A Chemical Approach to Obtaining α-copaene from Clove Oil and Its Application in the Control of the Medfly
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Biological Assays
2.3. Obtention of Vacuum Distillation Fractions and Pure α-copaene
2.4. Data Analysis
3. Results
3.1. Obtaining Distillation Fractions Rich in α-copaene
3.1.1. De-Eugenolyzed Clove Essential Oil
3.1.2. IF Industrial Fraction
3.2. Isolation of α-copaene
3.2.1. Open Column
- DCO. A practically pure fraction in α-copaene was obtained eluting with hexane the initial DCO. This fraction had a richness of 99% (GC) and a yield of 85% of the DCOα-copaene, corresponding to 1.8% of the total oil. In Figure 1, the analytical HPLC chromatogram is shown. This DCOα-copaene was used in attraction tests. In the following fractions, α-cubebene, β-caryophyllene, and α-humulene were separated. The β-caryophyllene fraction had a richness of 98% and contained 85% of the total DCOβ-caryophyllene.
- 2.
- IF industrial fraction. A practically pure fraction in α-copaene was obtained with a richness of 99% (GC) and a 90% yield of the IFα-copaene, corresponding to 3.7% of the total IF. The β-caryophyllene fraction contained 98% of total IFβ-caryophyllene, with a 92% yield.
3.2.2. Preparative HPLC
3.2.3. Chiroptical Characterization of the α-copaene from the DCO
3.3. Attraction Assays
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EC (European Commission). EU Biodiversity Strategy for 2030. Bringing Nature Back into Our Lives. Available online: https://op.europa.eu/en/publication-detail/-/publication/31e4609f-b91e-11eb-8aca-01aa75ed71a1 (accessed on 1 March 2023).
- EC (European Commission). The European Green Deal. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52019DC0640&from=EN (accessed on 1 March 2023).
- Hader, J.D.; Lane, T.; Boxall, A.B.A.; MacLeod, M.; Di Guardo, A. Enabling forecasts of environmental exposure to chemicals in European agriculture under global change. Sci. Total Environ. 2022, 840, 156478. [Google Scholar] [CrossRef]
- Benelli, G.; Daane, K.M.; Canale, A.; Niu, C.Y.; Messing, R.H.; Vargas, R.I. Sexual communication and related behaviours in Tephritidae: Current knowledge and potential applications for Integrated Pest Management. J. Pest Sci. 2014, 87, 385–405. [Google Scholar] [CrossRef]
- Suckling, D.M.; Stringer, L.D.; Stephens, A.E.; Woods, B.; Williams, D.G.; Baker, G.; El-Sayed, A.M. From integrated pest management to integrated pest eradication: Technologies and future needs. Pest Manage. Sci. 2014, 70, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Garcia, F.R.M.; Ovruski, S.M.; Suárez, L.; Cancino, J.; Liburd, O.E. Biological control of tephritid fruit flies in the Americas and Hawaii: A review of the use of parasitoids and predators. Insects 2020, 11, 662. [Google Scholar] [CrossRef] [PubMed]
- Noman, M.S.; Liu, L.; Bai, Z.; Li, Z. Tephritidae bacterial symbionts: Potentials for pest management. Bull. Entomol. Res. 2020, 110, 1–14. [Google Scholar] [CrossRef]
- Spinozzi, E.; Ferrati, M.; Cappellacci, L.; Caselli, A.; Perinelli, D.R.; Bonacucina, G.; Maggi, F.; Strzemski, M.; Petrelli, R.; Pavela, R.; et al. Carlina acaulis L. (Asteraceae): Biology, phytochemistry, and application as a promising source of effective green insecticides and acaricides. Ind. Crops Prod. 2023, 192, 116076. [Google Scholar] [CrossRef]
- de Pedro, L.; Beitia, F.; Tormos, J. Two Better Than One? Potential Effects of Intraguild Predation on the Biological Control of Ceratitis capitata (Diptera: Tephritidae) by the Parasitoid Aganaspis daci (Hymenoptera: Figitidae) and the Predator Pseudoophonus rufipes (Coleoptera: Carabidae). Agronomy 2023, 13, 87. [Google Scholar] [CrossRef]
- Coelho, R.S.; Pec, M.; Silva, A.L.R.; Peñaflor, M.F.G.V.; Marucci, R.C. Predation potential of the earwig Euborellia annulipes on fruit fly larvae and trophic interactions with the parasitoid Diachasmimorpha longicaudata. J. Appl. Entomol. 2023, 147, 147–156. [Google Scholar] [CrossRef]
- Scolari, F.; Valerio, F.; Benelli, G.; Papadopoulos, N.T.; Vaníčková, L. Tephritid fruit fly semiochemicals: Current knowledge and future perspectives. Insects 2021, 12, 408. [Google Scholar] [CrossRef]
- Boulahia-Kheder, S. Advancements in management of major fruit flies (Diptera: Tephritidae) in North Africa and future challenges: A review. J. Appl. Entomol. 2021, 145, 939–957. [Google Scholar] [CrossRef]
- Follett, P.A.; Haynes, F.E.M.; Dominiak, B.C. Host Suitability Index for Polyphagous Tephritid Fruit Flies. J. Econ. Entomol. 2021, 114, 1021–1034. [Google Scholar] [CrossRef] [PubMed]
- Liquido, N.J.; Barr, P.G.; Cunningham, R.T. Medhost: An Encyclopedic Bibliography of the Host Plants of the Mediterranean Fruit by, Ceratitis capitata (Wiedemann) (Electronic Database/Program); USDA-ARS: Washingtonm, DC, USA, 1997; p. ARS-144.
