Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (230)

Search Parameters:
Keywords = fruit tree resources

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3669 KiB  
Article
Functional Analysis of Malus halliana WRKY69 Transcription Factor (TF) Under Iron (Fe) Deficiency Stress
by Hongjia Luo, Wenqing Liu, Xiaoya Wang and Yanxiu Wang
Curr. Issues Mol. Biol. 2025, 47(7), 576; https://doi.org/10.3390/cimb47070576 - 21 Jul 2025
Viewed by 210
Abstract
Fe deficiency in apple trees can lead to leaf chlorosis and impede root development, resulting in significant alterations in signaling, metabolism, and genetic functions, which severely restricts fruit yield and quality. It is well established that WRKY transcription factors (TFs) are of vital [...] Read more.
Fe deficiency in apple trees can lead to leaf chlorosis and impede root development, resulting in significant alterations in signaling, metabolism, and genetic functions, which severely restricts fruit yield and quality. It is well established that WRKY transcription factors (TFs) are of vital significance in mediating plant responses to abiotic stress. Real-time quantitative fluorescence (RT-qPCR) analysis displayed that Fe deficiency stress can significantly induce WRKY69 TF gene expression. However, the potential mechanisms by which the WRKY69 gene involved in Fe deficiency stress remains to be investigated. To address this limitations, the WRKY69 gene (MD09G1235100) was successfully isolated from apple rootstock Malus halliana and performed both homologous and heterologous expression analyses in apple calli and tobacco to elucidate its functional role in response to Fe deficiency stress. The findings indicated that transgenic tobacco plants exhibited enhanced growth vigor and reduced chlorosis when subjected to Fe deficiency stress compared to the wild type (WT). Additionally, the apple calli that were overexpressed WRKY69 also exhibited superior growth and quality. Furthermore, the overexpression of the WRKY69 gene enhanced the ability of tobacco to Fe deficiency stress tolerance by stimulating the synthesis of photosynthetic pigments, increasing antioxidant enzyme activity, and facilitating Fe reduction. Additionally, it increased the resistance of apple calli to Fe deficiency stress by enhancing Fe reduction and elevating the activity of antioxidant enzymes. For example, under Fe deficiency stress, the proline (Pro) contents of the overexpression lines (OE-2, OE-5, OE-6) were 26.18 mg·g−1, 26.13 mg·g−1, and 26.27 mg·g−1, respectively, which were 16.98%, 16.76%, and 17.38% higher than the proline content of 22.38 mg·g−1 in the wild-type lines, respectively. To summarize, a functional analysis of tobacco plants and apple calli displayed that WRKY69 TF serves as a positive regulator under Fe deficiency stress, which provides candidate genetic resources for cultivating apple rootstocks or varieties with strong stress (Fe deficiency) resistance. Full article
Show Figures

Figure 1

20 pages, 3918 KiB  
Article
Crop Evapotranspiration Dynamics in Morocco’s Climate-Vulnerable Saiss Plain
by Abdellah Oumou, Ali Essahlaoui, Mohammed El Hafyani, Abdennabi Alitane, Narjisse Essahlaoui, Abdelali Khrabcha, Ann Van Griensven, Anton Van Rompaey and Anne Gobin
Remote Sens. 2025, 17(14), 2412; https://doi.org/10.3390/rs17142412 - 12 Jul 2025
Viewed by 662
Abstract
The Saiss plain in northern Morocco covers an area of 2300 km2 and is one of the main agricultural contributors to the national economy. However, climate change and water scarcity reduce the region’s agricultural yields. Conventional methods of estimating evapotranspiration (ET) provide [...] Read more.
The Saiss plain in northern Morocco covers an area of 2300 km2 and is one of the main agricultural contributors to the national economy. However, climate change and water scarcity reduce the region’s agricultural yields. Conventional methods of estimating evapotranspiration (ET) provide localized results but cannot capture regional-scale variations. This study aims to estimate the spatiotemporal evolution of daily crop ET (olives, fruit trees, cereals, and vegetables) across the Saiss plain. The METRIC model was adapted for the region using Landsat 8 data and was calibrated and validated using in situ flux tower measurements. The methodology employed an energy balance approach to calculate ET as a residual of net radiation, soil heat flux, and sensible heat flux by using hot and cold pixels for calibration. METRIC-ET ranged from 0.1 to 11 mm/day, demonstrating strong agreement with reference ET (R2 = 0.76, RMSE = 1, MAE = 0.78) and outperforming MODIS-ET in accuracy and spatial resolution. Olives and fruit trees showed higher ET values compared to vegetables and cereals. The results indicated a significant impact of ET on water availability, with spatiotemporal patterns being influenced by vegetation cover, climate, and water resources. This study could support the development of adaptive agricultural strategies. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

