Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = fuel block manufacturing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 3887 KiB  
Review
A Comprehensive Review of Catalytic Hydrodeoxygenation of Lignin-Derived Phenolics to Aromatics
by Sitong Dong and Gang Feng
Molecules 2025, 30(10), 2225; https://doi.org/10.3390/molecules30102225 - 20 May 2025
Viewed by 817
Abstract
Single-ring aromatic compounds including BTX (benzene, toluene, xylene) serve as essential building blocks for high-performance fuels and specialty chemicals, with extensive applications spanning polymer synthesis, pharmaceutical manufacturing, and aviation fuel formulation. Current industrial production predominantly relies on non-renewable petrochemical feedstocks, posing the dual [...] Read more.
Single-ring aromatic compounds including BTX (benzene, toluene, xylene) serve as essential building blocks for high-performance fuels and specialty chemicals, with extensive applications spanning polymer synthesis, pharmaceutical manufacturing, and aviation fuel formulation. Current industrial production predominantly relies on non-renewable petrochemical feedstocks, posing the dual challenges of resource depletion and environmental sustainability. The catalytic hydrodeoxygenation (HDO) of lignin-derived phenolic substrates emerges as a technologically viable pathway for sustainable aromatic hydrocarbon synthesis, offering critical opportunities for lignin valorization and biorefinery advancement. This article reviews the relevant research on the conversion of lignin-derived phenolic compounds’ HDO to benzene and aromatic hydrocarbons, systematically categorizing and summarizing the different types of catalysts and their reaction mechanisms. Furthermore, we propose a strategic framework addressing current technical bottlenecks, highlighting the necessity for the synergistic development of robust heterogeneous catalysts with tailored active sites and energy-efficient process engineering to achieve scalable biomass conversion systems. Full article
(This article belongs to the Special Issue Renewable Energy, Fuels and Chemicals from Biomass, 2nd Edition)
Show Figures

Figure 1

14 pages, 4803 KiB  
Article
Ion and Water Transports in Double Gyroid Nanochannels Formed by Block Copolymer Anion Exchange Membranes
by Karim Aissou, Maximilien Coronas, Jason Richard, Erwan Ponsin, Sambhav Vishwakarma, Eddy Petit, Bertrand Rebiere, Camille Bakkali-Hassani, Stéphanie Roualdes and Damien Quemener
Batteries 2025, 11(4), 126; https://doi.org/10.3390/batteries11040126 - 26 Mar 2025
Viewed by 609
Abstract
Mechanically improved polymeric membranes with high ionic conductivity (IC) and good permeability are highly desired for next-generation anion exchange membranes (AEMs) in order to reduce Ohmic losses and enhance water management in alkaline membrane fuel cells. To move towards the fabrication of such [...] Read more.
Mechanically improved polymeric membranes with high ionic conductivity (IC) and good permeability are highly desired for next-generation anion exchange membranes (AEMs) in order to reduce Ohmic losses and enhance water management in alkaline membrane fuel cells. To move towards the fabrication of such high-performance membranes, the creation of hydrophilic ion-conducting double gyroid (DG) nanochannels within block copolymer (BCP) AEMs is a promising approach. However, this attractive solution remains difficult to implement due to the complexity of constructing a well-developed ion-conducting DG morphology across the entire membrane thickness. To deal with this issue, water permeable polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) membranes with ion-conducting DG nanochannels were produced by combining a solvent vapor annealing (SVA) treatment with a methylation process. Here, the SVA treatment enabled the manufacture of DG-forming BCP AEMs while the methylation process allowed for the conversion of pyridine sites to N-methylpyridinium (NMP+) cations via a Menshutkin reaction. Following this SVA-methylation method, the IC value of water-permeable (~384 L h−1 m−2 bar−1) DG-structured BCP AEMs in their OHcounter anion form was measured to be of ~2.8 mS.cm−1 at 20 °C while a lower IC value was probed, under the same experimental conditions, from as-cast NMP+-containing analogs with a non-permeable disordered phase (~1.2 mS.cm−1). Full article
Show Figures

