Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = fruit fly abundance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1051 KiB  
Review
Unraveling ADAR-Mediated Protein Recoding: A Proteogenomic Exploration in Model Organisms and Human Pathology
by Viacheslav V. Kudriavskii, Anna A. Kliuchnikova, Anton O. Goncharov, Ekaterina V. Ilgisonis and Sergei A. Moshkovskii
Int. J. Mol. Sci. 2025, 26(14), 6837; https://doi.org/10.3390/ijms26146837 - 16 Jul 2025
Viewed by 356
Abstract
This paper summarizes the results of multi-year studies performed by our research team, focusing on an analysis of protein recoding mediated by messenger RNA editing by ADAR adenosine deaminases. Searching for ADAR-mediated protein recoding was performed in the central nervous system of the [...] Read more.
This paper summarizes the results of multi-year studies performed by our research team, focusing on an analysis of protein recoding mediated by messenger RNA editing by ADAR adenosine deaminases. Searching for ADAR-mediated protein recoding was performed in the central nervous system of the model organisms, fruit fly and mouse, as well as in the human proteomic datasets. The proteogenomic approach has made it possible to identify dozens of editing events in the proteome, thus validating the results of transcriptomic studies. The observed recoding events in animals, ranging from insects to mammals, mainly affect the cytoskeletal components and proteins involved in synaptic transmission. In humans, recoding changes are most often observed in the central nervous system or tumor tissues. Over 15 million editing sites have been identified in humans; only a few thousand of those can potentially yield amino acid substitutions. Using a proteogenomic approach, dozens of protein recoding sites are identified, demonstrating their origin in ADAR RNA editing. Moreover, this revealed that the level of recoding at specific sites is not directly related to the abundance of ADAR enzymes per se or their target proteins. The recoding processes probably have differential regulation of interactions at the mRNA level that is yet to be clarified. Full article
(This article belongs to the Special Issue RNA Editing/Modification in Health and Disease)
Show Figures

Figure 1

18 pages, 1518 KiB  
Article
Adding Fruit Fermentation Liquid Improves the Efficiency of the Black Soldier Fly in Converting Chicken Manure and Reshapes the Structure of Its Intestinal Microbial Community
by Lifei Chen, Guiying Wang, Hanhan Song, Qi Yang, Jiani Fu, Jiale Liu, Haoyang Sun, Yuxi Wang, Qile Tian, Yuting Sun, Lei Sun, Hao Xin, Zuyin Xiao, Guoliang Wang, Zixuan Zhang, Yinling Zhao, Hongyan Yang and Lusheng Li
Insects 2025, 16(5), 472; https://doi.org/10.3390/insects16050472 - 29 Apr 2025
Viewed by 660
Abstract
This study evaluated how fruit fermentation liquid (FFL) enhances the conversion of chicken manure by black soldier fly larvae (BSFL) and modulates their gut microbiota. Three groups were tested: control (A: 300 g manure + 50 g water), low-dose FFL (B: 300 g [...] Read more.
This study evaluated how fruit fermentation liquid (FFL) enhances the conversion of chicken manure by black soldier fly larvae (BSFL) and modulates their gut microbiota. Three groups were tested: control (A: 300 g manure + 50 g water), low-dose FFL (B: 300 g manure + 25 g FFL + 25 g water), and high-dose FFL (C: 300 g manure + 50 g FFL). The results show that the dry matter conversion rate significantly increased by 9.5% (p < 0.05), while the feed-to-larvae ratio was reduced by 1.02 (p < 0.01) in group C. NH3 emissions in group C decreased by 24.48 mg·kg−1·DM (dry matter substrate) day−1 (24.48 mg per kilogram of dry matter substrate per day) (p < 0.01), with suppressed H2S release. Gut microbiota analysis revealed that FFL reduced the abundance of Proteobacteria (6.07% decrease in group C) while enriching Actinobacteriota (4.68% increase) and beneficial genera (Corynebacterium, Gallicola). Substrate microbial diversity in group C improved, with Proteobacteria and Firmicutes increasing by 11.07% and 4.83%, respectively, and pathogenic Sphingobacteriaceae declining by 21.16% by day 7. FFL likely introduced organic acids and nutrients, enhancing larval digestion and nutrient absorption while inhibiting the production of harmful gases. These findings demonstrate that FFL optimizes BSFL-driven waste conversion efficiency through modulation of the microbiota, offering a sustainable strategy for organic waste management and contributing to circular agricultural systems. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

