Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (121)

Search Parameters:
Keywords = fugitive emission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2980 KiB  
Article
Temporal Variations in Particulate Matter Emissions from Soil Wind Erosion in Bayingolin Mongol Autonomous Prefecture, Xinjiang, China (2001–2022)
by Shuang Zhu, Fang Li, Yue Yang, Tong Ma and Jianhua Chen
Atmosphere 2025, 16(8), 911; https://doi.org/10.3390/atmos16080911 - 28 Jul 2025
Viewed by 163
Abstract
Soil fugitive dust (SFD) emissions pose a significant threat to both human health and the environment, highlighting the need for accurate and reliable estimation and assessment in the desert regions of northwest China. This study used climate, soil, and vegetation data from Bayingolin [...] Read more.
Soil fugitive dust (SFD) emissions pose a significant threat to both human health and the environment, highlighting the need for accurate and reliable estimation and assessment in the desert regions of northwest China. This study used climate, soil, and vegetation data from Bayingolin Prefecture (2001–2022) and applied the WEQ model to analyze temporal and spatial variations in total suspended particulate (TSP), PM10, and PM2.5 emissions and their driving factors. The region exhibited high emission factors for TSP, PM10, and PM2.5, averaging 55.46 t km−2 a−1, 27.73 t km−2 a−1, and 4.14 t km−2 a−1, respectively, with pronounced spatial heterogeneity and the highest values observed in Yuli, Qiemo, and Ruoqiang. The annual average emissions of TSP, PM10, and PM2.5 were 3.23 × 107 t, 1.61 × 107 t, and 2.41 × 106 t, respectively. Bare land was the dominant source, contributing 72.55% of TSP emissions. Both total emissions and emission factors showed an overall upward trend, reaching their lowest point around 2012, followed by significant increases in most counties during 2012–2022. Annual precipitation, wind speed, and temperature were identified as the primary climatic drivers of soil dust emissions across all counties, and their influences exhibited pronounced spatial heterogeneity in Bazhou. In Ruoqiang, Bohu, Korla, and Qiemo, dust emissions are mainly limited by precipitation, although dry conditions and sparse vegetation can amplify the role of wind. In Heshuo, Hejing, and Yanqi, stable vegetation helps to lessen wind’s impact. In Yuli, wind speed and temperature are the main drivers, whereas in Luntai, precipitation and temperature are both important constraints. These findings highlight the need to consider emission intensity, land use, or surface condition changes, and the potential benefits of increasing vegetation cover in severely desertified areas when formulating regional dust mitigation strategies. Full article
Show Figures

Figure 1

17 pages, 3579 KiB  
Article
Source Apportionment of PM2.5 in a Chinese Megacity During Special Periods: Unveiling Impacts of COVID-19 and Spring Festival
by Kejin Tang, Xing Peng, Yuqi Liu, Sizhe Liu, Shihai Tang, Jiang Wu, Shaoxia Wang, Tingting Xie and Tingting Yao
Atmosphere 2025, 16(8), 908; https://doi.org/10.3390/atmos16080908 - 26 Jul 2025
Viewed by 234
Abstract
Long-term source apportionment of PM2.5 during high-pollution periods is essential for achieving sustained reductions in both PM2.5 levels and their health impacts. This study conducted PM2.5 sampling in Shenzhen from January to March over the years 2021–2024 to investigate the [...] Read more.
Long-term source apportionment of PM2.5 during high-pollution periods is essential for achieving sustained reductions in both PM2.5 levels and their health impacts. This study conducted PM2.5 sampling in Shenzhen from January to March over the years 2021–2024 to investigate the long-term impact of coronavirus disease 2019 and the short-term impact of the Spring Festival on PM2.5 levels. The measured average PM2.5 concentration during the research period was 22.5 μg/m3, with organic matter (OM) being the dominant component. Vehicle emissions, secondary sulfate, secondary nitrate, and secondary organic aerosol were identified by receptor model as the primary sources of PM2.5 during the observational periods. The pandemic led to a decrease of between 30% and 50% in the contributions of most anthropogenic sources in 2022 compared to 2021, followed by a rebound. PM2.5 levels in January–March 2024 dropped by 1.4 μg/m3 compared to 2021, mainly due to reduced vehicle emissions, secondary sulfate, fugitive dust, biomass burning, and industrial emissions, reflecting Shenzhen’s and nearby cities’ effective control measures. However, secondary nitrate and fireworks-related emissions rose significantly. During the Spring Festival, PM2.5 concentrations were 23% lower than before the festival, but the contributions of fireworks burning exhibited a marked increase in both 2023 and 2024. Specifically, during intense peak events, fireworks burning triggered sharp, short-term spikes in characteristic metal concentrations, accounting for over 50% of PM2.5 on those peak days. In the future, strict control over vehicle emissions and enhanced management of fireworks burning during special periods like the Spring Festival are necessary to reduce PM2.5 concentration and improve air quality. Full article
(This article belongs to the Special Issue New Insights in Air Quality Assessment: Forecasting and Monitoring)
Show Figures

