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Abstract: The utilisation of industrial residual products to develop new value-added materials
and reduce their environmental footprint is one of the critical challenges of science and industry.
Development of new multifunctional and bio-based composite materials is an excellent opportunity
for the effective utilisation of residual industrial products and a right step in the Green Deal’s direction
as approved by the European Commission. Keeping the various issues in mind, we describe the
manufacturing and characterisation of the three-component bio-based composites in this work. The
key components are a bio-based binder made of peat, devulcanised crumb rubber (DCR) from used
tyres, and part of the fly ash, i.e., the cenosphere (CS). The three-phase composites were prepared in
the form of a block to investigate their mechanical properties and density, and in the form of granules
for the determination of the sorption of water and oil products. We also investigated the properties’
dependence on the DCR and CS fraction. It was found that the maximum compression strength
(in block form) observed for the composition without CS and DCR addition was 79.3 MPa, while
the second-highest value of compression strength was 11.2 MPa for the composition with 27.3 wt.%
of CS. For compositions with a bio-binder content from 17.4 to 55.8 wt.%, and with DCR contents
ranging from 11.0 to 62.0 wt.%, the compressive strength was in the range from 1.1 to 2.0 MPa.
Liquid-sorption analysis (water and diesel) showed that the maximum saturation of liquids, in both
cases, was set after 35 min and ranged from 1.05 to 1.4 g·g −1 for water, and 0.77 to 1.25 g·g−1 for
diesel. It was observed that 90% of the maximum saturation with diesel fuel came after 10 min and
for water after 35 min.

Keywords: sustainable composites; crumb rubber; devulcanised crumb rubber; cenosphere; peat;
biocomposite; hybrid material; bio-binder; oil absorption

1. Introduction

In the modern world, human civilisation is suffering from many challenges, such as
an extensive increase in the generated waste stream by plastic-material pollution and, at
the same time, lacking new efficient (lightweight, recyclable, or decomposable, made of
biosourced or recycled raw materials) materials.

Among various waste materials, cenosphere (CS) is a low-density (0.25–0.55 g·cm−3) [1],
inert, nontoxic, nonflammable, powder-like material which is a part of fly ash. Cenospheres
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have emerged as beneficial additives for several applications with their hollow structure
and lightweight properties. These materials are primarily derived from coal fly ash, which
is a significant pollutant all over the world. Thus, the application of cenospheres in
composite-materials design contributes to a circular economy concept. Cenospheres have
been chosen as a component in previous works for their specific properties such as low
bulk density, high thermal resistance, good workability, and high strength [1]. Its addition
to composite materials helps make the material lightweight and improves absorption
and acoustic properties [2–5]. They may also impose some adverse effects on physical
properties such as reduced compressive strength and increased porosity [2,6]. A decision
on the trade-off between these various factors, such as lightweight, compressive strength,
cost-effectiveness, etc., is essential in developing the material with the desired properties.

Every year, millions of tyres are discarded across the world, representing a severe
threat to the ecology along with the fly ash. By the year 2030, up to 5000 million tyres could
be discarded regularly [7]. Discarded tyres often lead to “black pollution” because they have
a long life, are non-biodegradable, and pose a potential threat to the environment [8]. The
traditional waste-tyres management methods have been stockpiling, illegal dumping, or
landfilling, all of which are short-term solutions. The growing amount of scrap-tyre waste
has created a tremendous amount of waste being dumped which is not biodegradable.
As Europe is taking the lead in recycling efforts, their use as fuel in the steel industry,
cement industry, and incineration facilities is being promoted [9]. In the past, some efforts
have been made by developing composite from fly ash and waste-tyre powder [10], and
geopolymer from fly ash and waste tyre [11]. Alternatively, waste tyres are also being used
to create running tracks, playgrounds, artificial turf, railways, and in road building [12].
The utilisation of crumb rubber is also gaining attention by incorporation into concrete
and rubberised asphalt [13]. There is currently more drive in developing sustainable
biocomposite materials using fly ash and tyre waste involving other bio-based materials. A
biocomposite is a category of biocompatible and environmentally friendly composites that
are biopolymers consisting of natural fibres. Biocomposites are composed of a wide range of
organic and inorganic components such as natural and synthetic polymers, polysaccharides,
proteins, sugars, ceramics, metal particles, and hydrocarbon nanoparticles. Biocomposites
come in various forms such as films, membranes, coatings, fibres, and foams. There are
several examples of using peat/sapropel binders, such as sapropel concrete, birch-wood
fibre, sanding dust, and hemp shives, for composite materials [14,15]. These materials
may be in the form of blocks or pellets. Literature studies have shown the possibility of
using sapropel/peat as a raw material in ecological construction. They can be considered
promising materials for building materials and designing products [16,17].