14 pages, 2254 KiB  
Article
Seasonal and Long-Term Population Dynamics of the Peach Fruit Fly in Egypt
by Mustafa M. Soliman, Esmat A. EL-Solimany, Thomas Hesselberg and Amira A. K. H. Negm
Insects 2025, 16(4), 332; https://doi.org/10.3390/insects16040332 - 21 Mar 2025
Cited by 1 | Viewed by 1012
Abstract
The peach fruit fly (Bactrocera zonata), a significant polyphagous pest, poses a considerable threat to fruit crops across its expanding range. Although climate change significantly impacts pest populations, its effects on B. zonata remain understudied. This research examined B. zonata population [...] Read more.
The peach fruit fly (Bactrocera zonata), a significant polyphagous pest, poses a considerable threat to fruit crops across its expanding range. Although climate change significantly impacts pest populations, its effects on B. zonata remain understudied. This research examined B. zonata population dynamics across two distinct Egyptian ecological zones (Sohag and Ismailia Governorates) from 2013–2023 using pheromone traps and climate data. Results revealed significant spatial and temporal variations in abundance patterns. Both regions displayed a unimodal distribution, with Sohag exhibiting a distinct peak during September to November, whereas Ismailia showed a broader peak period spanning from August to December. Temperature significantly influenced population levels while precipitation showed no significant effect. Similarly, our results indicated increasing population trends in both regions despite no significant long-term temperature changes. These findings suggest that factors beyond temperature alone, such as host fruit availability, regional environmental variations, and potentially evolving agricultural practices, drive B. zonata population growth, highlighting the need for comprehensive, climate-responsive pest management strategies that account for regional variations. Full article
(This article belongs to the Special Issue Insect Dynamics: Modeling in Insect Pest Management)
Show Figures

Figure 1

14 pages, 3618 KiB  
Article
Different Long-Term Nutritional Regimens of Drosophila melanogaster Shape Its Microbiota and Associated Metabolic Activity in a Sex-Specific Manner
by Repac Jelena, Trajković Jelena, Rakić Marija, Lunić Tanja, Savić Tatjana, Božić Bojan, Božić Nedeljković Biljana and Sofija Pavković-Lučić
Insects 2025, 16(2), 141; https://doi.org/10.3390/insects16020141 - 1 Feb 2025
Cited by 1 | Viewed by 1281
Abstract
The dietary habits of fruit flies profoundly influence their fitness, morphology, and physiology yet the mechanisms underlying these effects remain incompletely understood. To address this gap, the relationship between dietary regimens and the composition and function of adult Drosophila melanogaster microbiota was investigated [...] Read more.
The dietary habits of fruit flies profoundly influence their fitness, morphology, and physiology yet the mechanisms underlying these effects remain incompletely understood. To address this gap, the relationship between dietary regimens and the composition and function of adult Drosophila melanogaster microbiota was investigated in the present study. The adult fly microbiota communities that were reared for long time on five different diets were characterized by means of 16S rRNA sequencing. Obtained results revealed distinct community structures associated with each dietary regimen, which was additionally corroborated through machine learning-based analysis. In general, sugar-rich diets correlate with microbial ecosystems of higher richness/diversity. Dominance of the phyla Proteobacteria and Firmicutes in the microbiota was confirmed irrespective of diet, with the varying proportions of the most abundant families: Acetobacteraceae, Lactobacillaceae, Moraxellaceae, Bradyrhizobiaceae, and Leucostonocaceae. Bacterial families of lower abundance also emerged as differentially present among the studied fly groups. Additionally, functional prediction provided initial clues into how nutrient availability might modulate the metabolic traits of adult fly microbiota in a sex-specific manner to meet host metabolic needs. Overall, the presented findings highlight the intricate interplay between diet, microbiota composition, and host phenotype in fruit flies, underscoring the importance of diet as a determinant of host-microbiota interactions. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

