Microsatellite Genotyping and Genetic Diversity of a Greek Pear (Pyrus communis L.) Germplasm Collection
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and DNA Extraction
2.2. Microsatellite Genotyping
2.3. Data Analysis
3. Results
4. Discussion
Publication | Pear Accessions | Pear Species | Number of Accessions | Number of SSR Markers | Total Number of Alleles | Na | Ne | He |
---|---|---|---|---|---|---|---|---|
[11] | Portuguese pear landraces | P. communis | 88 | 8 | 216 | 27 | - | 0.88 |
[18] | Local Pear Cultivars (Aragon, Northeastern Spain) | P. communis, P. spinosa | 108 | 9 | 162 | 18.11 | 8.45 | 0.83 |
[20] | Pear cultivars in Central Europe | P. communis | 94 | 10 | 84 | 10.5 | - | 0.78 |
[22] | European pear (Bosnia and Herzegovina) | P. communis | 64 | 13 | 159 | 14.5 | - | - |
[23] | Chinese National Pear Germplasm Repository (Wuhan) | P. communis | 54 | 6 | 68 | 11.3 | 5.8 | 0.806 |
[24] | Pear collections | P. communis | 130 | 11 | 129 | 11.7 | 5.8 | 0.79 |
[25] | Sardinian pears | P. spp. | 19 | 21 | - | - | - | 0.3 |
[26] | “Zangli” pear landraces (Tibet) | P. spp. | 67 | 28 | 202 | 7.21 | 4.07 | 0.72 |
[27] | Pear germplasm collection (Tunisia) | P. pyrifolia, P. pashia | 478 | 17 | 121 | 7.12 | 6.36 | 0.78 |
[28] | Chinese National Germplasm Repository of Pear (Xingcheng, China) | P. spp. | 131 | 17 | 377 | 22.17 | 7.77 | 0.86 |
[29] | Pear cultivars (Minas Gerais State, Brazil) | P. spp. | 61 | 12 | 95 | 9.5 | 3.3 | 0.62 |
[30] | Collection of European pear cultivars | P. communis | 252 | 14 | 251 | 17.93 | 6.83 | 0.82 |
[63] | Portuguese pear germplasm | P. spp. | 385 | 134 | 690 | 5.45 | - | 0.74 |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simmonds, N.W. Origin and Geography of Cultivated Plants, by N. I. Vavilov. Xxxi + 498 pp. Cambridge: Cambridge University Press (1993). J. Agric. Sci. 1993, 120, 419–420. [Google Scholar] [CrossRef]
- Hancock, J.F.; Lobos, G.A. Pears. In Temperate Fruit Crop Breeding; Hancock, J.F., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 299–336. [Google Scholar] [CrossRef]
- Draga, S.; Palumbo, F.; Barbagiovanni, I.M.; Pati, F.; Barcaccia, G. Management of Genetic Erosion: The (Successful) Case Study of the Pear (Pyrus communis L.) Germplasm of the Lazio Region (Italy). Front. Plant Sci. 2023, 13, 1099420. [Google Scholar] [CrossRef]
- Pérez-Sánchez, R.; Morales-Corts, M.R. Agromorphological and Chemical Characterization of Pear Cultivars Grown in Central–West Iberian Peninsula. Agronomy 2023, 13, 2993. [Google Scholar] [CrossRef]
- Pang, X.; Jia, M.; Zhang, Y.; Chen, M.; Miao, P.; Cheng, W.; Zhou, Z.; Zhang, Q.; Ye, J.; Li, J.; et al. Dynamic Interplay between Soil Microbial Communities, Enzyme Activities, and Pear Quality across Planting Years. Front. Microbiomes 2024, 3, 1381270. [Google Scholar] [CrossRef]
- Waite, J.M.; Gottschalk, C.; Reinhold, L.A.; Bassil, N.V.; Volk, G.M.; Postman, J.D.; Elkins, R.B.; Bell, R.L. Vulnerability of Pear (Pyrus) Genetic Resources in the U.S. Genet. Resour. Crop Evol. 2024, 72, 815–843. [Google Scholar] [CrossRef]