Figure 1

20 pages, 11386 KiB  
Article
Real-Time Source Dynamics of PM2.5 During Winter Haze Episodes Resolved by SPAMS: A Case Study in Yinchuan, Northwest China
by Huihui Du, Tantan Tan, Jiaying Pan, Meng Xu, Aidong Liu and Yanpeng Li
Sustainability 2025, 17(14), 6627; https://doi.org/10.3390/su17146627 - 20 Jul 2025
Viewed by 430
Abstract
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry [...] Read more.
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry (SPAMS) to investigate PM2.5 sources and dynamics during winter haze episodes in Yinchuan, Northwest China. Results showed that the average PM2.5 concentration was 57 μg·m−3, peaking at 218 μg·m−3. PM2.5 was dominated by organic carbon (OC, 17.3%), mixed carbonaceous particles (ECOC, 17.0%), and elemental carbon (EC, 14.3%). The primary sources were coal combustion (26.4%), fugitive dust (25.8%), and vehicle emissions (19.1%). Residential coal burning dominated coal emissions (80.9%), highlighting inefficient decentralized heating. Source contributions showed distinct diurnal patterns: coal combustion peaked nocturnally (29.3% at 09:00) due to heating and inversions, fugitive dust rose at night (28.6% at 19:00) from construction and low winds, and vehicle emissions aligned with traffic (17.5% at 07:00). Haze episodes were driven by synergistic increases in local coal (+4.0%), dust (+2.7%), and vehicle (+2.1%) emissions, compounded by regional transport (10.1–36.7%) of aged particles from northwestern zones. Fugitive dust correlated with sulfur dioxide (SO2) and ozone (O3) (p < 0.01), suggesting roles as carriers and reactive interfaces. Findings confirm local emission dominance with spatiotemporal heterogeneity and regional transport influence. SPAMS effectively resolved short-term pollution dynamics, providing critical insights for targeted air quality management in arid regions. Full article
Show Figures