20 pages, 3229 KiB  
Article
Fruit Flies (Diptera: Tephritidae) in Minas Gerais, Brazil: Trophic Interactions and New Reports
by Rosamara Souza Coelho, Clarice Alvarenga, Marvin Pec, Ana Luisa Rodrigues-Silva, Pedro Maranha Peche, Emanoel Alves and Rosangela Marucci
Insects 2025, 16(1), 17; https://doi.org/10.3390/insects16010017 - 28 Dec 2024
Viewed by 972
Abstract
A diverse orchard with fruit fly hosts may provide information about trophic relationships, including new insights into beneficial insects. We evaluated the composition of the fruit fly complex to provide information on tephritid species, parasitoids and multitrophic interactions for the southern region of [...] Read more.
A diverse orchard with fruit fly hosts may provide information about trophic relationships, including new insights into beneficial insects. We evaluated the composition of the fruit fly complex to provide information on tephritid species, parasitoids and multitrophic interactions for the southern region of Minas Gerais, Brazil. Sampling was carried out using traps and by collecting fruits from plants and/or the ground according to availability/the fruiting period. Occurrences of Anastrepha amita Zucchi and A. punctata Hendel were recorded for the first time in the state of Minas Gerais, and new trophic associations were obtained for A. bahiensis Lima, A. bistrigata Bezzi, A. fraterculus (Wiedemann), A. obliqua (Macquart) and Ceratitis capitata (Wiedemann). Ten tephritid species were obtained from trap sampling, with C. capitata, A. fraterculus and A. obliqua being the most abundant. Five species of fruit flies and seven species of parasitoids were obtained from fruits. The braconid Doryctobracon areolatus (Szépligeti) was the most frequently collected among the parasitoid species. Pitanga (Eugenia uniflora L.) and purple guava (Psidium myrtoides O. Berg) fruits were classified as repositories of fruit fly parasitoids. Full article
Show Figures

Figure 1

14 pages, 3481 KiB  
Article
Soil-Dwelling Arthropods’ Response to Land Abandonment Is Taxon-Specific in a Mediterranean Olive Grove Agroecosystem
by Matteo Dellapiana, Alice Caselli, Gaia Monteforti, Ruggero Petacchi and Anna-Camilla Moonen
Land 2024, 13(11), 1845; https://doi.org/10.3390/land13111845 - 6 Nov 2024
Viewed by 823
Abstract
Agricultural land abandonment is an increasing concern in the EU, especially in Mediterranean regions where traditional perennial crops like olive groves are left unmanaged. This study focuses on the impact of land abandonment on soil-dwelling arthropods in olive groves in Monte Pisano, Tuscany, [...] Read more.
Agricultural land abandonment is an increasing concern in the EU, especially in Mediterranean regions where traditional perennial crops like olive groves are left unmanaged. This study focuses on the impact of land abandonment on soil-dwelling arthropods in olive groves in Monte Pisano, Tuscany, examining ants, spiders, myriapods, and carabids. Using Generalized Linear Mixed Models, the potential olive fruit fly predator community was analyzed over two sampling periods repeated over two years to assess the effects of both abandonment and its proximity to managed fields. Ants were significantly more abundant in managed fields next to abandoned ones, though there were no differences between managed and abandoned fields. Spider abundance did not respond to abandonment nor proximity. Myriapods were more abundant in abandoned fields during the first sampling period, but the proximity of an abandoned field had no effect. Carabids were more abundant in managed fields, especially those adjacent to other managed fields. These results indicate that arthropod responses to abandonment are taxon-specific, highlighting that a mosaic of managed and abandoned fields can both enhance and reduce olive fruit fly predator abundance. Conservation strategies should integrate varying management intensities to optimize biodiversity in Mediterranean agroecosystems. Future research should investigate long-term effects and specific predator responses to abandonment. Full article
Show Figures