- Ganopoulos, I.V.; Kazantzis, K.; Chatzicharisis, I.; Karayiannis, I.; Tsaftaris, A.S. Genetic Diversity, Structure and Fruit Trait Associations in Greek Sweet Cherry Cultivars Using Microsatellite Based (SSR/ISSR) and Morpho-Physiological Markers. Euphytica 2011, 181, 237–251. [Google Scholar] [CrossRef]
- Velázquez-Barrera, M.E.; Ramos-Cabrer, A.M.; Pereira-Lorenzo, S.; Ríos-Mesa, D.J. Genetic Pool of the Cultivated Pear Tree (Pyrus spp.) in the Canary Islands (Spain), Studied Using SSR Molecular Markers. Agronomy 2022, 12, 1711. [Google Scholar] [CrossRef]
- Ferradini, N.; Lancioni, H.; Torricelli, R.; Russi, L.; Dalla Ragione, I.; Cardinali, I.; Marconi, G.; Gramaccia, M.; Concezzi, L.; Achilli, A.; et al. Characterization and Phylogenetic Analysis of Ancient Italian Landraces of Pear. Front. Plant Sci. 2017, 8, 751. [Google Scholar] [CrossRef]
- Labuschagne, I.; Musacchi, S.; Nyéki, J.; Szabó, Z.; Szabó, T. The Hungarian Pear Germplasm (Pyrus communis) as Source of Genetic Variability for Breeding Programs. Acta Hortic. 2011, 909, 89–95. [Google Scholar] [CrossRef]
- Kocsisné, G.M.; Bolla, D.; Ulrike; Forneck, A.; Taller, J.; Kocsis, L. Genetic Diversity and Similarity of Pear (Pyrus communis L.) Cultivars in Central Europe Revealed by SSR Markers. Genet. Resour. Crop Evol. 2020, 67, 1755–1763. [Google Scholar] [CrossRef]
- Erfani, J.; Ebadi, A.; Abdollahi, H.; Fatahi, R. Genetic Diversity of Some Pear Cultivars and Genotypes Using Simple Sequence Repeat (SSR) Markers. Plant Mol. Biol. Report. 2012, 30, 1065–1072. [Google Scholar] [CrossRef]
- Montanari, S.; Postman, J.; Bassil, N.V.; Neale, D.B. Reconstruction of the Largest Pedigree Network for Pear Cultivars and Evaluation of the Genetic Diversity of the USDA-ARS National Pyrus Collection. G3 Genes Genomes Genet. 2020, 10, 3285–3297. [Google Scholar] [CrossRef]
- Bergonzoni, L.; Alessandri, S.; Domenichini, C.; Dondini, L.; Caracciolo, G.; Pietrella, M.; Baruzzi, G.; Tartarini, S. Characterization of Red-Fleshed Pear Accessions from Emilia-Romagna Region. Sci. Hortic. 2023, 312, 111857. [Google Scholar] [CrossRef]
- Ganopoulos, I.; Tourvas, N.; Xanthopoulou, A.; Aravanopoulos, F.A.; Avramidou, E.; Zambounis, A.; Tsaftaris, A.; Madesis, P.; Sotiropoulos, T.; Koutinas, N. Phenotypic and Molecular Characterization of Apple (Malus × Domestica Borkh) Genetic Resources in Greece. Sci. Agric. 2018, 75, 509–518. [Google Scholar] [CrossRef]
- Irisarri, P.; Urrestarazu, J.; Ramos-Cabrer, A.; Pereira-Lorenzo, S.; Velázquez-Barrera, M.E.; Díaz-Hernández, M.B.; Dapena, E.; Urbina, V.; Dalmases, J.; Ríos-Mesa, D.; et al. Unlocking Spanish Pear Genetic Diversity: Strategies for Construction of a National Core Collection. Sci. Rep. 2024, 14, 26555. [Google Scholar] [CrossRef]
- Ferreira dos Santos, A.R.; Ramos-Cabrer, A.M.; Díaz-Hernández, M.B.; Pereira-Lorenzo, S. Genetic variability and diversification process in local pear cultivars from northwestern Spain using microsatellites. Tree Genet. Genomes 2011, 7, 1041–1056. [Google Scholar] [CrossRef]
- Sau, S.; Pastore, C.; D’hallewin, G.; Dondini, Λ.; Bacchetta, G. Characterisation of Microsatellite Loci in Sardinian Pears (Pyrus communis L. and P. spinosa Forssk.). Sci. Hortic. 2020, 270, 109443. [Google Scholar] [CrossRef]