16 pages, 2702 KiB  
Article
Cytological Observation of Distant Hybridization Barrier and Preliminary Investigation of Hybrid Offspring in Tea Plants
by Xiaoli Mo, Yihao Wang, Yahui Huang, Zhen Zeng and Changyu Yan
Plants 2025, 14(13), 2061; https://doi.org/10.3390/plants14132061 - 5 Jul 2025
Viewed by 389
Abstract
The undertaking of distant hybridization holds paramount significance for the innovation of tea germplasm resources and the cultivation of superior, specialized tea varieties. However, challenges manifest during the process of tea plant distant hybridization breeding, with reproductive barriers impeding the successful acquisition of [...] Read more.
The undertaking of distant hybridization holds paramount significance for the innovation of tea germplasm resources and the cultivation of superior, specialized tea varieties. However, challenges manifest during the process of tea plant distant hybridization breeding, with reproductive barriers impeding the successful acquisition of hybrid progeny; the precise stages at which these barriers occur remain unclear. In this study, utilizing Camellia sinensis cv. Jinxuan as the maternal parent, as well as C. gymnogyna Chang and C. sinensis cv. Yinghong No.9 as the paternal parents, interspecific distant hybridization (DH) and intraspecific hybridization (IH) were conducted. The investigation involved the observation of pollen germination and pollen tube behavior on the stigma, the scrutiny of the developmental dynamics of the ovary post-hybridization, and the examination of the stages and reasons for reproductive disorders during tea tree distant hybridization. The findings indicate that both IH and DH exhibit pre-fertilization barriers. The pre-embryonic development of hybrids obtained from DH is normal, but there is a significant fruit drop during the stage of fruit development. The germination rate of mature seeds obtained from DH is low, and there are pronounced post-fertilization disorders, which are the primary reasons for the difficulty in achieving successful tea plant distant hybridization. An analysis of the genetic variation in phenotypes and chemical components in the progeny after distant hybridization revealed widespread variation and rich genetic diversity. The identification of progeny with a high amino acid and caffeine content holds promise for future production and breeding, providing valuable theoretical references for the selection of parents in the creation of low-caffeine-content tea germplasm resources. Full article
Show Figures

Figure 1

16 pages, 1512 KiB  
Article
Microsatellite Genotyping and Genetic Diversity of a Greek Pear (Pyrus communis L.) Germplasm Collection
by Eleftheria Deligiannidou, Anastasia Boutsika, Ioannis Plesias, Aliki Xanthopoulou, Theodoros Moysiadis, Ifigeneia Mellidou, Ioannis Manthos, Thomas Sotiropoulos and Ioannis Ganopoulos
Plants 2025, 14(12), 1816; https://doi.org/10.3390/plants14121816 - 13 Jun 2025
Viewed by 580
Abstract
Pear (Pyrus communis L.) is a widely cultivated fruit tree species, valued for its significant economic impact and cultural relevance. The rise in commercial cultivars, characterized by genetic uniformity and high yield, is increasingly displacing traditional landraces. However, traditional varieties are highly [...] Read more.
Pear (Pyrus communis L.) is a widely cultivated fruit tree species, valued for its significant economic impact and cultural relevance. The rise in commercial cultivars, characterized by genetic uniformity and high yield, is increasingly displacing traditional landraces. However, traditional varieties are highly adapted to local environmental conditions, having resulted from centuries of selection. In this study, 51 pear (Pyrus communis L.) accessions conserved in the Greek national germplasm collection were genotyped using eight SSR markers recommended by the European Cooperative Programme for Plant Genetic Resources (ECPGR). A total of 44 alleles were detected, including several private alleles, indicative of localized adaptation or potential genetic isolation. Analyses of population structure and genetic diversity, using Principal Coordinate Analysis (PCoA), UPGMA clustering, and Bayesian inference via STRUCTURE, uncovered distinct genetic groupings within the collection. The results revealed moderate genetic variability among the 51 accessions and identified some accessions with significant genetic divergence. These findings underscore the importance of conserving Greek pear germplasm, as it represents an ideal source of desirable traits, such as stress tolerance and fruit quality, which can be utilized in breeding programs. Full article
(This article belongs to the Special Issue Genetic Diversity and Population Structure of Plants)
Show Figures