Figure 1

15 pages, 3766 KiB  
Article
Improving Pulmonary Delivery of Budesonide Suspensions Nebulized with Constant-Output Vibrating Mesh Nebulizers by Using Valved Holding Chamber
by Tomasz R. Sosnowski, Izabela Kazimierczak, Aleksandra Sawczuk, Kamil Janeczek and Andrzej Emeryk
Pharmaceutics 2025, 17(6), 696; https://doi.org/10.3390/pharmaceutics17060696 - 26 May 2025
Viewed by 675
Abstract
Background: Vibrating mesh nebulizers (VMNs) are not only used to deliver typical pulmonary drugs but are also a promising platform for novel formulations and therapeutic applications. Typically, these devices operate continuously or on demand and are directly connected to the outflow interface [...] Read more.
Background: Vibrating mesh nebulizers (VMNs) are not only used to deliver typical pulmonary drugs but are also a promising platform for novel formulations and therapeutic applications. Typically, these devices operate continuously or on demand and are directly connected to the outflow interface (mouthpiece or mask) without valving systems that could spare the drug during exhalation. This paper examines the possibility of increasing the delivery of inhaled budesonide aerosol by attaching a valved holding chamber (VHC) to selected VMNs. Methods: A laboratory in vitro study was conducted for seven budesonide (BUD) nebulization products (0.25 mg/mL). The rates of aerosol delivery from VMNs alone or VMN + VHC systems were determined gravimetrically for a simulated breathing cycle, while droplet size distributions in mists were measured by laser diffraction. Results: The VMN + VHC systems increased the amount of aerosol available for inhalation and the fraction of fine particles that could penetrate the pulmonary region. Depending on the VMN and BUD product, a relative increase of 30–300% in the total drug delivery (T) and 50–350% in the pulmonary drug availability (P) was obtained. The results are explained by the reduction in aerosol losses during exhalation (the fugitive emission) by the VHC and the simultaneous elimination of the largest droplets due to coalescence and deposition in the chamber. Both VMN and BUD affected the aerosol’s properties and discharge mass and thus the actual benefits of the VHC. Conclusions: While the results confirm the superiority of VMN + VHC over VMNs alone in nebulizing BUD suspensions, they also show that it is difficult to predict the effects quantitatively without testing the individual nebulizer–chamber–drug combination. Full article
Show Figures

Graphical abstract

12 pages, 592 KiB  
Article
Estimation of the Annual Greenhouse Gas Emissions from the Town Gas Distribution System in Hong Kong in 2022
by Daisong Chen, Tsz Lap Chan and Jin Shang
Atmosphere 2025, 16(6), 643; https://doi.org/10.3390/atmos16060643 - 26 May 2025
Viewed by 428
Abstract
Estimating leaks in urban gas distribution systems is crucial for reducing greenhouse gas emissions from fugitive losses and mitigating costly waste. This study aimed to use a simplified methodology to estimate pipeline leakage in gas distribution systems and validate these estimations against established [...] Read more.
Estimating leaks in urban gas distribution systems is crucial for reducing greenhouse gas emissions from fugitive losses and mitigating costly waste. This study aimed to use a simplified methodology to estimate pipeline leakage in gas distribution systems and validate these estimations against established benchmarks or other gases globally. The estimation encompassed sources including third-party damage, long-term permeation, flaring, and purging during pipeline commissioning and decommissioning, as well as fugitive leakage, each requiring respective evaluation. Results showed that the total town gas leakage volume was around 695,044 m3 to 2,009,991 m3, accounting for 0.045% to 0.13% of the total town gas sales in 2022. Among the five leakage sources, fugitive leakage was the major contributor with the leakage volume of 1,938,914 m3. To comprehensively benchmark all emission factors (EFs), those from previously reported studies were adapted to the town gas scenario and combined with the current activity factors (AFs) in Hong Kong to calculate the leakage amounts. Comparing our results with different models, we observed variations in estimated leakage amounts based on years, regions, and sampling methods. Upgrades in pipeline materials led to reduced EFs and subsequently lower total gas leakage. Our findings support efforts to reduce greenhouse gas emissions by providing actionable data for policymakers and utility companies to address gas leakage issues. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