- Baccichet, I.; Foria, S.; Messina, R.; Peccol, E.; Losa, A.; Fabro, M.; Gori, G.; Zandigiacomo, P.; Cipriani, G.; Testolin, R. Genetic and Ploidy Diversity of Pear (Pyrus spp.) Germplasm of Friuli Venezia Giulia, Italy. Genet. Resour. Crop Evol. 2020, 67, 83–96. [Google Scholar] [CrossRef]
- Sehic, J.; Garkava-Gustavsson, L.; Fernández-Fernández, F.; Nybom, H. Genetic Diversity in a Collection of European Pear (Pyrus communis) Cultivars Determined with SSR Markers Chosen by ECPGR. Sci. Hortic. 2012, 145, 39–45. [Google Scholar] [CrossRef]
- Puskás, M.; Höfer, M.; Sestraş, R.E.; Peil, A.; Sestraş, A.F.; Hanke, M.-V.; Flachowsky, H. Molecular and Flow Cytometric Evaluation of Pear (Pyrus L.) Genetic Resources of the German and Romanian National Fruit Collections. Genet. Resour. Crop Evol. 2015, 63, 1023–1033. [Google Scholar] [CrossRef]
- Gasi, F.; Kurtovic, M.; Kalamujic, B.; Pojskic, N.; Grahic, J.; Kaiser, C.; Meland, M. Assessment of European Pear (Pyrus communis L.) Genetic Resources in Bosnia and Herzegovina Using Microsatellite Markers. Sci. Hortic. 2013, 157, 74–83. [Google Scholar] [CrossRef]
- Queiroz, A.; Assunção, A.; Ramadas, I.; Viegas, W.; Veloso, M.M. Molecular Characterization of Portuguese Pear Landraces (Pyrus communis L.) Using SSR Markers. Sci. Hortic. 2015, 183, 72–76. [Google Scholar] [CrossRef]
- Queiroz, Á.; Guimarães, J.B.; Sánchez, C.; Simões, F.; Maia de Sousa, R.; Viegas, W.; Veloso, M.M. Genetic Diversity and Structure of the Portuguese Pear (Pyrus communis L.) Germplasm. Sustainability 2019, 11, 5340. [Google Scholar] [CrossRef]
- Stracieri, J.; Helida, M.M.; Luciane, V.R.; Luis, C.C.C. Simple sequence repeat (SSR) markers are effective for Identifying Pear Cultivars and Selections. Afr. J. Biotechnol. 2015, 14, 68-57. [Google Scholar] [CrossRef]
- Xue, L.; Liu, Q.; Qin, M.; Zhang, M.; Wu, X.; Wu, J. Genetic Variation and Population Structure of “Zangli” Pear Landraces in Tibet Revealed by SSR Markers. Tree Genet. Genomes 2017, 13, 26. [Google Scholar] [CrossRef]
- Xue, L.; Liu, Q.; Hu, H.; Song, Y.; Fan, J.; Bai, B.; Zhang, M.; Wang, R.; Qin, M.; Li, X.; et al. The Southwestern Origin and Eastward Dispersal of Pear (Pyrus pyrifolia) in East Asia Revealed by Comprehensive Genetic Structure Analysis with SSR Markers. Tree Genet. Genomes 2018, 14, 48. [Google Scholar] [CrossRef]
- Wahocho, S.A.; Cao, Y.-F.; Xu, J.-Y.; Qi, D.; Wahocho, N.A.; Gul, H.; Dong, X.-G.; Tian, L.; Huo, H.; Liu, C.; et al. Origin and Dissemination Route of Pear Accessions from Western China to Abroad Based on Combined Analysis of SSR and CpDNA Markers. Genet. Resour. Crop Evol. 2019, 67, 107–128. [Google Scholar] [CrossRef]
- Ouni, R.; Zborowska, A.; Sehic, J.; Choulak, S.; Hormaza, J.I.; Garkava-Gustavsson, L.; Mars, M. Genetic Diversity and Structure of Tunisian Local Pear Germplasm as Revealed by SSR Markers. Hortic. Plant J. 2020, 6, 61–70. [Google Scholar] [CrossRef]
- Bielsa, F.J.; Irisarri, P.; Errea, P.; Pina, A. Genetic Diversity and Structure of Local Pear Cultivars from Mountainous Areas from Aragon (Northeastern Spain). Agronomy 2021, 11, 1778. [Google Scholar] [CrossRef]
