 29, 102560. [Google Scholar] [CrossRef] [PubMed]
- Murphy, N.; Ramakrishnan, N.; Walker, C.P.; Polizzotto, N.R.; Cho, R.Y. Intact auditory cortical cross-frequency coupling in early and chronic schizophrenia. Front. Psychiatry 2020, 11, 507. [Google Scholar] [CrossRef]
- Treu, S.; Gonzalez-Rosa, J.J.; Soto-Leon, V.; Lozano-Soldevilla, D.; Oliviero, A.; Lopez-Sosa, F.; Reneses-Prieto, B.; Barcia, J.A.; Strange, B.A. A ventromedial prefrontal dysrhythmia in obsessive-compulsive disorder is attenuated by nucleus accumbens deep brain stimulation. Brain Stimul. 2021, 14, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Karekal, A.; Miocinovic, S.; Swann, N.C. Novel approaches for quantifying beta synchrony in Parkinson’s disease. Exp. Brain Res. 2022, 240, 991–1004. [Google Scholar] [CrossRef]
- Zalta, A.; Large, E.W.; Schön, D.; Morillon, B. Neural dynamics of predictive timing and motor engagement in music listening. Sci. Adv. 2024, 10, eadi2525. [Google Scholar] [CrossRef]
- Yakubov, B.; Das, S.; Zomorrodi, R.; Blumberger, D.M.; Enticott, P.G.; Kirkovski, M.; Rajji, T.K.; Desarkar, P. Cross-frequency coupling in psychiatric disorders: A systematic review. Neurosci. Biobehav. Rev. 2022, 138, 104690. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Li, M.; Niu, P.; Li, S.; Hu, Z.; Shi, C.; Li, Y. Phase-Amplitude Coupling in Theta and Beta Bands: A Potential Electrophysiological Marker for Obstructive Sleep Apnea. Nat. Sci. Sleep 2024, 16, 1469–1482. [Google Scholar] [CrossRef] [PubMed]
- Hodnik, T.; Roytman, S.; Bohnen, N.I.; Marusic, U. Beta–Gamma Phase-Amplitude Coupling as a non-invasive biomarker for Parkinson’s Disease: Insights from Electroencephalography studies. Life 2024, 14, 391. [Google Scholar] [CrossRef] [PubMed]
- Vorwerk, J.; Wolters, C.H.; Baumgarten, D. Global sensitivity of EEG source analysis to tissue conductivity uncertainties. Front. Hum. Neurosci. 2024, 18, 1335212. [Google Scholar] [CrossRef]
- Ye, H.; Li, G.; Sheng, X.; Zhu, X. Phase-amplitude coupling between low-frequency scalp EEG and high-frequency intracranial EEG during working memory task. J. Neural Eng. 2022, 19, 026043. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, M.; Gavvala, J. Magnetoencephalography in clinical practice. Arq. Neuro-Psiquiatr. 2022, 80, 523–529. [Google Scholar] [CrossRef]
- Seymour, R.A.; Rippon, G.; Kessler, K. The detection of phase amplitude coupling during sensory processing. Front. Neurosci. 2017, 11, 487. [Google Scholar] [CrossRef]
- Brookes, M.J.; Leggett, J.; Rea, M.; Hill, R.M.; Holmes, N.; Boto, E.; Bowtell, R. Magnetoencephalography with optically pumped magnetometers (OPM-MEG): The next generation of functional neuroimaging. Trends Neurosci. 2022, 45, 621–634. [Google Scholar] [CrossRef]
- Schofield, H.; Hill, R.M.; Feys, O.; Holmes, N.; Osborne, J.; Doyle, C.; Bobela, D.; Corvilain, P.; Wens, V.; Rier, L. A novel, robust, and portable platform for magnetoencephalography using optically-pumped magnetometers. Imaging Neurosci. 2024, 2, 1–22. [Google Scholar] [CrossRef]
- Hyde, K.L.; Peretz, I. Brains that are out of tune but in time. Psychol. Sci. 2004, 15, 356–360. [Google Scholar] [CrossRef]
- Tian, K.; Zhang, X.; Shi, M.; Yang, J.; Cao, F.; Wang, F.; Shi, Z.; Wang, K.; Zheng, S.; Liu, G. Design and optimization of biplanar coils for active magnetic compensation system inside the mini-magnetically shielded room. IEEE Trans. Ind. Electron. 2024, 72, 1065–1075. [Google Scholar] [CrossRef]
- Tierney, T.M.; Alexander, N.; Mellor, S.; Holmes, N.; Seymour, R.; O’Neill, G.C.; Maguire, E.A.; Barnes, G.R. Modelling optically pumped magnetometer interference in MEG as a spatially homogeneous magnetic field. NeuroImage 2021, 244, 118484. [Google Scholar] [CrossRef]