23 pages, 3266 KiB  
Article
Energy Recuperation in a Spiral Reactor for Lean Methane Combustion: Heat Transfer Efficiency and Design Guidelines
by Joseph P. Mmbaga, Robert E. Hayes, Joanna Profic-Paczkowska, Roman Jędrzejczyk, Damian K. Chlebda, Jacek Dańczak and Robert Hildebrandt
Processes 2025, 13(4), 1168; https://doi.org/10.3390/pr13041168 - 12 Apr 2025
Viewed by 583
Abstract
Fugitive methane emissions contained in the ventilation air (VAM) from underground coal mines make a significant contribution to the global methane emissions. These methane emissions have a high global warming potential (GWP) and should be mitigated to combat climate change. This study reports [...] Read more.
Fugitive methane emissions contained in the ventilation air (VAM) from underground coal mines make a significant contribution to the global methane emissions. These methane emissions have a high global warming potential (GWP) and should be mitigated to combat climate change. This study reports on a novel integrated recuperator reactor concept designed to mitigate these low-concentration methane streams using catalytic combustion. The paper analyzes the heat recovery aspects of the novel design and illustrates a computer-aided design approach to system development. Both computational and experimental methods were used in the investigation. The double-spiral counterflow design is shown to be able to eliminate methane from the flow stream with the feed at room temperature. A methodology is illustrated that can be used to determine the operating limits of the proposed recuperative reactor system. This system is suitable for use inside a mine. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

27 pages, 3788 KiB  
Article
Operative Improvement in the Naphtha Catalytic Reforming Process to Reduce the Environmental Impact of Benzene Fugitive Emissions from Gasoline
by Fabiola Velázquez-Alonso, César Abelardo González-Ramírez, José Roberto Villagómez-Ibarra, Elena María Otazo-Sánchez, Martín Hernández-Juárez, Fernando Pérez-Villaseñor, Ángel Castro-Agüero, Laura Olivia Alemán-Vázquez, César Camacho-López and Claudia Romo-Gómez
ChemEngineering 2025, 9(2), 21; https://doi.org/10.3390/chemengineering9020021 - 21 Feb 2025
Viewed by 1820
Abstract
A challenge for the oil refinement industry is the production of high-octane gasoline with a low benzene content. This work reports the calculation of the atmospheric benzene emissions generated from gasoline storage, transfer, and transport operations in Mexico, estimating 1.48 KBPD of environmental [...] Read more.
A challenge for the oil refinement industry is the production of high-octane gasoline with a low benzene content. This work reports the calculation of the atmospheric benzene emissions generated from gasoline storage, transfer, and transport operations in Mexico, estimating 1.48 KBPD of environmental release. The aim was to estimate the minimum benzene emissions through operative improvements in refineries, initially by performing simulations of the Naphtha Catalytic Reforming (NCR) process using ASPEN HYSYS® ver. 8.8 (34.0.08909) and then by optimizing the operative conditions to improve the reformate quality while reducing the benzene content. The operative ranges comprised hydrogen/hydrocarbon (H2/HC) feedstock molar ratios from 2.0 to 6.0 and reaction temperatures from 450 to 525 °C, which were used as independent variables to assess the benzene content and the Research Octane Number (RON) of the produced gasoline. The Surface Response Method (SRM) and multi-objective optimization analysis were applied. The improved operative conditions were 491 °C and a H2/HC ratio of 2.0, which allowed us to obtain a RON value of 89.87, an aromatics value of 37.39% (v/v), and a benzene value of 1.48% (v/v), with an estimated 16.44% drop in atmospheric benzene emissions, meaning a reduction in greenhouse gas emissions and climate change, thus favorably impacting public health by improving refinery operations. The simulation outcomes were compared with industrial-scale data and the experimental results, with significant similitudes being observed. Full article
Show Figures