Extensive research has been carried out to improve materials’ mechanical properties
and functionality and develop environmentally friendly composite materials [18–20]. Some
related attempts on the recent development of composites with improved performance
have been reported [21–24]. The use of bio-binders is essential for developing these
biocomposites [25]. Bio-binders, also called biopolymers, are compounds derived from
natural resources and are composed of monomer units covalently linked to form larger
structures [26,27]. An example of a bio-binder is natural fibres. Natural binders differ
in melt flow rate, impact properties, hardness, vapour permeability, and friction and
decomposition coefficient. The water absorption of the bio-binder will also vary depending
on the chemical composition of the bio-binder’s processing conditions [28]. The production
of bio-based polymers using renewable materials has gained significant attention in recent
decades because of the United Nation’s Sustainable Development Goals’ achievement.
Latvia and the Baltic region are extraordinarily rich in natural peat. One aim of the work is
to investigate the possibility of a new application of natural peat as a bio-binder for hybrid
composite materials.

Through this research, the authors introduce new biocomposite materials made of
two recycled materials: a cenosphere and a devulcanised crumb rubber, and a bio-sourced
binder made of natural peat. For the first time, this study proposes the use of crumb rubber
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along with cenosphere and a natural binder, peat, in developing a composite material.
These solutions are in line with the United Nations sustainable development goals by
fostering the conversion of waste materials into value-added products.

We describe here the utilisation of devulcanised crumb rubber (DCR), homogenised
peat (HP), and cenospheres (CS) for composite-material development with a bio-binder.
This research is aimed to answer the question about what effect the main component
DCRHP-CS content has on the composite material properties such as density, mechanical
properties, and the absorption of water and oil products.

2. Materials and Methods
2.1. Raw Materials and Compositions

For the manufacturing of sustainable composite material in two forms, blocks and
granules, a bio-binder made of HP, DCR, and CS was used. Three general compositions
with a CS content of 0.0, 5.0, and 10.0 wt.% in a wet mixture were used. For each com-
position, DCR amounts of 0.0, 5.0, 10.0, 15.0, 20.0, and 30.0 wt.% were chosen. Samples
designations and composition of the studied materials in blocks and granules are presented
in Tables 1 and 2. For the production of the specimen, the wt.% of HP in wet condition (sus-
pension with water content 85 wt.%) was used, but the real DCR, CS, and HP content after
drying is also represented in Tables 1 and 2 for an understanding of the entire composition
of the studied materials.

Table 1. The composition of block and granules in a raw mixture (wet) and after drying, by wt.% (part I).

Designation of the Composition

0–100–0 5–95–0 10–90–0 15–85–0 20–80–0 30–70–0 0–95–5 5–90–5 10–85–5 15–80–5 20–75–5 30–65–5

Wet mixture composition [wt.%]

DCR 0.0 5.0 10.0 15.0 20.0 30.0 0.0 5.0 10.0 15.0 20.0 30.0

HP 100 95.0 90.0 85.0 80.0 70.0 95.0 90.0 85.0 80.0 75.0 65.0

CS 0.0 0.0 0.0 0.0 0.0 0.0 5.0 5.0 5.0 5.0 5.0 5.0

Dried composite material formulation [wt.%]

DCR 0.0 27.3 44.2 55.8 64.1 75.4 0.0 22.1 37.2 48.1 56.3 68.0

HP 100 72.7 55.8 44.2 35.9 24.6 72.7 55.8 44.2 35.9 29.6 20.6

CS 0.0 0.0 0.0 0.0 0.0 0.0 27.3 22.1 18.6 16.0 14.1 11.3

Table 2. The composition of block and granules in a raw mixture (wet) and after drying, by wt.%
(part II).

Designation of the Composition

0–90–10 5–85–10 10–80–10 15–75–10 20–70–10 30–60–10

Wet mixture composition [wt.%]

DCR 0.0 5.0 10.0 15.0 20.0 30.0

HP 90.0 85.0 80.0 75.0 70.0 60.0

CS 10.0 10.0 10.0 10.0 10.0 10.0

Dried composite material formulation [wt.%]