Figure 1

24 pages, 8807 KiB  
Article
A Study on Welding Sensitivity Assessment and Deformation Control of International Maritime Organization Type C Liquefied Natural Gas Fuel Tank Support Structures Using the Direct Inherent Strain Method
by Dong-Hee Park, Jin-Hyuk Yang, Sung-Hoon Kim, Jeong-Hyeon Kim and Jae-Myung Lee
J. Mar. Sci. Eng. 2024, 12(12), 2161; https://doi.org/10.3390/jmse12122161 - 26 Nov 2024
Cited by 1 | Viewed by 1076
Abstract
The increasing burden on shipowners and shipping companies due to environmental regulations imposed by the International Maritime Organization (IMO) has led to the adoption of various compliance strategies, including the use of low-sulfur fuel, installation of scrubbers, and the use of liquefied natural [...] Read more.
The increasing burden on shipowners and shipping companies due to environmental regulations imposed by the International Maritime Organization (IMO) has led to the adoption of various compliance strategies, including the use of low-sulfur fuel, installation of scrubbers, and the use of liquefied natural gas (LNG) as an alternative fuel. LNG is particularly prevalent in dual-fuel propulsion ships, with the IMO Type C tank being the most commonly used storage facility. The structure of the IMO Type C tank comprises a pressure vessel and supporting saddles, which can be integrated or separate systems. Despite being manufactured within specified tolerances, welding-induced deformation of the tank and saddle is inevitable since the saddle is welded directly onto the hull. In integrated tank–saddle systems, this deformation can lead to cracks in the epoxy resin, which has lower strength and stiffness, as well as burn damage to the resin and wooden blocks from welding heat. In separate tank–saddle systems, installation difficulties can arise due to interference between the fuel tank system and adjacent structures, such as insulation or the fuel preparation room (FPR), resulting from saddle deformation caused by welding. This study analyzes the sensitivity of all weld lines involved in saddle installation using the direct inherent strain (DIS) method. Based on this analysis, the initial welding deformations are evaluated in relation to the welding direction and sequence. Finally, an optimized method for saddle installation is proposed to minimize deformation. Full article
(This article belongs to the Special Issue Green Shipping Corridors and GHG Emissions)
Show Figures

Figure 1

26 pages, 2088 KiB  
Review
Contribution of Fermentation Technology to Building Blocks for Renewable Plastics
by Passanun Lomwongsopon and Cristiano Varrone
Fermentation 2022, 8(2), 47; https://doi.org/10.3390/fermentation8020047 - 22 Jan 2022
Cited by 24 | Viewed by 9216
Abstract
Large-scale worldwide production of plastics requires the use of large quantities of fossil fuels, leading to a negative impact on the environment. If the production of plastic continues to increase at the current rate, the industry will account for one fifth of global [...] Read more.
Large-scale worldwide production of plastics requires the use of large quantities of fossil fuels, leading to a negative impact on the environment. If the production of plastic continues to increase at the current rate, the industry will account for one fifth of global oil use by 2050. Bioplastics currently represent less than one percent of total plastic produced, but they are expected to increase in the coming years, due to rising demand. The usage of bioplastics would allow the dependence on fossil fuels to be reduced and could represent an opportunity to add some interesting functionalities to the materials. Moreover, the plastics derived from bio-based resources are more carbon-neutral and their manufacture generates a lower amount of greenhouse gasses. The substitution of conventional plastic with renewable plastic will therefore promote a more sustainable economy, society, and environment. Consequently, more and more studies have been focusing on the production of interesting bio-based building blocks for bioplastics. However, a coherent review of the contribution of fermentation technology to a more sustainable plastic production is yet to be carried out. Here, we present the recent advancement in bioplastic production and describe the possible integration of bio-based monomers as renewable precursors. Representative examples of both published and commercial fermentation processes are discussed. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Graphical abstract

16 pages, 8727 KiB  
Technical Note
Design, Production and Evaluation of 3D-Printed Mold Geometries for a Hybrid Rocket Engine
by Benedict Grefen, Johannes Becker, Stefan Linke and Enrico Stoll
Aerospace 2021, 8(8), 220; https://doi.org/10.3390/aerospace8080220 - 8 Aug 2021
Cited by 12 | Viewed by 5268
Abstract
The feasibility of 3D-printed molds for complex solid fuel block geometries of hybrid rocket engines is investigated. Additively produced molds offer more degrees of freedom in designing an optimized but easy to manufacture mold. The solid fuel used for this demonstration was hydroxyl-terminated [...] Read more.
The feasibility of 3D-printed molds for complex solid fuel block geometries of hybrid rocket engines is investigated. Additively produced molds offer more degrees of freedom in designing an optimized but easy to manufacture mold. The solid fuel used for this demonstration was hydroxyl-terminated polybutadiene (HTPB). Polyvinyl alcohol (PVA) was chosen as the mold material due to its good dissolving characteristics. It is shown that conventional and complex geometries can be produced reliably with the presented methods. In addition to the manufacturing process, this article presents several engine tests with different fuel grain geometries, including a short overview of the test bed, the engine and first tests. Full article
(This article belongs to the Special Issue Hybrid Rocket(Volume II))
Show Figures