Graphical abstract

18 pages, 2454 KiB  
Article
Carbon Dioxide Micro-Nano Bubbles Aeration Improves Carbon Fixation Efficiency for Succinic Acid Synthesis by Escherichia coli
by Ying Chen, Hao Wu, Qianqian Huang, Jingwen Liao, Liuqing Wang, Yue Pan, Anming Xu, Wenming Zhang and Min Jiang
Fermentation 2025, 11(1), 31; https://doi.org/10.3390/fermentation11010031 - 14 Jan 2025
Viewed by 1346
Abstract
The low solubility of CO2 in water leads to massive CO2 emission and extremely low CO2 utilization in succinic acid (SA) biosynthesis. To enhance microbial CO2 utilization, micro-nano bubbles (MNBs) were induced in SA biosynthesis by E. coli Suc260 [...] Read more.
The low solubility of CO2 in water leads to massive CO2 emission and extremely low CO2 utilization in succinic acid (SA) biosynthesis. To enhance microbial CO2 utilization, micro-nano bubbles (MNBs) were induced in SA biosynthesis by E. coli Suc260 in this study. The results showed that MNB aeration decreased CO2 emissions and increased CO2 solubility in the medium significantly. The CO2 utilization of MNB aeration was 129.69% higher than that of bubble aeration in atmospheric fermentation. However, MNBs showed a significant inhibitory effect on bacterial growth in the pressurized environment, although a two-stage aerobic–anaerobic fermentation strategy weakened the inhibition. The biofilm-enhanced strain E. coli Suc260-CsgA showed a strong tolerance to MNBs. In pressurized fermentation with MNB aeration, the actual CO2 utilization of E. coli Suc260-CsgA was 30.63% at 0.18 MPa, which was a 6.49-times improvement. The CO2 requirement for SA synthesis decreased by 83.4%, and the fugitive emission of CO2 was successfully controlled. The activities of key enzymes within the SA synthesis pathway were also maintained or enhanced in the fermentation process with MNB aeration. These results indicated that the biofilm-enhanced strain and CO2-MNBs could improve carbon fixation efficiency in microbial carbon sequestration. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

20 pages, 3978 KiB  
Article
Estimating Greenhouse Gas Emissions from Hydrogen-Blended Natural Gas Networks
by Roberto Paglini, Francesco Demetrio Minuto and Andrea Lanzini
Energies 2024, 17(24), 6369; https://doi.org/10.3390/en17246369 - 18 Dec 2024
Cited by 1 | Viewed by 873
Abstract
Methane is a significant contributor to anthropogenic greenhouse gas emissions. Blending hydrogen with natural gas in existing networks presents a promising strategy to reduce these emissions and support the transition to a carbon-neutral energy system. However, hydrogen’s potential for atmospheric release raises safety [...] Read more.
Methane is a significant contributor to anthropogenic greenhouse gas emissions. Blending hydrogen with natural gas in existing networks presents a promising strategy to reduce these emissions and support the transition to a carbon-neutral energy system. However, hydrogen’s potential for atmospheric release raises safety and environmental concerns, necessitating an assessment of its impact on methane emissions and leakage behavior. This study introduces a methodology for estimating how fugitive emissions change when a natural gas network is shifted to a 10% hydrogen blend by combining analytical flowrate models with data from sampled leaks across a natural gas network. The methodology involves developing conversion factors based on existing methane emission rates to predict corresponding hydrogen emissions across different sections of the network, including mainlines, service lines, and facilities. Our findings reveal that while the overall volumetric emission rates increase by 5.67% on the mainlines and 3.04% on the service lines, primarily due to hydrogen’s lower density, methane emissions decrease by 5.95% on the mainlines and 8.28% on the service lines. However, when considering the impact of a 10% hydrogen blend on the Global Warming Potential, the net reduction in greenhouse gas emissions is 5.37% for the mainlines and 7.72% for the service lines. This work bridges the gap between research on hydrogen leakage and network readiness, which traditionally focuses on safety, and environmental sustainability studies on methane emission. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