- Madesis, P.; Ganopoulos, I.; Tsaftaris, A. Microsatellites: Evolution and Contribution. Methods Mol. Biol. 2013, 1006, 1–13. [Google Scholar] [CrossRef]
- Gianfranceschi, L.; Seglias, N.; Tarchini, R.; Komjanc, M.; Gessler, C. Simple Sequence Repeats for the Genetic Analysis of Apple. Theor. Appl. Genet. 1998, 96, 1069–1076. [Google Scholar] [CrossRef]
- Hokanson, S.C.; Szewc-McFadden, A.K.; Lamboy, W.F.; McFerson, J.R. Microsatellite (SSR) Markers Reveal Genetic Identities, Genetic Diversity and Relationships in a Malus × Domestica Borkh. Core Subset Collection. Theor. Appl. Genet. 1998, 97, 671–683. [Google Scholar] [CrossRef]
- Liebhard, R.; Gianfranceschi, L.; Koller, B.; Ryder, C.D.; Tarchini, R.; Van De Weg, E.; Gessler, C. Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol. Breed. 2002, 10, 217–241. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kimura, T.; Shoda, M.; Imai, T.; Saito, T.; Sawamura, Y.; Kotobuki, K.; Hayashi, T.; Matsuta, N. Genetic linkage maps constructed by using SSR markers in apple and pear. Theor. Appl. Genet. 2002, 105, 104–111. [Google Scholar]
- Fernández-Fernández, F.; Harvey, N.G.; James, C.M. Isolation and Characterization of Polymorphic Microsatellite Markers from European Pear (Pyrus communis L.). Mol. Ecol. Notes 2006, 6, 1039–1041. [Google Scholar] [CrossRef]
- Hoffman, J.I.; Amos, W. Microsatellite Genotyping Errors: Detection Approaches, Common Sources and Consequences for Paternal Exclusion. Mol. Ecol. 2004, 14, 599–612. [Google Scholar] [CrossRef]
- Urrestarazu, J.; Royo, J.B.; Santesteban, L.G.; Miranda, C. Evaluating the Influence of the Microsatellite Marker Set on the Genetic Structure Inferred in Pyrus communis L. PLoS ONE 2015, 10, e0138417. PLoS ONE 2015, 10, e0138417. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research—An Update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Liu, K.; Muse, S.V. PowerMarker: An Integrated Analysis Environment for Genetic Marker Analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef]
- Paetkau, D.; Calvert, W.; Stirling, I.; Strobeck, C. Microsatellite Analysis of Population Structure in Canadian Polar Bears. Mol. Ecol. 1995, 4, 347–354. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org (accessed on 20 April 2025).
- Paradis, E.; Schliep, K. Ape 5.0: An Environment for Modern Phylogenetics and Evolutionary Analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Schliep, K.P. Phangorn: Phylogenetic Analysis in R. Bioinformatics 2011, 27, 592–593. [Google Scholar] [CrossRef]
- Wickham, H.; Hester, J.; Bryan, J. Readr: Read Rectangular Text Data. R Package Version 1.3.1. Available online: https://CRAN.R-project.org/package=readr (accessed on 20 April 2025).
- Wickham, H. ggplot2; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Slowikowski, K. Ggrepel: Automatically Position Non-Overlapping Text Labels with ‘Ggplot2’. R Package Version 0.9.1. Available online: https://CRAN.R-project.org/package=ggrepel (accessed on 20 April 2025).
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions. R Package Version 2.1.4. Available online: https://CRAN.R-project.org/package=cluster (accessed on 20 April 2025).
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 20 April 2025).