Figure 1

14 pages, 7138 KiB  
Article
Towards Next-Generation Sustainable Composites Made of Recycled Rubber, Cenospheres, and Biobinder
by Kristine Irtiseva, Vjaceslavs Lapkovskis, Viktors Mironovs, Jurijs Ozolins, Vijay Kumar Thakur, Gaurav Goel, Janis Baronins and Andrei Shishkin
Polymers 2021, 13(4), 574; https://doi.org/10.3390/polym13040574 - 14 Feb 2021
Cited by 24 | Viewed by 4115
Abstract
The utilisation of industrial residual products to develop new value-added materials and reduce their environmental footprint is one of the critical challenges of science and industry. Development of new multifunctional and bio-based composite materials is an excellent opportunity for the effective utilisation of [...] Read more.
The utilisation of industrial residual products to develop new value-added materials and reduce their environmental footprint is one of the critical challenges of science and industry. Development of new multifunctional and bio-based composite materials is an excellent opportunity for the effective utilisation of residual industrial products and a right step in the Green Deal’s direction as approved by the European Commission. Keeping the various issues in mind, we describe the manufacturing and characterisation of the three-component bio-based composites in this work. The key components are a bio-based binder made of peat, devulcanised crumb rubber (DCR) from used tyres, and part of the fly ash, i.e., the cenosphere (CS). The three-phase composites were prepared in the form of a block to investigate their mechanical properties and density, and in the form of granules for the determination of the sorption of water and oil products. We also investigated the properties’ dependence on the DCR and CS fraction. It was found that the maximum compression strength (in block form) observed for the composition without CS and DCR addition was 79.3 MPa, while the second-highest value of compression strength was 11.2 MPa for the composition with 27.3 wt.% of CS. For compositions with a bio-binder content from 17.4 to 55.8 wt.%, and with DCR contents ranging from 11.0 to 62.0 wt.%, the compressive strength was in the range from 1.1 to 2.0 MPa. Liquid-sorption analysis (water and diesel) showed that the maximum saturation of liquids, in both cases, was set after 35 min and ranged from 1.05 to 1.4 g·g −1 for water, and 0.77 to 1.25 g·g−1 for diesel. It was observed that 90% of the maximum saturation with diesel fuel came after 10 min and for water after 35 min. Full article
(This article belongs to the Special Issue Sustainable Polymers and Composites from Biorenewable Resources)
Show Figures

Graphical abstract

12 pages, 3810 KiB  
Article
Developing 3D-Printable Cathode Electrode for Monolithically Printed Microbial Fuel Cells (MFCs)
by Pavlina Theodosiou, John Greenman and Ioannis A. Ieropoulos
Molecules 2020, 25(16), 3635; https://doi.org/10.3390/molecules25163635 - 10 Aug 2020
Cited by 22 | Viewed by 3536
Abstract
Microbial Fuel Cells (MFCs) employ microbial electroactive species to convert chemical energy stored in organic matter, into electricity. The properties of MFCs have made the technology attractive for bioenergy production. However, a challenge to the mass production of MFCs is the time-consuming assembly [...] Read more.
Microbial Fuel Cells (MFCs) employ microbial electroactive species to convert chemical energy stored in organic matter, into electricity. The properties of MFCs have made the technology attractive for bioenergy production. However, a challenge to the mass production of MFCs is the time-consuming assembly process, which could perhaps be overcome using additive manufacturing (AM) processes. AM or 3D-printing has played an increasingly important role in advancing MFC technology, by substituting essential structural components with 3D-printed parts. This was precisely the line of work in the EVOBLISS project, which investigated materials that can be extruded from the EVOBOT platform for a monolithically printed MFC. The development of such inexpensive, eco-friendly, printable electrode material is described below. The electrode in examination (PTFE_FREE_AC), is a cathode made of alginate and activated carbon, and was tested against an off-the-shelf sintered carbon (AC_BLOCK) and a widely used activated carbon electrode (PTFE_AC). The results showed that the MFCs using PTFE_FREE_AC cathodes performed better compared to the PTFE_AC or AC_BLOCK, producing maximum power levels of 286 μW, 98 μW and 85 μW, respectively. In conclusion, this experiment demonstrated the development of an air-dried, extrudable (3D-printed) electrode material successfully incorporated in an MFC system and acting as a cathode electrode. Full article
Show Figures