- Cao, F.; An, N.; Xu, W.; Wang, W.; Yang, Y.; Xiang, M.; Gao, Y.; Ning, X. Co-registration comparison of on-scalp magnetoencephalography and magnetic resonance imaging. Front. Neurosci. 2021, 15, 706785. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Teixeira, A.L.; Li, R.; Zou, L.; Zhang, Y. The control patterns of affective processing and cognitive reappraisal: Insights from brain controllability analysis. Cereb. Cortex 2024, 34, bhad500. [Google Scholar] [CrossRef] [PubMed]
- Wartman, W.A.; Ponasso, G.N.; Qi, Z.; Haueisen, J.; Maess, B.; Knösche, T.R.; Weise, K.; Noetscher, G.M.; Raij, T.; Makaroff, S.N. Fast EEG/MEG BEM-based forward problem solution for high-resolution head models. NeuroImage 2025, 306, 120998. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Kakkos, I.; Matsopoulos, G.K.; Guan, C.; Sun, Y. Explaining E/MEG Source Imaging and Beyond: An Updated Review. IEEE J. Biomed. Health Inform. 2025, 1–16. [Google Scholar] [CrossRef]
- Afnan, J.; Cai, Z.; Lina, J.M.; Abdallah, C.; Delaire, E.; Avigdor, T.; Ros, V.; Hedrich, T.; von Ellenrieder, N.; Kobayashi, E. EEG/MEG source imaging of deep brain activity within the maximum entropy on the mean framework: Simulations and validation in epilepsy. Hum. Brain Mapp. 2024, 45, e26720. [Google Scholar] [CrossRef]
- Hietala, P.; Kurki, I.; Hyvärinen, A.; Parkkonen, L.; Henriksson, L. Improving source estimation of retinotopic MEG responses by combining data from multiple subjects. Imaging Neurosci. 2024, 2, 1–15. [Google Scholar] [CrossRef]
- Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.A.; Strohmeier, D.; Brodbeck, C.; Goj, R.; Jas, M.; Brooks, T.; Parkkonen, L. MEG and EEG data analysis with MNE-Python. Front. Neuroinformatics 2013, 7, 267. [Google Scholar] [CrossRef]
- Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.A.; Strohmeier, D.; Brodbeck, C.; Parkkonen, L.; Hämäläinen, M.S. MNE software for processing MEG and EEG data. Neuroimage 2014, 86, 446–460. [Google Scholar] [CrossRef]
- Mantegna, F.; Orpella, J.; Poeppel, D. Time-resolved hemispheric lateralization of audiomotor functional connectivity during covert speech production. Cell Rep. 2025, 44, 115137. [Google Scholar] [CrossRef]
- Samiee, S.; Baillet, S. Time-resolved phase-amplitude coupling in neural oscillations. NeuroImage 2017, 159, 270–279. [Google Scholar] [CrossRef]
- Samiee, S.; Vuvan, D.; Florin, E.; Albouy, P.; Peretz, I.; Baillet, S. Cross-frequency brain network dynamics support pitch change detection. J. Neurosci. 2022, 42, 3823–3835. [Google Scholar] [CrossRef]
- Lobier, M.; Siebenhühner, F.; Palva, S.; Palva, J.M. Phase transfer entropy: A novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions. Neuroimage 2014, 85, 853–872. [Google Scholar] [CrossRef]
- Wiener, N. The theory of prediction. Modern mathematics for engineers. Mod. Math. Eng. 1956, 165, 6. [Google Scholar]
- Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. In Essays in Econometrics: Collected Papers of Clive WJ Granger; Cambridge University Press: New York, NY, USA, 2001; pp. 31–47. [Google Scholar]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Florin, E.; Vuvan, D.; Peretz, I.; Baillet, S. Pre-target neural oscillations predict variability in the detection of small pitch changes. PLoS ONE 2017, 12, e0177836. [Google Scholar] [CrossRef] [PubMed]
- Andermann, M.; Günther, M.; Patterson, R.D.; Rupp, A. Early cortical processing of pitch height and the role of adaptation and musicality. Neuroimage 2021, 225, 117501. [Google Scholar] [CrossRef] [PubMed]
- Doelling, K.B.; Poeppel, D. Cortical entrainment to music and its modulation by expertise. Proc. Natl. Acad. Sci. USA 2015, 112, E6233–E6242. [Google Scholar] [CrossRef] [PubMed]
- Canolty, R.T.; Edwards, E.; Dalal, S.S.; Soltani, M.; Nagarajan, S.S.; Kirsch, H.E.; Berger, M.S.; Barbaro, N.M.; Knight, R.T. High gamma power is phase-locked to theta oscillations in human neocortex. Science 2006, 313, 1626–1628. [Google Scholar] [CrossRef] [PubMed]