Figure 1

27 pages, 9112 KiB  
Article
Impact of Urban Green Spaces on the Livelihoods of Residents in Bulawayo and Johannesburg Cities
by Shepard Nyamambi Maphosa, Sellina Ennie Nkosi and Yingisani Chabalala
Urban Sci. 2025, 9(6), 194; https://doi.org/10.3390/urbansci9060194 - 28 May 2025
Viewed by 1110
Abstract
Urban green spaces (UGSs) play a pivotal role in sustaining the livelihoods of urban dwellers. This study sought to explore the impact of UGSs on livelihoods in Bulawayo and Johannesburg cities. A mixed-methods approach was used to develop a nuanced understanding of the [...] Read more.
Urban green spaces (UGSs) play a pivotal role in sustaining the livelihoods of urban dwellers. This study sought to explore the impact of UGSs on livelihoods in Bulawayo and Johannesburg cities. A mixed-methods approach was used to develop a nuanced understanding of the nexus between UGSs and the livelihoods of the residents. A questionnaire survey (n = 658) with 329 participants from each city and 20 interviews were used to gather and generate data. Twelve types of UGSs were identified, with a relatively large proportion of the participants recognizing informal recreational areas as the common type of urban green space (UGS) in both cities. Domestic gardens, cemeteries, parks, woodlands, institutional green spaces, street trees, wastelands, commonages, and green roofs were other green spaces in both cities. Economically, job opportunities emerged in areas such as selling wares, photography, and the collection of firewood and wild fruits for sale. Likewise, farming activities and property values increased. Socially, they were valuable recreation and leisure spots for picnicking, dog walking, dating escapades, mental and spiritual wellness as well as education. Environmentally, UGSs were special in terms of medicinal provisions and aesthetics. However, urbanization and encroachment are undermining the extent of livelihood benefits. Therefore, it is imperative to revitalize UGSs by instituting robust partnerships and collaboration between government agencies, mobilize resources and expertise, value addition to existing UGSs, rigorous education to promote better appreciation, inclusion of the locals in the design process so that green spaces meet their needs and priorities, and establishing effective maintenance and management systems that ensure sustainability of UGSs. Full article
Show Figures

Figure 1

16 pages, 2452 KiB  
Article
Impact of Deficit Irrigation During Pre-Ripening Stages on Jujube (Ziziphus jujube Mill.‘Jing39’) Fruit-Soluble Solids Content and Cracking
by Yang Wu, Zhi Zhao, Yuping Zhang, Dongye Lu and Qinghua Pan
Horticulturae 2025, 11(5), 461; https://doi.org/10.3390/horticulturae11050461 - 25 Apr 2025
Viewed by 419
Abstract
A field experiment was conducted in 2023 and 2024 in Beijing, China, to investigate effects of soil water stress, applied before the fruit ripening stage, on the fruit total soluble solid accumulation and cracking of jujube trees. The experiment consisted of two variation [...] Read more.
A field experiment was conducted in 2023 and 2024 in Beijing, China, to investigate effects of soil water stress, applied before the fruit ripening stage, on the fruit total soluble solid accumulation and cracking of jujube trees. The experiment consisted of two variation factors: (a) irrigation levels (MDI and SDI, applied 80% and 50% of the irrigation volume, respectively) and (b) growth stages (stage 1, before the fruit enlargement stage, and 2, before the fruit ripening stage). The two irrigation levels were applied at each growth stage in a 2 × 2 factorial arrangement, plus a control treatment receiving 100% irrigation volume, resulting in five treatments per replicate. The findings indicated that pre-enlargement stage water stress enhanced the accumulation of total soluble solid content within fruits, which subsequently promoted faster fruit growth in from the early- to mid-August period. However, by late August, both the total soluble solid content and fruit growth rates had declined, thereby mitigating the risk of fruit cracking. During the fruit enlargement stage, the fruit total soluble solid content in SDI-2 increased by approximately 24% by the end of August compared to the control, leading to lower osmotic potential and higher turgor pressure during the following ripening stage. As skin growth ceased, high turgor pressure caused fruit cracking at the following ripening stage. The SDI-2 treatment demonstrated a fruit cracking rate approximately 1.5 times higher than that of the control. Pearson correlation analysis also indicated that fruit cracking was positively correlated with total soluble solids accumulated in August. Meanwhile, the yield of SDI-2 was reduced about 18%. Therefore, the adequate soil moisture during the fruit enlargement stage was crucial to minimize jujube fruit cracking and economic losses. Meanwhile, the deficit irrigation applied during the pre-enlargement stage could effectively conserve water resources and mitigate the occurrence of extensive jujube fruit cracking. Full article
(This article belongs to the Special Issue Orchard Management: Strategies for Yield and Quality)
Show Figures