DCR 0.0 18.6 32.1 42.3 50.3 62.0

HP 55.8 44.2 35.9 29.6 24.6 17.4

CS 44.2 37.2 32.1 28.2 25.1 20.7

For a better understanding, all the studied recipes are represented in a ternary com-
position diagram in Figure 1. Three groups of composition, classified by a cenosphere
(CS) content in the wet composition of 0, 5, and 10 wt.% correspond to the sample series
XX–XX–0, XX–XX–5, and XX–XX–10, respectively.
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through a hydrocavitation process for use as a bio-based binder. The raw peat (humidity 
65–70%) was mixed with water and processed in a high-speed multidisc mixer–disperser 
(HSMD) with cavitation effect for obtaining the homogeneous water–peat slurry with dry 
matter contents of 15 ± 1 wt.%. Raw peat agglomerates before, and peat particles (extracted 
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The rotation speed of the HSMD used in the experiments was 8500–9000 min−1, and 
the linear velocity of the working teeth was from 70 to 80 m·sec-1. Therefore, the cavitation 
conditions required for slurry homogenisation were ensured. The technological scheme 
and HSMD standard view are given in Figure 3. The treatment time by HSMD was 5 min, 
and 45 kg of the total amount of HP was used to ensure a homogenous sludge-like HP. 
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composition classified by CS content (XX–XX–0, XX–XX–5, and XX–XX–10) are indicated.

Natural peat (deposition Keizerpurvs, Cesis, Latvia) was preliminarily processed
through a hydrocavitation process for use as a bio-based binder. The raw peat (humidity
65–70%) was mixed with water and processed in a high-speed multidisc mixer–disperser
(HSMD) with cavitation effect for obtaining the homogeneous water–peat slurry with dry
matter contents of 15 ± 1 wt.%. Raw peat agglomerates before, and peat particles (extracted
from the suspension) after treatment by HSMD, are shown in Figure 2.
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Figure 2. Peat agglomerates (a) before and peat particles (b) after treatment by high-speed multidisc mixer–disperser
(HSMD).

The rotation speed of the HSMD used in the experiments was 8500–9000 min−1, and
the linear velocity of the working teeth was from 70 to 80 m·s−1. Therefore, the cavitation
conditions required for slurry homogenisation were ensured. The technological scheme
and HSMD standard view are given in Figure 3. The treatment time by HSMD was 5 min,
and 45 kg of the total amount of HP was used to ensure a homogenous sludge-like HP.

The CS used in the experiments were supplied by Biothecha Ltd. (Riga, Latvia).
Chemical composition of the CS is as follows: SiO2—53.8 ± 0.5%; Al2O3—40.7 ± 0.7%;
Fe2O3—1.0 ± 0.2%; CaO—1.4 ± 0.2%; MgO—0.6 ± 0.2%; Na2O—0.5 ± 0.1%; and K2O
0.4 ± 0.1%. Loss of ignition is 1.1 ± 0.1%. The grading composition is < 63 µm—1.70 wt.%,
63–75µm—3.86 wt.%, and 75–150—94.30 wt.%. CS average wall thickness is from 7 to 15 µm.
A detailed characterisation, including chemical analysis, particle size and morphology, has
been published in [2,3,29]. The common appearance of the CS is represented in Figure 4.
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cross-section ×200 times magnification (c).

The DCR used for current research is provided by company Rubber Products Ltd.
(Riga, Latvia). The DCR is produced using mechanochemical technology [30]. The man-
ufacturing process comprises the processing crumb rubber by grinding at 60–70 ◦C with
devulcanisation agent (urea) addition. The final product represents a sponge-like aggre-
gate of DCR (average devulcanised rubber contents—13.4 wt%). For the DCR milling
de-agglomeration, an impact-type disintegrator DESI-15 (Desintegraator Tootmise OÜ,
Estonia) at a rotation speed of 3000 min−1 was used. The DCR was milled in direct mode
five times (passes). For the present study, a 0.25–2.0 mm fraction was used (Figure 5). More
details about DCR milling, particle size distribution, and morphology are described by
Lapkovskis et al. [31].

For the production of the block, the components were manually mixed until homo-
geneous, then placed into plastic moulds of 140 × 180 × 20 mm3. Samples were dried at
room temperature for 20 days. After drying, all specimens were demoulded and left for
ambient drying for ten days. For removing any residual humidity, samples were dried at
105 ◦C for 48 h.
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For the granules, the components were manually mixed until homogeneous, then
placed in a rotary-drum granulator with a drum diameter of 950 mm and rotation speed
of 80 s−1. Samples were dried at room temperature for 2 days. To remove any residual
humidity, specimens were dried at 105 ◦C for 48 h. The standard production scheme of
composite blocks and granules is illustrated in Figure 6.
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2.2. Characterisation Methods
Liquid Adsorption