- Royal, I.; Vuvan, D.T.; Zendel, B.R.; Robitaille, N.; Schönwiesner, M.; Peretz, I. Activation in the right inferior parietal lobule reflects the representation of musical structure beyond simple pitch discrimination. PLoS ONE 2016, 11, e0155291. [Google Scholar] [CrossRef]
- Peretz, I. Neurobiology of congenital amusia. Trends Cogn. Sci. 2016, 20, 857–867. [Google Scholar] [CrossRef]
- Seedat, Z.A.; Pier, K.S.; Holmes, N.; Rea, M.; Al-Hilaly, L.; Tierney, T.M.; Embury, C.M.; Pardington, R.; Mullinger, K.J.; Cross, J.H. Simultaneous whole-head electrophysiological recordings using EEG and OPM-MEG. Imaging Neurosci. 2024, 2, imag-2-00179. [Google Scholar] [CrossRef]
- Vorwerk, J.; Aydin, Ü.; Wolters, C.H.; Butson, C.R. Influence of head tissue conductivity uncertainties on EEG dipole reconstruction. Front. Neurosci. 2019, 13, 531. [Google Scholar] [CrossRef]
- Yeo, W.-J.; Larson, E.; Iivanainen, J.; Borna, A.; McKay, J.; Stephen, J.M.; Schwindt, P.D.; Taulu, S. Effects of head modeling errors on the spatial frequency representation of MEG. Phys. Med. Biol. 2023, 68, 095022. [Google Scholar] [CrossRef]
- Kołodziej, M.; Jurczak, M.; Majkowski, A.; Rysz, A.; Świderski, B. A Hybrid CNN-LSTM Approach for Muscle Artifact Removal from EEG Using Additional EMG Signal Recording. Appl. Sci. 2025, 15, 4953. [Google Scholar] [CrossRef]
- Morillon, B.; Baillet, S. Motor origin of temporal predictions in auditory attention. Proc. Natl. Acad. Sci. USA 2017, 114, E8913–E8921. [Google Scholar] [CrossRef]
- Gaab, N.; Gaser, C.; Zaehle, T.; Jancke, L.; Schlaug, G. Functional anatomy of pitch memory—An fMRI study with sparse temporal sampling. Neuroimage 2003, 19, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, V.; Muñoz-Caracuel, M.; Angulo-Ruiz, B.Y.; Gómez, C.M. Neurovascular coupling during auditory stimulation: Event-related potentials and fNIRS hemodynamic. Brain Struct. Funct. 2023, 228, 1943–1961. [Google Scholar] [CrossRef] [PubMed]
- Zatorre, R.J.; Evans, A.C.; Meyer, E.; Gjedde, A. Lateralization of phonetic and pitch discrimination in speech processing. Science 1992, 256, 846–849. [Google Scholar] [CrossRef]
- Yan, B.; Peng, Y.; Zhang, Y.; Zhang, Y.; Zhang, H.; Cao, Y.; Sun, C.; Ding, M. From Simulation to Clinic: Assessing the Required Channel Count for Effective Clinical Use of OPM-MEG Systems. NeuroImage 2025, 314, 121262. [Google Scholar] [CrossRef] [PubMed]
- Rier, L.; Michelmann, S.; Ritz, H.; Shah, V.; Hill, R.M.; Osborne, J.; Doyle, C.; Holmes, N.; Bowtell, R.; Brookes, M.J. Test-retest reliability of the human connectome: An OPM-MEG study. Imaging Neurosci. 2023, 1, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Storm, J.-H.; Kieler, O.; Körber, R. Towards ultrasensitive SQUIDs based on submicrometer-sized Josephson junctions. IEEE Trans. Appl. Supercond. 2020, 30, 1–5. [Google Scholar] [CrossRef]
- Seymour, R.A.; Alexander, N.; Mellor, S.; O’Neill, G.C.; Tierney, T.M.; Barnes, G.R.; Maguire, E.A. Interference suppression techniques for OPM-based MEG: Opportunities and challenges. NeuroImage 2022, 247, 118834. [Google Scholar] [CrossRef]












Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Lu, H.; Wang, C.; Cao, F.; Yang, J.; Su, B.; Liu, Y.; Ning, X. Measuring Phase–Amplitude Coupling Effect with OPM-MEG. Photonics 2025, 12, 1070. https://doi.org/10.3390/photonics12111070
Li Y, Lu H, Wang C, Cao F, Yang J, Su B, Liu Y, Ning X. Measuring Phase–Amplitude Coupling Effect with OPM-MEG. Photonics. 2025; 12(11):1070. https://doi.org/10.3390/photonics12111070
Chicago/Turabian StyleLi, Yong, Hao Lu, Chunhui Wang, Fuzhi Cao, Jianzhi Yang, Binyi Su, Ying Liu, and Xiaolin Ning. 2025. "Measuring Phase–Amplitude Coupling Effect with OPM-MEG" Photonics 12, no. 11: 1070. https://doi.org/10.3390/photonics12111070
APA StyleLi, Y., Lu, H., Wang, C., Cao, F., Yang, J., Su, B., Liu, Y., & Ning, X. (2025). Measuring Phase–Amplitude Coupling Effect with OPM-MEG. Photonics, 12(11), 1070. https://doi.org/10.3390/photonics12111070