Figure 1

15 pages, 3115 KiB  
Article
Spatial–Temporal Distribution Characteristics of the Water Footprint and Water-Saving Potential of Fruit Trees in Tarim River Basin
by Xinyuan Lin, Yan Chen, Zheng He, Minghua Li, Baoxia Ci, Yang Liu, Xin Zhang and Fuyu Ma
Water 2025, 17(8), 1158; https://doi.org/10.3390/w17081158 - 13 Apr 2025
Viewed by 381
Abstract
It is of great significance to optimize water resource management and promote sustainable development in the Tarim River Basin (TRB) by using the water footprint (WF) evaluation method to evaluate the water shortage of fruit trees in the TRB and analyse its water-saving [...] Read more.
It is of great significance to optimize water resource management and promote sustainable development in the Tarim River Basin (TRB) by using the water footprint (WF) evaluation method to evaluate the water shortage of fruit trees in the TRB and analyse its water-saving potential. This study aimed to elucidate the WF spatial–temporal distribution characteristics of fruit trees in the water-limited TRB from 2000 to 2020 and evaluate their water-saving potential capability. The WF was calculated using a combination of irrigation technology simulation and water usage assessments for four different fruit trees (apple, pear, date, and walnut). The results indicate that the green WF (WFgreen) initially increased and then decreased, reaching its lowest value of only 175.09 m3/t in 2020, and decreased by 22.71% from 2000 to 2020. WFblue decreased by 47.13% over the same period. In 2020, the WFblue of date and walnut accounted for a higher percentage of WFblue. WFblue significantly exceeded WFgreen, indicating their high water consumption and the limited adoption of water-saving technologies in the study area. Due to the increase in fruit tree planting area and fertilization, WFgrey exhibited an overall upward trend. Meanwhile, the total WF (WFtotal) indicated a general downward trend, though the walnut tree had the highest WFtotal at 2.21 × 105 m3/t, indicating the popularization of water-saving technology. The results show that, taking 2020 as the baseline, the WFblue of the four fruit trees in the TRB was 2.64 × 105 m3/t (accounting for 89.1%), total WFblue decreased by 0.73 × 105 m3/t (a decrease of 48.38%) after drip irrigation, and the water-saving potential in the five prefectures of the TRB was in the range of 38.55–56.18%. Therefore, the promotion of drip irrigation technology plays a key role in alleviating the water pressure of fruit trees and promoting the sustainable utilization of water resources in the TRB. Full article
(This article belongs to the Special Issue Water Footprint and Energy Sustainability)
Show Figures