Determination of liquid (water and oil products) absorption was performed by im-
mersing specimens in the liquid and checking the weight at a specific interval. The
experiments were repeated five times for each composition/liquid, with a margin of error
relative to the mean for each experiment. The liquid absorption (W) is calculated according
to Equation (1):

W =
m1 − m0

m0
(1)

where
m1—the mass of the sample saturated with liquid, g;
m0—dry mass (before immersion) of the sample, g; and
W—liquid absorption g/g.
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2.3. Used Equipment and Measurement Devices

A high-speed multidisc mixer–disperser with cavitation effect (HSMD) [32–34] was used
for obtaining a homogeneous water–peat slurry with a dry-matter content of 15 ± 1 wt.%. The
moisture content was determined using a moisture analyser Kern MRS 120-3. Measurements
were repeated seven times using the standard deviation to determine the standard error from
the arithmetic mean. The Clatronic Multi Food Processor KM3350 (Clatronic GmbH, Kempen,
Germany) with stainless steel container and a rubber-coated anchor-type mixer was used for
the wet-mixture preparation at a rotation speed of 60 min−1.

For examining the specimens, a micro-optical inspection digital light microscope
Keyence VHX-1000 (Keyence Corp. Osaka, Japan) equipped with digital camera 54MPx
and VH-112 Z20R/Z20W lens, scanning electron microscopy (SEM)—field emission SEM
Tescan Mira/LMU (Dortmund, Germany), and optical microscopy were used.

3. Results
3.1. Morphology of the Obtained Biocomposite Block and Granules

The most characteristic differences of the obtained biocomposites morphology in the form
of block and granules are shown in Figure 7. The most significant difference in the appearance
of the obtained composites is noted for the block-shaped material with 0, 5, and 10 wt.% of
CS. The specimens containing 100 wt.% of HP (composition 0–100–0) were intensely cracked
after drying (Figure 7a), demonstrating a high shrinkage. This is attributed to the used HP
without any additive containing 85 wt.% of water. Detailed visual inspection of the cracked
specimen’s parts, using magnification X50 times (Figure 7d) shows a dense non-porous
structure with white, crystal-like inclusions—sand particles. After analysis in polarised
light, mainly quartz particles and an admixture of limestone were discovered, these being a
natural component of the Baltic-region peat. The addition of 5 wt.% of CS and/or 5 wt.% of
DCR strongly minimised the shrinkage and cracking. The typical appearance of the 0–95–5,
5–95–0, and 5–90–5 specimens is illustrated in Figure 7b. However, in comparison with
highly-loaded composition 20–70–10, its geometry differs from mould shape (Figure 7b,c).
Nevertheless, it is necessary to consider that the real content of fillers CS and DCR is
much higher (Table 1, Table 2) because the water loss from HP increases the CS and CDR
content in the composite. Specimens 0–95–5, 5–95–0, and 5–95–5 after drying have 0–72.7–
27.3, 27.3–72.7–0, and 22.1–55.8–22.1 CDR–HP–CR mass ratio (or weight %), respectively.
The shrinkage-ratio decrease has been reported by several works [2,35,36], mainly with a
ceramic matrix material where a high shrinkage is usually observed during the drying and
firing [2,37].

In contrasts with the block material, the 0-100-0 granules have no significant morpho-
logical differences with the other composition specimens (Figure 7g–i). All the manufac-
tured granules are characterised by a near-spherical shape and the particle-size distribution
for all composition was: 1–2 mm—7–15%, 2–6 mm—10–20, and 6–10 mm—60–70 wt.%.
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3.2. Mechanical Properties and Density of the Obtained Biocomposite Block and Granules

The obtained composites in the form of blocks were tested for compression strength
and apparent density. The results are represented in a combined diagram in Figure 8. It can
be seen that the highest compression strength of 79 MPa corresponds to the pure peat-based
bio-binder (0–100–0). The second-highest compression strength of 11 MPa corresponds
to the 0–100–5 composition with 5 wt.% of CS in the raw wet mixture or 27.3 wt.% in
the composite material after drying (Table 1). The observation of the parts of the cracked
specimens 0–100–5 (with 27.3 wt.% of CS) revealed a dense structure without cracks or
voids, the same as 0–100–0 (100 wt.% of HP, Figure 7d) specimens. A significant difference
in mechanical properties (79.3 and 11.1 MPa) could be explained by the presence of the
filler with lower mechanical properties than the quartz and limestone particles of the CS.
The introduction of 27.3 wt.% of the DCR leads to a decrease in the compression strength
to 7.6 MPa.
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In all the studied cases, an increase of the CDR in the composites leads to a significant
decrease of compression strength, up to 1.5 ± 0.4 MPa, but not less than 1.1 MPa (10–80–10
and 20–70–10).