Figure 1

20 pages, 7623 KiB  
Article
Structural Analysis of Virus Regulatory N6-Methyladenosine (m6A) Machinery of the Black Flying Fox (Pteropus alecto) and the Egyptian Fruit Bat (Rousettus aegyptiacus) Shows Evolutionary Conservation Amongst Mammals
by Asmaa Nasr, Nikki Copeland and Muhammad Munir
Genes 2024, 15(11), 1361; https://doi.org/10.3390/genes15111361 - 23 Oct 2024
Cited by 1 | Viewed by 1193
Abstract
Background: N6-methyladenosine (m6A) is an abundant RNA epitranscriptomic modification in eukaryotes. The m6A machinery includes cellular writer, eraser and reader proteins that regulate m6A. Pteropus alecto (P. alecto) (the Australian black flying fox) and Rousettus aegyptiacus (R. aegyptiacus) (the [...] Read more.
Background: N6-methyladenosine (m6A) is an abundant RNA epitranscriptomic modification in eukaryotes. The m6A machinery includes cellular writer, eraser and reader proteins that regulate m6A. Pteropus alecto (P. alecto) (the Australian black flying fox) and Rousettus aegyptiacus (R. aegyptiacus) (the Egyptian fruit bat) are bats associated with several viral zoonoses yet neglected in the field of m6A epigenetics studies. Objectives: This study utilises various bioinformatics and in silico tools to genetically identify, characterise and annotate the m6A machinery in P. alecto and R. aegyptiacus. Methods: A range of bioinformatic tools were deployed to comprehensively characterise all known m6A-associated proteins of P. alecto and R. aegyptiacus. Results: Phylogenetically, the m6A fat mass and obesity-associated protein (FTO) eraser placed the order Chiroptera (an order including all bat species) in a separate clade. Additionally, it showed the lowest identity matrices in P. alecto and R. aegyptiacus when compared to other mammals (74.1% and 72.8%) and Homo sapiens (84.0% and 76.1%), respectively. When compared to humans, genetic loci-based analysis of P. alecto and R. aegyptiacus showed syntenic conservation in multiple flanking genes of 8 out the 10 m6A-associated genes. Furthermore, amino acid alignment and protein tertiary structure of the two bats’ m6A machinery demonstrated conservation in the writers but not in erasers and readers, compared to humans. Conclusions: These studies provide foundational annotation and genetic characterisation of m6A machinery in two important species of bats which can be exploited to study bat–virus interactions at the interface of epitranscriptomics. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