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Ganopoulos, I.; Moysiadis, T.; Xanthopoulou, A.; Ganopoulou, M.; Avramidou, E.; Aravanopoulos, F.A.; Tani, E.; Madesis, P.; Tsaftaris, A.; Kazantzis, K. Diversity of Morpho-Physiological Traits in Worldwide Sweet Cherry Cultivars of GeneBank Collection Using Multivariate Analysis. Sci. Hortic. 2015, 197, 381–391. [Google Scholar] [CrossRef]
- Sneath, P.H.A.; Sokal, R.R. Numerical Taxonomy: The Principles and Practice of Numerical Classification; Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Paradis, E.; Claude, J.; Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 2004, 20, 289–290. [Google Scholar] [CrossRef]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A Program for Identifying Clustering Modes and Packaging Population Structure Inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the Number of Clusters of Individuals Using the Software Structure: A Simulation Study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Francis, R.M. pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 2017, 17, 27–32. [Google Scholar] [CrossRef]
- Pina-Martins, F.; Silva, D.N.; Fino, J.; Paulo, O.S. Structure_threader: An improved method for automation and parallelization of programs structure, fastStructure and MavericK on multicore CPU systems. Mol. Ecol. Resour. 2017, 17, e268–e274. [Google Scholar] [CrossRef]
- Evans, K.M.; Fernández-Fernández, F.; Govan, C. Harmonising Fingerprinting Protocols to Allow Comparisons between Germplasm Collections—Pyrus. Acta Hortic. 2009, 814, 103–106. [Google Scholar] [CrossRef]
- Jennings, T.N.; Knaus, B.J.; Mullins, T.D.; Haig, S.M.; Cronn, R.C. Multiplexed Microsatellite Recovery Using Massively Parallel Sequencing. Mol. Ecol. Resour. 2011, 11, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Mergeay, J. Population Size in Evolutionary Biology Is More than the Effective Size. Evol. Appl. 2024, 17, e70029. [Google Scholar] [CrossRef] [PubMed]
- Wolko, Ł.; Bocianowski, J.; Antkowiak, W.; Słomski, R. Genetic Diversity and Population Structure of Wild Pear (Pyrus pyraster (L.) Burgsd.) in Poland. Cent. Eur. J. Biol. 2014, 10, 19–29. [Google Scholar] [CrossRef]
- Liu, Q.; Song, Y.; Liu, L.; Zhang, M.; Sun, J.; Zhang, S.; Wu, J. Genetic Diversity and Population Structure of Pear (Pyrus spp.) Collections Revealed by a Set of Core Genome-Wide SSR Markers. Tree Genet. Genomes 2015, 11, 128. [Google Scholar] [CrossRef]
No | Accession Name | Origin | Group | No | Accession Name | Origin | Group |
---|---|---|---|---|---|---|---|
1 | Duchesse d’Angulene | France | Cultivar | 27 | Bartlet | England | Cultivar |
2 | Pierre Cornell | France | Cultivar | 28 | Monglow | Maryland | Cultivar |
3 | Highland | England | Cultivar | 29 | Gentile Bianca | France | Cultivar |
4 | 44960 | Greece | Breeding line | 30 | Aromata Bistrita | Romania | Cultivar |
5 | 45078 | Greece | Breeding line | 31 | HW614 | Serbia | Cultivar |
6 | 45170 | Greece | Breeding line | 32 | Passa Crassana | France | Cultivar |
7 | Kontoula Pereas | Greece | Landrace | 33 | 45017 | Greece | Breeding line |
8 | 44929 | Greece | Breeding line | 34 | 45143 | Greece | Breeding line |
9 | Serpou | France | Landrace | 35 | 44986 | Greece | Breeding line |
10 | 45139 | Greece | Breeding line | 36 | 45146 | Greece | Breeding line |
11 | Beurré d’Hardenpont | France | Cultivar | 37 | 44933 | Greece | Breeding line |
12 | Basdouvaniko | Greece | Landrace | 38 | Coscia | Italy | Cultivar |
13 | 45020 | Greece | Breeding line | 39 | Decana d’ Inverno | Belgium | Cultivar |
14 | Avgoustiatiki | Greece | Landrace | 40 | Decana del Comicio | France | Cultivar |
15 | Harvest Queen | Canada | Cultivar | 41 | Santa Maria | Italy | Cultivar |
16 | 45176 | Greece | Breeding line | 42 | Karamanets Pcillares | Bulgary | Cultivar |