By applying the determined physical–mechanical properties data of the obtained
samples to Ashby’s [38] compression strength and density summary diagram (Figure 9),
it can be concluded that the obtained material demonstrates a relatively low density and
relatively high strength, characteristic of biocomposites, which is one of the key aims of this
work. Pure bio-binder (0–100–0) composite material in units MPa—kg·m−3, is characterised
by such property combinations that it is located near to the three different types of materials
(metals, ceramics, and polymers), which is a unique properties combination and much
materials belong to such property’s combinations. Compositions 5–XX–XX and 10–XX–XX
with 5 and 10 wt.% of DCR content in wet mixture and units MPa—kg·m−3, belong to the
lower zone of the natural material area.
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3.3. Sorption of Liquids in the Structure of the Granulated Biocomposites

The obtained biocomposite granules were used for sorption of water and oil products
(diesel). Sorption kinetics were estimated for the developed biocomposite using diesel
fuel as a model compound, as demonstrated in Figures 10 and 11. All samples reached a
90% water-sorbent uptake capacity in 25–30 min, with maximal saturation after 35–45 min
Figure 10. All the samples’ series demonstrated a near 1.0 g·g−1 water-sorption-capacity
saturation. A 90% sorbent uptake capacity was noted for the diesel in a shorter time,
in 5–10 min, with a maximal saturation after 35–45 min Figure 11. The samples’ series
demonstrated from 1.0 to 1.5 g·g−1 diesel sorption capacity at equilibrium conditions. The
highest adsorption capacity was 1.5 g·g−1 for specimen 30–65–5, which corresponds to a
68.0–20.6–11.3 ratio of the dry composite components. It is necessary to admit that liquid’s
maximal saturation was for diesel, with maximal saturation reached within 3–5 min.



Polymers 2021, 13, 574 11 of 14

Polymers 2020, 12, x  10 of 13 

 

 
Figure 10. Water adsorption, in g/g for granules compositions series with 0 wt.% (15-85-0), 5 wt.% 
(15-80-5), and 10 wt.% (15-75-10) of CS. 

 
Figure 11. Diesel adsorption, in g/g for granules compositions series with 0 wt.% (15-85-0), 5 wt.% 
(15-85-5), and 10 wt.% (15-75-10) of CS. 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

0 5 10 15 20 25 30 35 40 45

W
at

er
 so

rp
tio

n,
 g/

g

Time, min

15-85-0

15-80-5

15-75-10

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

0 5 10 15 20 25 30 35 40 45

Di
es

el
 so

rp
tio

n,
 g/

g

Time, min

15-85-0

15-85-5

15-75-10

Figure 10. Water adsorption, in g/g for granules compositions series with 0 wt.% (15–85–0), 5 wt.% (15–80–5), and 10 wt.%
(15–75–10) of CS.
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Figure 11. Diesel adsorption, in g/g for granules compositions series with 0 wt.% (15–85–0), 5 wt.% (15–85–5), and 10 wt.%
(15–75–10) of CS.

Figure 12 illustrates the water and diesel uptake capacity, in g/g, for granules, and
it can be seen that for most cases (except 30–70–0, 5–90–5, 15–80–5, and 20–75–5), there
is greater sorption for water. For the composition series XX–XX–0 and XX–XX–10, the
water uptake is significantly higher than for diesel, from 10 to 50%, but for the XX–XX–5
series, there is no significant difference between the water and diesel uptake. However,
considering the sorption-capacity ratio from the mass ratio [g·g−1] of the sorbent mass to
the absorbed-liquid volume [cm3·g], the sorbent capacity for diesel is higher by 15%. The
diesel density was assumed as 0.85 g·cm−3.
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4. Conclusions

In the current research, a three-phase composite material containing homogenised
peat as a bio-binder for water and oil products was produced in the form of blocks and
granules for the first time. The obtained material in the form of a block was characterised
by the right combination of compressive strength and density.

The obtained granulated sorbent containing 68.0–20.6–11.3 of CDR HP and CS demon-
strated up to 1.5 g·g−1 maximal sorption capacity for diesel.

The composite material with CS content of 27.3 wt.% is characterised by the highest
value (except for the pure bio-binder) of compression strength of 11.2 MPa and at the
same time an apparent density of 0.75 g·cm−3. HP as a bio-binder and CS as a lightweight
filler could become a prospective material for designing lightweight bio-based structures.
Further investigations of CS content’s influence on the CS–HP biocomposite are foreseen
and usage for acoustic and thermal insulation to be explored.
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