Figure 1

20 pages, 1988 KiB  
Article
An Engineering Toolbox for the Evaluation of Metallic Flow Field Plates
by Uwe Reimer, Dieter Froning, Gert Nelissen, Leonard F. J. M. Raymakers, Shidong Zhang, Steven B. Beale and Werner Lehnert
ChemEngineering 2019, 3(4), 85; https://doi.org/10.3390/chemengineering3040085 - 11 Oct 2019
Cited by 6 | Viewed by 4136
Abstract
Metallic flow field plates, also called bipolar plates, are an important component of fuel cell stacks, electrolyzers, hydrogen purification and compression stacks. The manufacturing of these plates by means of stamping or hydroforming is highly suitable for mass production. In this work, a [...] Read more.
Metallic flow field plates, also called bipolar plates, are an important component of fuel cell stacks, electrolyzers, hydrogen purification and compression stacks. The manufacturing of these plates by means of stamping or hydroforming is highly suitable for mass production. In this work, a toolbox is created that is suitable for a screening process of different flow field design variants. For this purpose, the geometry and computational mesh are generated in an automated manner. Basic building blocks are combined using the open source software SALOME, and these allow for the construction of a large variant of serpentine-like flow field structures. These geometric variants are evaluated through computational fluid dynamics (CFD) simulations with the open source software OpenFOAM. The overall procedure allows for the screening of more than 100 variants within one week using a standard desktop computer. The performance of the flow fields is evaluated on the basis of two parameters: the overall pressure difference across the plate and the relative difference of the hydrogen concentration at the outlet of the channels. The results of such a screening first provide information about optimum channel geometry and the best choice of the general flow field layout. Such results are important at the beginning of the design process, as the channel geometry has an influence on the selection of the metal for deep drawing or hydroforming processes. Full article
(This article belongs to the Special Issue 2019 HYPOTHESIS XIV)
Show Figures

Graphical abstract

22 pages, 5091 KiB  
Article
Conceptual Design and Performance Optimization of a Tip Device for a Regional Turboprop Aircraft
by Ilias Lappas and Akira Ikenaga
Aerospace 2019, 6(10), 107; https://doi.org/10.3390/aerospace6100107 - 27 Sep 2019
Cited by 6 | Viewed by 9900
Abstract
An increasing number of aircraft is equipped with wing tip devices, which either are installed by the aircraft manufacturer at the production line or are retrofitted after the delivery of the aircraft to its operator. The installation of wing tip devices has not [...] Read more.
An increasing number of aircraft is equipped with wing tip devices, which either are installed by the aircraft manufacturer at the production line or are retrofitted after the delivery of the aircraft to its operator. The installation of wing tip devices has not been a popular choice for regional turboprop aircraft, and the novelty of the current study is to investigate the feasibility of retrofitting the British Aerospace (BAe) Jetstream 31 with an appropriate wing tip device (or winglet) to increase its cruise range performance, taking also into account the aerodynamic and structural impact of the implementation. An aircraft model has been developed, and the simulated optimal winglet design achieved a 2.38% increase of the maximum range by reducing the total drag by 1.19% at a mass penalty of 3.25%, as compared with the baseline aircraft configuration. Other designs were found to be more effective in reducing the total drag, but the structural reinforcement required for their implementation outweighed the achieved performance improvements. Since successful winglet retrofit programs for typical short to medium-range narrow-body aircraft report even more than 3% of block fuel improvements, undertaking the project of installing an optimal winglet design to the BAe Jetstream 31 should also consider a direct operating cost (DOC) assessment on top of the aerodynamic and structural aspects of the retrofit. Full article
Show Figures

Figure 1

23 pages, 11078 KiB  
Article
Life-Cycle and Energy Assessment of Automotive Component Manufacturing: The Dilemma Between Aluminum and Cast Iron
by Konstantinos Salonitis, Mark Jolly, Emanuele Pagone and Michail Papanikolaou
Energies 2019, 12(13), 2557; https://doi.org/10.3390/en12132557 - 3 Jul 2019
Cited by 55 | Viewed by 14977
Abstract
Considering the manufacturing of automotive components, there exists a dilemma around the substitution of traditional cast iron (CI) with lighter metals. Currently, aluminum alloys, being lighter compared to traditional materials, are considered as a more environmentally friendly solution. However, the energy required for [...] Read more.
Considering the manufacturing of automotive components, there exists a dilemma around the substitution of traditional cast iron (CI) with lighter metals. Currently, aluminum alloys, being lighter compared to traditional materials, are considered as a more environmentally friendly solution. However, the energy required for the extraction of the primary materials and manufacturing of components is usually not taken into account in this debate. In this study, an extensive literature review was performed to estimate the overall energy required for the manufacturing of an engine cylinder block using (a) cast iron and (b) aluminum alloys. Moreover, data from over 100 automotive companies, ranging from mining companies to consultancy firms, were collected in order to support the soundness of this investigation. The environmental impact of the manufacturing of engine blocks made of these materials is presented with respect to the energy burden; the “cradle-to-grave approach” was implemented to take into account the energy input of each stage of the component life cycle starting from the resource extraction and reaching to the end-of-life processing stage. Our results indicate that, although aluminum components contribute toward reduced fuel consumption during their use phase, the vehicle distance needed to be covered in order to compensate for the up-front energy consumption related to the primary material production and manufacturing phases is very high. Thus, the substitution of traditional materials with lightweight ones in the automotive industry should be very thoughtfully evaluated. Full article
(This article belongs to the Special Issue Energy Efficiency of Manufacturing Processes and Systems)
Show Figures