12 pages, 3318 KiB  
Article
Carbon Fiber Recycling from Waste CFRPs via Microwave Pyrolysis: Gas Emissions Monitoring and Mechanical Properties of Recovered Carbon Fiber
by Kai-Yen Chin, Angus Shiue, Jhu-Lin You, Yi-Jing Wu, Kai-Yi Cheng, Shu-Mei Chang, Yeou-Fong Li, Chao-Heng Tseng and Graham Leggett
Fibers 2024, 12(12), 106; https://doi.org/10.3390/fib12120106 - 5 Dec 2024
Cited by 1 | Viewed by 2854
Abstract
Disposing of carbon fiber-reinforced polymers (CFRPs) has become a pressing issue due to their increasing application across various industries. Previous work has focused on removing silane coupling agent residues on recovered carbon fibers via microwave pyrolysis, making them suitable for use in new [...] Read more.
Disposing of carbon fiber-reinforced polymers (CFRPs) has become a pressing issue due to their increasing application across various industries. Previous work has focused on removing silane coupling agent residues on recovered carbon fibers via microwave pyrolysis, making them suitable for use in new materials. However, the mechanical performance and structural characteristics of these fibers have not been fully reported. This study investigates the time–temperature curves of CFRPs treated through microwave pyrolysis and analyzes the mechanical and structural properties of silane-controllable recovered carbon fibers. Additionally, emissions—including carbon monoxide, carbon dioxide, and particulate aerosols—were measured using handheld monitors and thermal desorption–gas chromatography/mass spectrometry to determine the composition of fugitive gases around the microwave pyrolysis system. The pyrolysis process at 950 °C, with an additional 1 h holding time, reduced the crystallite size from 0.297 Å to 0.222 Å, significantly enhancing tensile strength (3804 ± 713 MPa) and tensile modulus (200 ± 13 GPa). This study contributes to more sustainable CFRP waste treatment and highlights the potential for reusing high-quality carbon fibers in new applications, enhancing both environmental and worker safety. Full article
Show Figures

Figure 1

22 pages, 781 KiB  
Review
Anesthetic Gases: Environmental Impacts and Mitigation Strategies for Fluranes and Nitrous Oxide
by William A. Anderson and Anita Rao
Environments 2024, 11(12), 275; https://doi.org/10.3390/environments11120275 - 2 Dec 2024
Cited by 1 | Viewed by 3212
Abstract
Anesthetic gases represent a small but significant portion of the environmental impact of health care in many countries. These compounds include several fluorocarbons commonly referred to as “fluranes”. The fluranes are greenhouse gases (GHG) with global warming potentials in the hundreds to thousands [...] Read more.
Anesthetic gases represent a small but significant portion of the environmental impact of health care in many countries. These compounds include several fluorocarbons commonly referred to as “fluranes”. The fluranes are greenhouse gases (GHG) with global warming potentials in the hundreds to thousands and are also PFAS compounds (per- and polyfluorinated alkyl substances) according to at least one definition. Nitrous oxide (N2O) is sometimes used as an adjunct in anesthesia, or for sedation, but has a significant stratospheric ozone depletion potential as well as GHG effects. Reducing emissions of these compounds into the environment is, therefore, a growing priority in the health care sector. Elimination or substitution of the highest impact fluranes with alternatives has been pursued with some success but limitations remain. Several emission control strategies have been developed for fluranes including adsorption onto solids, which has shown commercial promise. Catalytic decomposition methods have been pursued for N2O emission control, although mixtures of fluranes and N2O are potentially problematic for this technology. All such emission control technologies require the effective scavenging and containment of the anesthetics during use, but the limited available information suggests that fugitive emissions into the operating room may be a significant route for unmitigated losses of approximately 50% of the used fluranes into the environment. A better understanding and quantification of such fugitive emissions is needed to help minimize these releases. Further cost–benefit and techno-economic analyses are also needed to identify strategies and best practices for the future. Full article
(This article belongs to the Special Issue Air Quality, Health and Climate)
Show Figures