Figure 1

22 pages, 2301 KiB  
Article
Integration of Organic Amendments and Weed Management to Improve Young Citrus Tree Growth Under HLB-Endemic Conditions
by Ankit Pokhrel, Ramdas Kanissery, Sarah L. Strauss and Ute Albrecht
Agronomy 2025, 15(4), 772; https://doi.org/10.3390/agronomy15040772 - 21 Mar 2025
Viewed by 680
Abstract
Florida citrus production has declined by over 90% since the bacterial disease huanglongbing (HLB) was found in the state. In the absence of an effective cure, growers are adopting more frequent fertilization and irrigation practices to improve tree health and prolong the life [...] Read more.
Florida citrus production has declined by over 90% since the bacterial disease huanglongbing (HLB) was found in the state. In the absence of an effective cure, growers are adopting more frequent fertilization and irrigation practices to improve tree health and prolong the life span of their orchards. However, Florida’s soils under citrus production are sandy, with little organic matter, a low water holding capacity, and a low cation exchange capacity (CEC), rendering them prone to nutrient leaching. Organic amendments can be used to improve soil health and the environment for citrus roots, but may promote a higher incidence of weeds competing with trees for water and nutrients. A large field trial was established in a commercial citrus orchard in southwest Florida to evaluate the effects of organic amendments and weed management on young tree growth. The organic amendment treatments were as follows: (1) plant-based compost, (2) humic acid, and (3) a non-amended control. The weed management (herbicide) treatments were (1) glyphosate, (2) glufosinate, (3) flumioxazin, and (4) a maintenance herbicide control. Trees were planted in August 2019, and treatments began in 2021. Tree growth and physiological variables and soil physicochemical properties were evaluated during the two-year study. Compost-amended plots had a higher volumetric water content throughout the experiment, and soil nutrient content, organic matter, CEC, and pH were higher after two years of application. Humic acid amendments were less effective in altering these soil properties. Compost’s effects on tree and fibrous root physiology were moderate, and tree growth, fruit yield and fruit quality were not affected by either organic amendment. In contrast, the use of post-emergent herbicides (glyphosate and glufosinate) improved tree growth and nutrient uptake. The results suggest that in Florida, the use of organic amendments needs to be integrated with weed management to prevent resource competition. In the short term, these practices did not improve the productivity of the trees in the current Florida production environment. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

16 pages, 2507 KiB  
Article
The Yield Estimation of Apple Trees Based on the Best Combination of Hyperspectral Sensitive Wavelengths Algorithm
by Anran Qin, Jiarui Sun, Xicun Zhu, Meixuan Li, Cheng Li, Ling Wang, Xinyang Yu and Yuanmao Jiang
Sustainability 2025, 17(2), 518; https://doi.org/10.3390/su17020518 - 10 Jan 2025
Viewed by 943
Abstract
Agriculture’s sustainable growth necessitates the application of advanced science and technology to ensure the sensible use of resources and improve the agricultural economy’s long-term stability. In this study, apple trees were employed as research objects throughout the spring (NSS) and autumn shoot stop-growing [...] Read more.
Agriculture’s sustainable growth necessitates the application of advanced science and technology to ensure the sensible use of resources and improve the agricultural economy’s long-term stability. In this study, apple trees were employed as research objects throughout the spring (NSS) and autumn shoot stop-growing stage (ASS), and the data source was canopy hyperspectral data of fruit trees collected using ASD near-earth sensors, which was then combined with multiple sensitive wavelength screening algorithms and machine learning models to create an efficient and accurate apple yield estimation system. This is critical for guiding fruit farmers’ production, maintaining market supply and demand balances, fostering stable agricultural economy development, and providing a scientific basis and technical support for agricultural sustainability. Firstly, the fruit tree canopy hyperspectral data and apple tree yield data were collected, and the Savitsky–Golay convolution smoothing method (SG) was used to preprocess the canopy hyperspectral data. Secondly, six algorithms—Competitive Adaptive Re-weighting Sampling (CARS), Genetic Algorithm (GA), Successive Projections Algorithm (SPA), Uninformative Variable Elimination Algorithm (UVE), Variable Iteration Spatial Shrinking Algorithm (VISSA), and Variable Combination Population Algorithm (VCPA)—were employed to screen for the sensitive wavelengths related to apple tree yield, then preferring three methods for two-by-two combinations to determine the optimal algorithm combinations. Finally, using the best algorithm combinations, we built the apple yield linear model partial least squares regression (PLSR) and three machine learning models, Random Forest (RF), Cubist, and XGBoost, to screen for the best estimation model. The results demonstrated that ASS was the best fertility period for estimating yield; the validation set of the model constructed using each algorithm in ASS had a higher R2 of 0.05–0.51 and a lower RMSE of 0.21–5.33 than those in NSS. The three algorithms preferred were CARS, GA, and VISSA. After combining the three algorithms in two combinations, the best combination of VISSA-CARS was found. The RF model established based on the best VISSA-CARS combination algorithm is the best model for apple yield estimation, with a validation set R2 = 0.78 and RMSE = 6.03. The findings of this study may provide a new concept for accurately and quickly estimating apple yield, allowing fruit growers to improve production efficiency and promote agricultural sustainability. Full article
Show Figures