14 pages, 4130 KiB  
Article
D-Limonene Is the Active Olfactory Attractant in Orange Juice for Bactrocera dorsalis (Insecta: Diptera: Tephritidae)
by Leyuan Liu, Lang Yang, Jinxi Yuan, Jie Zhang, Chenhao Liu, Hongxu Zhou, Wei Liu and Guirong Wang
Life 2024, 14(6), 713; https://doi.org/10.3390/life14060713 - 31 May 2024
Cited by 6 | Viewed by 1701
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), poses a significant threat to the global fruit industry, causing damage to diverse fruits like citrus, mango, and guava. Chemical pesticides have limited effectiveness, and pesticide residues and pesticide resistance are pressing issues. Therefore, it is [...] Read more.
The oriental fruit fly, Bactrocera dorsalis (Hendel), poses a significant threat to the global fruit industry, causing damage to diverse fruits like citrus, mango, and guava. Chemical pesticides have limited effectiveness, and pesticide residues and pesticide resistance are pressing issues. Therefore, it is essential to develop environmentally friendly pest control methods to address this problem. Behavior-modifying chemicals, including male attractants and intersex protein baits, play a critical role in the control of B. dorsalis. The mature host fruit serves as both an oviposition site and food source under natural conditions, making it a potential attraction source for oriental fruit flies. Orange, Citrus sinensis, is a main host of B. dorsalis, and commercial orange juice is a common attractant for the egg laying of B. dorsalis. Although it can both attract and elicit oviposition behaviors in B. dorsalis adults, its active components are still unclear. This study utilized analytical chemistry, behavioral tests, and electrophysiology to identify the active components of commercial orange juice that attract B. dorsalis, with the aim of providing a reference for the development of behavior-modifying chemical-based techniques to control B. dorsalis. Five compounds with a high abundance were identified via a GC-MS, including D-Limonene, butanoic acid ethyl ester, β-myrcene, linalool, and α-terpineol. Behavioral and electrophysiological experiments uncovered that D-Limonene was the active substance that was the main attractant in the mixture of these five substances, evoking a strong electrophysiological response in adult B. dorsalis. D-Limonene strongly attracts adult B. dorsalis only when they are sexually mature, and the attraction is not rhythmic. Olfaction plays a leading role in the attraction of D-Limonene to adult B. dorsalis, and Orco−/− mediates the perception of D-Limonene by B. dorsalis. Overall, D-Limonene is one of the key attractant compounds for B. dorsalis in the volatile compounds of commercial orange juice, offering possible support for the development of behavior-modifying chemical-based technology to control B. dorsalis in the future. Full article
Show Figures

Figure 1

19 pages, 2759 KiB  
Article
The Population Dynamics and Parasitism Rates of Ceratitis capitata, Anastrepha fraterculus, and Drosophila suzukii in Non-Crop Hosts: Implications for the Management of Pest Fruit Flies
by María Josefina Buonocore-Biancheri, Xingeng Wang, Segundo Ricardo Núñez-Campero, Lorena Suárez, Pablo Schliserman, Marcos Darío Ponssa, Daniel Santiago Kirschbaum, Flávio Roberto Mello Garcia and Sergio Marcelo Ovruski
Insects 2024, 15(1), 61; https://doi.org/10.3390/insects15010061 - 15 Jan 2024
Cited by 7 | Viewed by 2788
Abstract
Understanding the seasonal dynamics inherent to non-crop host–fruit fly–parasitoid interactions is vitally important for implementing eco-friendly pest control strategies. This study assessed the abundance and seasonal infestation levels of three pest fly species, Ceratitis capitata (Wiedemann), Anastrepha fraterculus (Wiedemann), Drosophila suzukii (Matsumura), as [...] Read more.
Understanding the seasonal dynamics inherent to non-crop host–fruit fly–parasitoid interactions is vitally important for implementing eco-friendly pest control strategies. This study assessed the abundance and seasonal infestation levels of three pest fly species, Ceratitis capitata (Wiedemann), Anastrepha fraterculus (Wiedemann), Drosophila suzukii (Matsumura), as well as the related saprophytic drosophilids, and their natural parasitism in a disturbed wild habitat characterized by non-crop hosts in northwestern Argentina over 40 months. Juglans australis Griseb (walnut), Citrus aurantium L. (sour orange), Eriobotrya japonica (Thunb.) Lindley (loquat), Prunus persica (L.) Batsch (peach), and Psydium guajava L. (guava) were sampled throughout their fruiting seasons. Fruits were collected from both the tree canopies and the ground. The most abundant puparia was A. fraterculus, followed by C. capitata and D. suzukii. Drosophila species from the D. melanogaster group were highly abundant only in fallen fruits. Spatiotemporal overlaps of different host fruit availability provided suitable sources for pest proliferation throughout the year. The populations of both invasive pests peaked from December to January, and were related to the highest ripe peach availability, whereas the A. fraterculus population peaked from February to April, overlapping with the guava fruiting period. The three pest fly species were parasitized mainly by three generalist resident parasitoids, which are potential biocontrol agents to use within an integrated pest management approach. Full article
(This article belongs to the Special Issue Fly Biology, Ecology, Behavior and Management)
Show Figures