Figure 1

15 pages, 2948 KiB  
Article
First Investigation of Long-Term Methane Emissions from Wastewater Treatment Using Satellite Remote Sensing
by Seyed Mostafa Mehrdad, Bo Zhang, Wenqi Guo, Shan Du and Ke Du
Remote Sens. 2024, 16(23), 4422; https://doi.org/10.3390/rs16234422 - 26 Nov 2024
Viewed by 2093
Abstract
Wastewater treatment (WWT) contributes 2–9% of global greenhouse gas (GHG) emissions. The noticeable uncertainty in emissions estimation is due in large part to the lack of measurement data. Several methods have recently been developed for monitoring fugitive GHG emissions from WWT. However, limited [...] Read more.
Wastewater treatment (WWT) contributes 2–9% of global greenhouse gas (GHG) emissions. The noticeable uncertainty in emissions estimation is due in large part to the lack of measurement data. Several methods have recently been developed for monitoring fugitive GHG emissions from WWT. However, limited by the short duration of the monitoring, only “snapshot” data can be obtained, necessitating extrapolation of the limited data for estimating annual emissions. Extrapolation introduces substantial errors, as it fails to account for the spatial and temporal variations of fugitive emissions. This research evaluated the feasibility of studying the long-term CH4 emissions from WWT by analyzing high spatial resolution Sentinel-2 data. Satellite images of a WWT plant in Calgary, Canada, taken between 2019 and 2023, were processed to retrieve CH4 column concentration distributions. Digital image processing techniques were developed and used for extracting the time- and space-varying features of CH4 emissions, which revealed daily, monthly, seasonal, and annual variations. Emission hotspots were also identified and corroborated with ground-based measurements. Despite limitations due to atmospheric scattering, cloud cover, and sensor resolution, which affect precise ground-level concentration assessments, the findings reveal the dynamic nature of fugitive GHG emissions from WWT, indicating the need for continuous monitoring. The results also show the potential of utilizing satellite images for cost-effectively evaluating fugitive CH4 emissions. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

18 pages, 22767 KiB  
Article
Emission Inventory of Soil Fugitive Dust Sources with High Spatiotemporal Resolution: A Case Study of Daxing District, Beijing, China
by Qianxi Liu, Yalan Liu, Shufu Liu, Jinghai Zhao, Bin Zhao, Feng Zhou, Dan Zhu, Dacheng Wang, Linjun Yu, Ling Yi and Gang Chen
Land 2024, 13(12), 1991; https://doi.org/10.3390/land13121991 - 22 Nov 2024
Cited by 1 | Viewed by 870
Abstract
Soil fugitive dust (SFD) is a significant contributor to environmental particulate matter (PM), which not only pollutes and affects air quality but also poses risks to human health. The emission inventory can provide a basis for the effective prevention and control of SFD [...] Read more.
Soil fugitive dust (SFD) is a significant contributor to environmental particulate matter (PM), which not only pollutes and affects air quality but also poses risks to human health. The emission inventory can provide a basis for the effective prevention and control of SFD pollution. However, current emission inventories with low resolution and frequency make it difficult to assess dust emissions accurately. Obtaining monthly high-resolution bare soil information is one of the solutions for compiling SFD emission inventories. Taking Daxing District, Beijing, as a case study, this study first extracted bare soil for each month of 2020, 2021, and 2022, respectively, using high-spatial-resolution remote sensing satellite data, and then constructed a 10 m-size emission grid and monthly SFD emission inventories based on the wind erosion equation by inputting vegetation cover factor, meteorological data, and soil erosion index. The total emissions of TSP, PM10, and PM2.5 in Daxing District from 2020 to 2022 were 3996.54 tons, 359.26 tons, and 25.25 tons, respectively. Temporally, the SFD emissions showed a decreasing trend over the years and were mainly concentrated in the winter and spring seasons. Spatially, the SFD emissions were predominantly concentrated in the southern and northern areas. And the emissions of PM10 exhibit a significantly stronger correlation with wind speed and the extent of bare soil area. Full article
Show Figures