Figure 1

20 pages, 1690 KiB  
Article
From Waste to Value: Optimization of Ultrasound-Assisted Extraction of Anthocyanins and Flavonols from Pistacia lentiscus L. Oilcakes
by Lucrezia Muti, Luana Beatriz dos Santos Nascimento, Giulia Goracci, Cassandra Detti, Cecilia Brunetti, Anna Rita Bilia, Francesco Ferrini and Antonella Gori
Molecules 2025, 30(2), 237; https://doi.org/10.3390/molecules30020237 - 9 Jan 2025
Cited by 3 | Viewed by 1363 | Correction
Abstract
Pistacia lentiscus L., commonly known as the mastic tree or lentisk, is a woody Mediterranean plant revered for its ecological relevance as well as for its extensive ethnobotanical heritage. Historically, the fruits and the resin of P. lentiscus have been widely utilized in [...] Read more.
Pistacia lentiscus L., commonly known as the mastic tree or lentisk, is a woody Mediterranean plant revered for its ecological relevance as well as for its extensive ethnobotanical heritage. Historically, the fruits and the resin of P. lentiscus have been widely utilized in traditional medicine, underscoring its important role in local healing practices. Given these properties, this study explored an innovative approach to efficiently extract anthocyanins and flavonols from P. lentiscus oilcakes utilizing ultrasound-assisted extraction (UAE) as an alternative to conventional solvent extraction. Liquid chromatography–mass spectrometry (LC-MS) and high-performance liquid chromatography with diode-array detection (HPLC-DAD) were used to identify and quantify the anthocyanins and flavonols, revealing the successful extraction of eight distinct anthocyanins and twenty flavonols. A Fractional Factorial Design (FFD) followed by a Box–Behnken design (BBD) were applied to optimize the yield of anthocyanins and flavonols. The optimal extraction conditions found were to be an extraction time of 15 min with 70% ethanol as the solvent and a liquid-to-solid ratio of 0.012 L g−1, which resulted in a maximum extraction yield of 19.78 mg g−1 dry extract for the Total Flavonol Content and over 25.4 mg g−1 dry extract for the Total Flavonol and Anthocyanin Content. By elucidating the optimal conditions for extracting anthocyanins and flavonol glycosides, this study opens promising avenues for utilizing P. lentiscus oilcake by-products, supporting sustainable practices, and advancing the valorization of Mediterranean bio-resources for health-promoting applications. Full article
Show Figures

Figure 1

26 pages, 36210 KiB  
Article
Estimation of Anthocyanins in Apple Leaves Based on Ground Hyperspectral Imaging and Machine Learning Models
by Yu Zhang, Mi Zou, Yanjun Li, Qingrui Chang, Xing Chen, Zhiyong Dai and Weihao Yuan
Agronomy 2025, 15(1), 140; https://doi.org/10.3390/agronomy15010140 - 8 Jan 2025
Cited by 1 | Viewed by 1068
Abstract
The anthocyanins in apple leaves can indicate their growth status, and the health of apple leaves not only reveals the nutritional supply of the apple tree but also reflects the quality of the fruit. Therefore, real-time monitoring of anthocyanins in apple leaves can [...] Read more.
The anthocyanins in apple leaves can indicate their growth status, and the health of apple leaves not only reveals the nutritional supply of the apple tree but also reflects the quality of the fruit. Therefore, real-time monitoring of anthocyanins in apple leaves can monitor apple growth, thereby promoting the development of the apple industry. This study utilizes ground hyperspectral imaging to estimate anthocyanins in Fuji apple leaves in the Loess Plateau through spectral transformation, feature extraction (including band selection and spectral indices construction), and regression algorithm selection, establishing models for three growth stages. The results indicate: (1) The average anthocyanins in apple leaves decrease from the Final Flowering stage to the Fruit Enlargement stage. The original hyperspectral imaging at wavelengths before 720 nm shows a decrease in reflectance as the growth stages progress, while the spectral curves after 720 nm remain largely consistent across stages; (2) Compared to single original spectral variables, multivariate estimation models using original spectra and second-order derivative transformed spectra show improved accuracy for anthocyanins estimation across different growth stages, with the most significant improvement during the Fruit Enlargement stage; (3) Although the computation of the three-band spectral indices is resource-intensive and time-consuming, it can enhance anthocyanins estimation accuracy; (4) Among all models, the CatBoost model based on original spectra and second-order derivative transformed spectra indices for the entire growth period achieved the highest accuracy, with a validation set R2 of 0.934 and a RPD of 3.888, and produced effective leaf anthocyanins inversion maps. In summary, this study achieves accurate estimation and visualization of anthocyanins in apple leaves across different growth stages, enabling rapid, accurate, and real-time monitoring of apple growth. It provides theoretical guidance and technical support for apple production and fertilization management. Full article
(This article belongs to the Special Issue Remote Sensing in Smart Agriculture)
Show Figures