Figure 1

18 pages, 8634 KiB  
Article
Potential Parasitoids for Biocontrol of the Ber Fruit Fly, Carpomya vesuviana Costa (Diptera: Tephritidae)
by Alieh Amini, Hossein Lotfalizadeh, Francisco Javier Peris-Felipo and Jean-Yves Rasplus
Life 2024, 14(1), 50; https://doi.org/10.3390/life14010050 - 28 Dec 2023
Cited by 2 | Viewed by 2118
Abstract
The ber fruit fly (BFF), Carpomya vesuviana Costa, 1854 (Diptera: Tephritidae), is an important key pest of the jujube, Ziziphus jujuba Miller. The main control measures against this pest are to use chemical control, but the first survey for its natural enemies was [...] Read more.
The ber fruit fly (BFF), Carpomya vesuviana Costa, 1854 (Diptera: Tephritidae), is an important key pest of the jujube, Ziziphus jujuba Miller. The main control measures against this pest are to use chemical control, but the first survey for its natural enemies was performed in Iran. Here, we report eight species of parasitic wasps of the BFF from five different families. The family Eurytomidae with three species, the families Pteromalidae and Mutillidae with two species each, and the families Braconidae and Diapriidae with one species each are associated with different immature stages of the BFF, of which Eurytoma pineticola Zerova (Eurytomidae) and Cyrtoptyx lichtensteini (Masi) (Pteromalidae) were the most abundant parasitoid species. Fopius carpomyiae (Silvestri,) was not reared on BFF on the jujube during this survey, but it was reported on Ziziphus spina-christi (L.) with a high parasitism rate. Therefore, it seems to be the most important parasitoid of BFF in Iran. The parasitoid community of BFF in Khorasan, Eastern Iran, is reviewed, and an identification key to these species is proposed. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

15 pages, 2305 KiB  
Article
A Chemical Approach to Obtaining α-copaene from Clove Oil and Its Application in the Control of the Medfly
by Cristina Lull, Ricardo Gil-Ortiz and Ángel Cantín
Appl. Sci. 2023, 13(9), 5622; https://doi.org/10.3390/app13095622 - 3 May 2023
Cited by 9 | Viewed by 3445
Abstract
The Ceratitis capitata (Wiedemann) fruit fly pest has been widely ecologically controlled by means of using attractant substances. This study supports the idea that α-copaene, a naturally occurring substance found in numerous plants, might be used as a semiochemical to control this pest. [...] Read more.
The Ceratitis capitata (Wiedemann) fruit fly pest has been widely ecologically controlled by means of using attractant substances. This study supports the idea that α-copaene, a naturally occurring substance found in numerous plants, might be used as a semiochemical to control this pest. The possibility of obtaining this natural compound in abundant quantities may reveal its potential use in integrated pest management. The main goal of this study was to demonstrate, on a small scale, how the extraction of clove oil by fractional distillation and other laboratory-assisted techniques can facilitate the obtaining of abundant amounts of α-copaene for its use in the control of the medfly. As a result, the male attraction of α-copaene isolated from clove oil was confirmed to be 5–6 times higher than commercial trimedlure. In its field projection, five distilled fractions with an α-copaene content of less than 10% were shown to have from a quarter to half of the attractive power exerted by trimedlure on males. It can be concluded that the use of selected distilled fractions of α-copaene can be enough to obtain large quantities of this compound to be applied successfully in ecological programs to lure medflies. Full article
Show Figures