Figure 1

31 pages, 5907 KiB  
Review
Catalytic Transfer Hydrogenolysis Reactions for Lignin Valorization to Fuels and Chemicals
by Antigoni Margellou and Konstantinos S. Triantafyllidis
Catalysts 2019, 9(1), 43; https://doi.org/10.3390/catal9010043 - 4 Jan 2019
Cited by 61 | Viewed by 9993
Abstract
Lignocellulosic biomass is an abundant renewable source of chemicals and fuels. Lignin, one of biomass main structural components being widely available as by-product in the pulp and paper industry and in the process of second generation bioethanol, can provide phenolic and aromatic compounds [...] Read more.
Lignocellulosic biomass is an abundant renewable source of chemicals and fuels. Lignin, one of biomass main structural components being widely available as by-product in the pulp and paper industry and in the process of second generation bioethanol, can provide phenolic and aromatic compounds that can be utilized for the manufacture of a wide variety of polymers, fuels, and other high added value products. The effective depolymerisation of lignin into its primary building blocks remains a challenge with regard to conversion degree and monomers selectivity and stability. This review article focuses on the state of the art in the liquid phase reductive depolymerisation of lignin under relatively mild conditions via catalytic hydrogenolysis/hydrogenation reactions, discussing the effect of lignin type/origin, hydrogen donor solvents, and related transfer hydrogenation or reforming pathways, catalysts, and reaction conditions. Full article
(This article belongs to the Special Issue Solid Catalysts for the Upgrading of Renewable Sources)
Show Figures

Graphical abstract

14 pages, 1345 KiB  
Article
Oxidation of 5-Chloromethylfurfural (CMF) to 2,5-Diformylfuran (DFF)
by Ana I. Vicente, Jaime A. S. Coelho, Svilen P. Simeonov, Hristina I. Lazarova, Margarita D. Popova and Carlos A. M. Afonso
Molecules 2017, 22(2), 329; https://doi.org/10.3390/molecules22020329 - 20 Feb 2017
Cited by 12 | Viewed by 8418
Abstract
2,5-Diformylfuran (DFF) is an important biorenewable building block, namely for the manufacture of new polymers that may replace existing materials derived from limited fossil fuel resources. The current reported methods for the preparation of DFF are mainly derived from the oxidation of 5-hydroxymethylfurfural [...] Read more.
2,5-Diformylfuran (DFF) is an important biorenewable building block, namely for the manufacture of new polymers that may replace existing materials derived from limited fossil fuel resources. The current reported methods for the preparation of DFF are mainly derived from the oxidation of 5-hydroxymethylfurfural (HMF) and, to a lesser extent, directly from fructose. 5-Chloromethylfurfural (CMF) has been considered an alternative to HMF as an intermediate building block due to its advantages regarding stability, polarity, and availability from glucose and cellulose. The only reported method for the transformation of CMF to DFF is restricted to the use of DMSO as the solvent and oxidant. We envisioned that the transformation could be performed using more attractive conditions. To that end, we explored the oxidation of CMF to DFF by screening several oxidants such as H2O2, oxone, and pyridine N-oxide (PNO); different heating methods, namely thermal and microwave irradiation (MWI); and also flow conditions. The combination of PNO (4 equiv.) and Cu(OTf)2 (0.5 equiv.) in acetonitrile was identified as the best system, which lead to the formation of DFF in 54% yield under MWI for 5 min at 160 °C. Consequently, a range of different heterogeneous copper catalysts were tested, which allowed for catalyst reuse. Similar results were also observed under flow conditions using copper immobilized on silica under thermal heating at 160 °C for a residence time of 2.7 min. Finally, HMF and 5,5′-oxybis(5-methylene-2-furaldehyde) (OBMF) were the only byproducts identified under the reaction conditions studied. Full article
Show Figures

Figure 1

Back to TopTop