Figure 1

19 pages, 1000 KiB  
Article
Effect of Deficit Irrigation on Agronomic and Physiological Performance of Pomegranate (Punica granatum L.)
by Rossana Porras-Jorge, José Mariano Aguilar, Carlos Baixauli, Julián Bartual, Bernardo Pascual and Nuria Pascual-Seva
Plants 2025, 14(2), 164; https://doi.org/10.3390/plants14020164 - 8 Jan 2025
Cited by 3 | Viewed by 1508
Abstract
Abstract: Agriculture accounts for over 70% of global freshwater consumption, with increasing competition for water resources due to climate change and rising urban and industrial demands. This study analyzes the effect of deficit irrigation (DI) on the agronomic and physiological performance of pomegranate [...] Read more.
Abstract: Agriculture accounts for over 70% of global freshwater consumption, with increasing competition for water resources due to climate change and rising urban and industrial demands. This study analyzes the effect of deficit irrigation (DI) on the agronomic and physiological performance of pomegranate (Punica granatum L.) in a Mediterranean climate. Deficit irrigation strategies, including sustained deficit irrigation (SDI) and regulated deficit irrigation (RDI), were evaluated against a control with full irrigation. The research was conducted over two growing seasons (2022–2023) at the Cajamar Experimental Centre in Paiporta, Valencia, Spain. RDI strategies achieved approximately 10% water savings without compromising marketable yield or fruit weight, while SDI resulted in significant water savings (~50%) but with a notable reduction in marketable yield, particularly in hot and dry conditions. SDI also reduced tree growth in height and trunk diameter compared to RDI and control strategies. The study concludes that RDI is a viable irrigation strategy for pomegranate cultivation under water-limited conditions, whereas SDI should be reserved for situations of severe water scarcity. Full article
(This article belongs to the Special Issue Strategies to Improve Water-Use Efficiency in Plant Production)
Show Figures

Graphical abstract

16 pages, 2354 KiB  
Review
Why Olive Produces Many More Flowers than Fruit—A Critical Analysis
by Julián Cuevas
Horticulturae 2025, 11(1), 26; https://doi.org/10.3390/horticulturae11010026 - 2 Jan 2025
Viewed by 1957
Abstract
Olive (Olea europaea L.) trees produce many more flowers than fruit. In an “on” year, an adult olive tree may produce as many as 500,000 flowers, but 98% of them will drop soon after bloom as unfertilized flowers or juvenile fruit. This [...] Read more.
Olive (Olea europaea L.) trees produce many more flowers than fruit. In an “on” year, an adult olive tree may produce as many as 500,000 flowers, but 98% of them will drop soon after bloom as unfertilized flowers or juvenile fruit. This waste of resources that could be better invested in fruit reaching maturation requires an explanation. Several, not mutually exclusive, hypotheses explaining the possible significance of heavy flowering followed by massive and premature flower and fruit abscission are analyzed and compared based on previously published works and recent observations on olive reproductive biology. The results suggest that olive trees selectively abort fruits to enhance the quality of the seeds in the surviving fruits. Additionally, a considerable proportion of flowers appears to contribute to the male fitness of the plant by increasing pollen export. Conversely, the hypotheses attributing to resource limitation, pollination deficits, pollinator attraction, or extra flowers functioning as an ovary reserve, must be rejected for explaining the ultimate functions of massive flower production. Implications for olive orchard management are discussed. Full article
(This article belongs to the Special Issue Advances in Developmental Biology in Tree Fruit and Nut Crops)
Show Figures