Figure 1

15 pages, 1998 KiB  
Article
Dietary and Sexual Correlates of Gut Microbiota in the Japanese Gecko, Gekko japonicus (Schlegel, 1836)
by Xin-Ru Jiang, Ying-Yu Dai, Yu-Rong Wang, Kun Guo, Yu Du, Jian-Fang Gao, Long-Hui Lin, Peng Li, Hong Li, Xiang Ji and Yan-Fu Qu
Animals 2023, 13(8), 1365; https://doi.org/10.3390/ani13081365 - 16 Apr 2023
Cited by 4 | Viewed by 3020
Abstract
Numerous studies have demonstrated that multiple intrinsic and extrinsic factors shape the structure and composition of gut microbiota in a host. The disorder of the gut microbiota may trigger various host diseases. Here, we collected fecal samples from wild-caught Japanese geckos (Gekko [...] Read more.
Numerous studies have demonstrated that multiple intrinsic and extrinsic factors shape the structure and composition of gut microbiota in a host. The disorder of the gut microbiota may trigger various host diseases. Here, we collected fecal samples from wild-caught Japanese geckos (Gekko japonicus) and captive conspecifics fed with mealworms (mealworm-fed geckos) and fruit flies (fly-fed geckos), aiming to examine the dietary and sexual correlates of the gut microbiota. We used 16S rRNA gene sequencing technology to determine the composition of the gut microbiota. The dominant phyla with a mean relative abundance higher than 10% were Verrucomicrobiota, Bacteroidota, and Firmicutes. Gut microbial community richness and diversity were higher in mealworm-fed geckos than in wild geckos. Neither community evenness nor beta diversity of gut microbiota differed among wild, mealworm-fed, and fly-fed geckos. The beta rather than alpha diversity of gut microbiota was sex dependent. Based on the relative abundance of gut bacteria and their gene functions, we concluded that gut microbiota contributed more significantly to the host’s metabolic and immune functions. A higher diversity of gut microbiota in mealworm-fed geckos could result from higher chitin content in insects of the order Coleoptera. This study not only provides basic information about the gut microbiota of G. japonicus but also shows that gut microbiota correlates with dietary habits and sex in the species. Full article
(This article belongs to the Section Herpetology)
Show Figures

Figure 1

13 pages, 2329 KiB  
Article
In Silico and In Vitro Screening of Serine Racemase Agonist and In Vivo Efficacy on Alzheimer’s Disease Drosophila melanogaster
by Chih-Hao Lu, Hao-Teng Chang, Lee-Fen Hsu, Ming-Hsueh Lee, Jack Cheng, Dong Chuan Wu and Wei-Yong Lin
Pharmaceuticals 2023, 16(2), 280; https://doi.org/10.3390/ph16020280 - 13 Feb 2023
Cited by 2 | Viewed by 2805
Abstract
The NMDA receptor hypofunction has been implicated in schizophrenia, memory impairment, and Alzheimer’s disease. Modulating the abundance of D-serine, a co-agonist of the NMDA receptor, is a strategy to treat symptoms of the NMDA receptor hypofunction. In contrast to D-amino acid oxidase (DAAO) [...] Read more.
The NMDA receptor hypofunction has been implicated in schizophrenia, memory impairment, and Alzheimer’s disease. Modulating the abundance of D-serine, a co-agonist of the NMDA receptor, is a strategy to treat symptoms of the NMDA receptor hypofunction. In contrast to D-amino acid oxidase (DAAO) inhibitors, which aim at decreasing the loss of D-serine, this study tried to identify serine racemase (SRR) agonists, which boost the conversion of L-serine to D-serine. We used holo and apo structures of human SRR for the molecular docking against the National Cancer Institute (NCI) and ZINC compound databases and validated their efficacy by in vitro SRR activity assay. We identified NSC294149 (2-amino-3-(3-nitroimidazo[1,2-a]pyridin-2-yl)sulfanylpropanoic acid) as a potential SRR agonist and confirmed its amelioration of the hazard ratio of survival of the AD model of fruit fly (Drosophila melanogaster). These results suggest that the SRR agonist could be a drug design target against the NMDA receptor hypofunction symptoms. Full article
(This article belongs to the Special Issue Channel Modulation in Neurodegeneration and Neuroprotection)
Show Figures