17 | Blanquilla | Spain | Cultivar | 43 | 45052 | Greece | Breeding line |
18 | 45047 | Greece | Breeding line | 44 | Conference | England | Cultivar |
19 | Packham’s Triumph | England | Cultivar | 45 | 45085 | Greece | Breeding line |
20 | Colette | USA | Cultivar | 46 | HW607 | Serbia | Cultivar |
21 | HW 611 | Serbia | Cultivar | 47 | 45084 | Greece | Breeding line |
22 | Sumandinka | Serbia | Cultivar | 48 | Abate Fetel | France | Cultivar |
23 | Kontoula Patron | Greece | Landrace | 49 | Grand Champion | USA | Cultivar |
24 | Kontoula Lechaiou | Greece | Landrace | 50 | Le Clerk | France | Cultivar |
25 | Favorita di claps | USA | Cultivar | 51 | Kastorias | Greece | Landrace |
26 | Spina Carpi | Italy | Cultivar |
Primer | Dye | Repeat Motif | LG | Min | Max | Forward | Reverse | Tm | Bibliography | |
---|---|---|---|---|---|---|---|---|---|---|
Multiplex 1 | EMPc117 | FAM | (CT)17 | 7 | 85 | 135 | GTTCTATCTACCAAGCCACGCT | CGTTTGTGTGTTTTACGTGTTG | 61.8 | [20,36] |
CH01d08 | FAM | (GA)n | 3/15 | 277 | 301 | CTCCGCCGCTATAACACTTC | TACTCTGGAGGGTATGTCAAAG | [32,34] | ||
EMPc11 | TAMRA | (AC)13 | 11 | 135 | 155 | GCGATTAAAGATCAATAAACCCATA | AAGCAGCTGGTTGGTGAAAT | [20,36] | ||
CH01f07a | TAMRA | CT | 10 | 175 | 211 | CCCTACACAGTTTCTCAACCC | CGTTTTTGGAGCGTAGGAAC | [34] | ||
CH05c06 | ROX | GA | 16 | 111 | ATTGGAACTCTCCGTATTGTGC | ATCAACAGTAGTGGTAGCCGGT | [34] | |||
Multiplex 2 | CH04e03 | FAM | (GA)n | 5 | 179 | 221 | TTGAAGATGTTTGGCTGTGC | TGCATGTCTGTCTCCTCCAT | 60.8 | [34] |
CH03g07 | HEX | GA | 3 | 195 | 265 | AATAAGCATTCAAAGCAATCCG | TTTTTCCAAATCGAGTTTCGTT | [34] | ||
GD147 | HEX | AG | 13 | 121 | 147 | TCCCGCCATTTCTCTGC | AAACCGCTGCTGCTGAAC | [33,35] |
Locus | Na | Allele Fragment Size (bp) |
---|---|---|
CH03g07 | 2 | 206, 209 |
CH04e03 | 4 | 172, 204, 213, 216 |
GD147 | 3 | 159, 162, 167 |
CH01d08 | 3 | 270, 281, 303 |
CH01f07a | 3 | 169, 181, 191 |
CH05c06 | 10 | 70, 71, 80, 87, 91, 92, 95, 100, 108, 118 |
EMPc11 | 6 | 128, 129, 138, 142, 149, 150 |
EMPc117 | 13 | 84, 85, 86, 103, 111, 113, 115, 129, 130, 131, 133, 136, 143 |
Mean Values | Standard Error (SE) Values | ||
---|---|---|---|
Na | 5.500 | Na | 1.402 |
Na Freq. ≥ 5% | 2.625 | Na Freq. ≥ 5% | 0.460 |
Ne | 2.343 | Ne | 0.326 |
I | 0.953 | I | 0.178 |
No. Private Alleles | 5.500 | No. Private Alleles | 1.402 |
No. LComm Alleles (≤25%) | 0 | No. LComm Alleles (≤25%) | 0 |
No. LComm Alleles (≤50%) | 0 | No. LComm Alleles (≤50%) | 0 |
He | 0.505 | He | 0.075 |
uHe | 0.510 | uHe | 0.076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deligiannidou, E.; Boutsika, A.; Plesias, I.; Xanthopoulou, A.; Moysiadis, T.; Mellidou, I.; Manthos, I.; Sotiropoulos, T.; Ganopoulos, I. Microsatellite Genotyping and Genetic Diversity of a Greek Pear (Pyrus communis L.) Germplasm Collection. Plants 2025, 14, 1816. https://doi.org/10.3390/plants14121816
Deligiannidou E, Boutsika A, Plesias I, Xanthopoulou A, Moysiadis T, Mellidou I, Manthos I, Sotiropoulos T, Ganopoulos I. Microsatellite Genotyping and Genetic Diversity of a Greek Pear (Pyrus communis L.) Germplasm Collection. Plants. 2025; 14(12):1816. https://doi.org/10.3390/plants14121816
Chicago/Turabian StyleDeligiannidou, Eleftheria, Anastasia Boutsika, Ioannis Plesias, Aliki Xanthopoulou, Theodoros Moysiadis, Ifigeneia Mellidou, Ioannis Manthos, Thomas Sotiropoulos, and Ioannis Ganopoulos. 2025. "Microsatellite Genotyping and Genetic Diversity of a Greek Pear (Pyrus communis L.) Germplasm Collection" Plants 14, no. 12: 1816. https://doi.org/10.3390/plants14121816
APA StyleDeligiannidou, E., Boutsika, A., Plesias, I., Xanthopoulou, A., Moysiadis, T., Mellidou, I., Manthos, I., Sotiropoulos, T., & Ganopoulos, I. (2025). Microsatellite Genotyping and Genetic Diversity of a Greek Pear (Pyrus communis L.) Germplasm Collection. Plants, 14(12), 1816. https://doi.org/10.3390/plants14121816