Figure 1

18 pages, 3170 KiB  
Article
Aroma Analysis of Table Grape Berries Based on Electronic Nose Detection
by Shengyang Niu, Xuewei Liu, Meiling Lin, Xiucai Fan, Ying Zhang, Lei Sun, Chonghuai Liu and Jianfu Jiang
Agronomy 2025, 15(1), 104; https://doi.org/10.3390/agronomy15010104 - 1 Jan 2025
Cited by 1 | Viewed by 1210
Abstract
In this study, the aroma of 182 table grapes was detected using a PEN3.5 electronic nose in order to explore the aroma components of table grape berries and provide a reference for aroma evaluation and quality improvements. Table grape varieties from the Zhengzhou [...] Read more.
In this study, the aroma of 182 table grapes was detected using a PEN3.5 electronic nose in order to explore the aroma components of table grape berries and provide a reference for aroma evaluation and quality improvements. Table grape varieties from the Zhengzhou Fruit Research Institute of the Chinese Academy of Agricultural Sciences were used as research materials. All of them were harvested in fruit trees over 10 years old from August to October 2023, which provided a reference for aroma evaluation and quality improvement of the table grapes. Radar analysis, correlation analysis, principal component (PCA) analysis, cluster analysis, and difference analysis were used to study these aroma substances. The results show that the sensor contribution rate from high to low is W5S (nitrogen oxides), W2S (alcohols and some aromatic compounds), W1S (alkanes), and W2W (sensor contribution rate from high to low). Cluster analysis can distinguish the varieties of table grapes a with common aroma content, and the varieties with a higher content are in the second category (II). PCA showed that the contribution rate of the first and second principal components of the three main sensors was 97.6% and 2.3%, respectively, and the total contribution value was 99.9%. The contribution rates of the first and second principal components of the three aromatic sensors are 79.5% and 15.9%, respectively, and the total contribution value is 95.4%. The results showed that there were significant differences in the content and composition of aroma substances in different grape varieties. Eight special germplasm with strong aroma (organic compounds of nitrogen oxides, alcohols, alkanes and sulfur) were selected: ‘Spabang’, ‘Neijingxiang’, ‘Zaotian Muscat’, ‘Jinmeigui’, ‘Zhengguo 6’, ‘Muscat Angel’, ‘Zizao’, and ‘Qiumi’. This study confirmed that electronic nose technology can effectively distinguish different varieties of table grapes. This study not only provides a scientific basis for the variety selection for the table grape processing industry, but it can also be used for male or female grape hybridization, which provides valuable data resources for table grape breeding. Full article
(This article belongs to the Special Issue Postharvest Physiology of Fruits and Vegetables—2nd Edition)
Show Figures

Figure 1

13 pages, 928 KiB  
Article
A Conceptual Framework for the Apibotanical Evaluation of Different Landscapes
by Rosana Díaz, Silvina Niell, María Verónica Cesio and Horacio Heinzen
Ecologies 2025, 6(1), 3; https://doi.org/10.3390/ecologies6010003 - 30 Dec 2024
Viewed by 834
Abstract
The suitability of different agroecosystems (native forest, soybean, artificial forest with Eucalyptus sp., mixed horticulture and fruticulture, and dairy prairies) for settling and managing hives for honey production were appraised via holistic surveys of the spatial and seasonal occurrence of floral resources. Metadata [...] Read more.
The suitability of different agroecosystems (native forest, soybean, artificial forest with Eucalyptus sp., mixed horticulture and fruticulture, and dairy prairies) for settling and managing hives for honey production were appraised via holistic surveys of the spatial and seasonal occurrence of floral resources. Metadata were obtained from a project developed by our group, which took place between 2014 and 2017. Species richness, abundance, growth habit (tree, shrub, stand, scrub or stem, accompanying species), and the flowering period for each melliferous plant across the different seasons in 120 samples were measured. Using the Shannon–Wiener diversity index and the floral characteristics of the different species in each environment, an Agroecosystem Apibotanical Index was developed. It revealed that the best agroecosystems for honey production were the most biodiverse native forest as well as mixed horticulture and fruit culture. Knowledge of the floral characteristics and species arrangement enabled the categorization of agroecosystems, aiming for rational management to enhance honey production. Full article
Show Figures

Figure 1

Back to TopTop