Figure 1

23 pages, 2754 KiB  
Article
Tephritid Fruit Fly Species Composition, Seasonality, and Fruit Infestations in Two Central African Agro-Ecological Zones
by Samuel Nanga Nanga, Rachid Hanna, Apollin Fotso Kuate, Komi K. M. Fiaboe, Ibrahim Nchoutnji, Michel Ndjab, Désiré Gnanvossou, Samira A. Mohamed, Sunday Ekesi and Champlain Djieto-Lordon
Insects 2022, 13(11), 1045; https://doi.org/10.3390/insects13111045 - 13 Nov 2022
Cited by 5 | Viewed by 3138
Abstract
Bactrocera dorsalis and several Africa-native Ceratitis species are serious constraints to fruit production in sub-Saharan Africa. A long-term trapping and fruit collection study was conducted (2011–2016) in two contrasting agro-ecological zones (AEZs) of Cameroon to determine fruit fly species composition, seasonality, attraction to [...] Read more.
Bactrocera dorsalis and several Africa-native Ceratitis species are serious constraints to fruit production in sub-Saharan Africa. A long-term trapping and fruit collection study was conducted (2011–2016) in two contrasting agro-ecological zones (AEZs) of Cameroon to determine fruit fly species composition, seasonality, attraction to various lures and baits, and fruit infestation levels. Ten tephritid species from genera Bactrocera, Ceratitis, Dacus, and Perilampsis were captured in traps. Bactrocera dorsalis was the most dominant of the trapped species and persisted throughout the year, with peak populations in May–June. Ceratitis spp. were less abundant than B. dorsalis, with Ceratitis anonae dominating in the western highland zone and Ceratitis cosyra in the humid forest zone. Methyl eugenol and terpinyl acetate captured more B. dorsalis and Ceratitis spp., respectively than Torula yeast. The latter was the most effective food bait on all tephritid species compared with BioLure and Mazoferm. Bactrocera dorsalis was the dominant species emerging from incubated fruits, particularly mango, guava, and wild mango. Four plant species—I. wombolu, Dacryodes edulis, Voacanga Africana and Trichoscypha abut—were new host records for B. dorsalis. This study is the first long-duration and comprehensive assessment of frugivorous tephritid species composition, fruit infestations, and seasonality in Central Africa. Full article
(This article belongs to the Topic Integrated Pest Management of Crops)
Show Figures

Figure 1

12 pages, 1833 KiB  
Article
ShK-Domain-Containing Protein from a Parasitic Nematode Modulates Drosophila melanogaster Immunity
by Aklima K. Lima, Harpal Dhillon and Adler R. Dillman
Pathogens 2022, 11(10), 1094; https://doi.org/10.3390/pathogens11101094 - 24 Sep 2022
Cited by 6 | Viewed by 3298
Abstract
A key component to understanding host–parasite interactions is the molecular crosstalk between host and parasite. Excreted/secreted products (ESPs) released by parasitic nematodes play an important role in parasitism. They can directly damage host tissue and modulate host defense. Steinernema carpocapsae, a well-studied parasite [...] Read more.
A key component to understanding host–parasite interactions is the molecular crosstalk between host and parasite. Excreted/secreted products (ESPs) released by parasitic nematodes play an important role in parasitism. They can directly damage host tissue and modulate host defense. Steinernema carpocapsae, a well-studied parasite of insects releases approximately 500 venom proteins as part of the infection process. Though the identity of these proteins is known, few have been studied in detail. One protein family present in the ESPs released by these nematodes is the ShK family. We studied the most abundant ShK-domain-containing protein in S. carpocapsae ESPs, Sc-ShK-1, to investigate its effects in a fruit fly model. We found that Sc-ShK-1 is toxic under high stress conditions and negatively affects the health of fruit flies. We have shown that Sc-ShK-1 contributes to host immunomodulation in bacterial co-infections resulting in increased mortality and microbial growth. This study provides an insight on ShK-domain-containing proteins from nematodes and suggests these proteins may play an important role in host–parasite interactions. Full article
(This article belongs to the Special Issue 10th Anniversary of Pathogens—Feature Papers)
Show Figures

Figure 1

Back to TopTop