Figure 1

20 pages, 1320 KiB  
Article
Optimizing Methane Recovery for Fuels: A Comparative Study of Fugitive Emissions in Biogas Plants, WWTPs, and Landfills
by Daniel Gil-García, Marta Revuelta-Aramburu, Carlos Morales-Polo and María del Mar Cledera-Castro
Fuels 2024, 5(4), 762-781; https://doi.org/10.3390/fuels5040042 - 5 Nov 2024
Cited by 1 | Viewed by 1437
Abstract
How accurate are current estimation methods for fugitive methane emissions in methane-producing facilities, and how do they vary across biogas plants, wastewater treatment plants (WWTPs), and landfills? Based on this, the hypothesis posited in this study is that current methods significantly underestimate methane [...] Read more.
How accurate are current estimation methods for fugitive methane emissions in methane-producing facilities, and how do they vary across biogas plants, wastewater treatment plants (WWTPs), and landfills? Based on this, the hypothesis posited in this study is that current methods significantly underestimate methane emissions, particularly in WWTPs and biogas plants, due to limitations in accounting for recovered methane and the reliance on general parameters such as the oxidation factor. To test this, a comparative analysis was carried out involving 33 biogas plants, 87 WWTPs, and 119 landfills in the Iberian Peninsula, comparing officially recorded data with estimates derived from our own calculations. Our findings confirm the lack of precision in current emission estimation methods, particularly for WWTPs and biogas plants, where factors like the omission of recovered methane lead to underreporting. This study highlights that WWTPs emit the largest amount of methane due to their organic material processing, exceeding emissions from landfills and biogas plants. In contrast, methods for estimating emissions in landfills are found to be more reliable. The results suggest that improving calculation methodologies, especially for WWTPs and biogas plants, as well as enhancing leak monitoring and methane recovery systems, is crucial to reducing the environmental impact of methane-producing facilities. Full article
Show Figures

Graphical abstract

15 pages, 3736 KiB  
Article
Addressing Low-Cost Methane Sensor Calibration Shortcomings with Machine Learning
by Elijah Kiplimo, Stuart N. Riddick, Mercy Mbua, Aashish Upreti, Abhinav Anand and Daniel J. Zimmerle
Atmosphere 2024, 15(11), 1313; https://doi.org/10.3390/atmos15111313 - 31 Oct 2024
Cited by 1 | Viewed by 2041
Abstract
Quantifying methane emissions is essential for meeting near-term climate goals and is typically carried out using methane concentrations measured downwind of the source. One major source of methane that is important to observe and promptly remediate is fugitive emissions from oil and gas [...] Read more.
Quantifying methane emissions is essential for meeting near-term climate goals and is typically carried out using methane concentrations measured downwind of the source. One major source of methane that is important to observe and promptly remediate is fugitive emissions from oil and gas production sites but installing methane sensors at the thousands of sites within a production basin is expensive. In recent years, relatively inexpensive metal oxide sensors have been used to measure methane concentrations at production sites. Current methods used to calibrate metal oxide sensors have been shown to have significant shortcomings, resulting in limited confidence in methane concentrations generated by these sensors. To address this, we investigate using machine learning (ML) to generate a model that converts metal oxide sensor output to methane mixing ratios. To generate test data, two metal oxide sensors, TGS2600 and TGS2611, were collocated with a trace methane analyzer downwind of controlled methane releases. Over the duration of the measurements, the trace gas analyzer’s average methane mixing ratio was 2.40 ppm with a maximum of 147.6 ppm. The average calculated methane mixing ratios for the TGS2600 and TGS2611 using the ML algorithm were 2.42 ppm and 2.40 ppm, with maximum values of 117.5 ppm and 106.3 ppm, respectively. A comparison of histograms generated using the analyzer and metal oxide sensors mixing ratios shows overlap coefficients of 0.95 and 0.94 for the TGS2600 and TGS2611, respectively. Overall, our results showed there was a good agreement between the ML-derived metal oxide sensors’ mixing ratios and those generated using the more accurate trace gas analyzer. This suggests that the response of lower-cost sensors calibrated using ML could be used to generate mixing ratios with precision and accuracy comparable to higher priced trace methane analyzers. This would improve confidence in low-cost sensors’ response, reduce the cost of sensor deployment, and allow for timely and accurate tracking of methane emissions. Full article
Show Figures

Figure 1

Back to TopTop