- Alfaro, C.; Vacas, S.; Zarzo, M.; Navarro-Llopis, V.; Primo, J. Solid phase microextraction of volatile emissions of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae): Influence of fly sex, age, and mating status. J. Agric. Food Chem. 2011, 59, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Light, D.M.; Jang, E.B.; Binder, R.G.; Flath, R.A.; Kint, S. Minor and intermediate components enhance attraction of female mediterranean fruit flies to natural male odor pheromone and its synthetic major components. J. Chem. Ecol. 1999, 25, 2757–2777. [Google Scholar] [CrossRef]
- Navarro-Llopis, V.; Primo, J.; Vacas, S. Efficacy of attract-and-kill devices for the control of Ceratitis capitata. Pest Manage. Sci. 2013, 69, 478–482. [Google Scholar] [CrossRef]
- Duarte, F.; Caro, A.; Delgado, S.; Asfennato, A.; López, L.; Hernández, F.; Calvo, M.V. Sterile insect technique (SIT) effectiveness to control Ceratitis capitata (Diptera: Tephritidae) and medfly catches in two mass trapping layouts. Int. J. Pest Manage. 2022, 68, 402–413. [Google Scholar] [CrossRef]
- Bakhtaoui, Z.; Elouissi, M.; Lazreg, F.; Elouissi, A. Evaluation of the effectiveness of two types of traps for Ceratitis capitata (Wiedemann, 1824) (Diptera; Tephritidae). J. Entomol. Res. 2022, 46, 234–237. [Google Scholar] [CrossRef]
- Manrakhan, A.; Daneel, J.H.; Beck, R.; Love, C.N.; Gilbert, M.J.; Virgilio, M.; De Meyer, M. Effects of male lure dispensers and trap types for monitoring of Ceratitis capitata and Bactrocera dorsalis (Diptera: Tephritidae). Pest Manage. Sci. 2021, 77, 2219–2230. [Google Scholar] [CrossRef]
- Bali, E.M.D.; Moraiti, C.A.; Ioannou, C.S.; Mavraganis, V.; Papadopoulos, N.T. Evaluation of mass trapping devices for early seasonal management of Ceratitis capitata (Diptera: Tephritidae) populations. Agronomy 2021, 11, 1101. [Google Scholar] [CrossRef]
- Abu-Ragheef, A.H.; Hamdan, F.Q.; Al-Hussainawy, K.J. Evaluation of type, color of traps and different attractants in attracting and capturing of mediterranean fruit fly Ceratitis capitata (Wied.). Plant Arch. 2020, 20, 52–55. [Google Scholar]
- San Andrés, V.; Ayala, I.; Abad, M.C.; Primo, J.; Castañera, P.; Moya, P. Laboratory evaluation of the compatibility of a new attractant contaminant device containing Metarhizium anisopliae with Ceratitis capitata sterile males. Biol. Control 2014, 72, 54–61. [Google Scholar] [CrossRef]
- Katsoyannos, B.I.; Heath, R.R.; Papadopoulos, N.T.; Epsky, N.D.; Hendrichs, J. Field evaluation of Mediterranean fruit fly (Diptera: Tephritidae) female selective attractants for use in monitoring programs. J. Econ. Entomol. 1999, 92, 583–589. [Google Scholar] [CrossRef]
- Epsky, N.D.; Hendrichs, J.; Katsoyannos, B.I.; Vásquez, L.A.; Ros, J.P.; Zümreoglu, A.; Pereira, R.; Bakri, A.; Seewooruthun, S.I.; Heath, R.R. Field evaluation of female-targeted trapping systems for Ceratitis capitata (Diptera: Tephritidae) in seven countries. J. Econ. Entomol. 1999, 92, 156–164. [Google Scholar] [CrossRef]
- Leblanc, L.; Vargas, R.I.; Rubinoff, D. Attraction of Ceratitis capitata (Diptera: Tephritidae) and endemic and introduced nontarget insects to BioLure bait and its individual components in Hawaii. Environ. Entomol. 2010, 39, 989–998. [Google Scholar] [CrossRef]
- Navarro-Llopis, V.; Alfaro, F.; Domínguez, J.; Sanchis, J.; Primo, J. Evaluation of traps and lures for mass trapping of Mediterranean fruit fly in citrus groves. J. Econ. Entomol. 2008, 101, 126–131. [Google Scholar] [CrossRef]
- Siciliano, P.; He, X.L.; Woodcock, C.; Pickett, J.A.; Field, L.M.; Birkett, M.A.; Kalinova, B.; Gomulski, L.M.; Scolari, F.; Gasperi, G.; et al. Identification of pheromone components and their binding affinity to the odorant binding protein CcapOBP83a-2 of the Mediterranean fruit fly, Ceratitis capitata. Insect Biochem. Mol. Biol. 2014, 48, 51–62. [Google Scholar] [CrossRef][Green Version]
- Gómez-Escobar, E.; Alavez-Rosas, D.; Castellanos, D.; Quintero-Fong, L.; Liedo, P.; Malo, E.A. Effect of Aging on Three Lures Used for Monitoring Ceratitis capitata (Diptera: Tephritidae): Release Rate, Volatile Composition, and Fly Recaptures. J. Econ. Entomol. 2022, 115, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Broughton, S.; Rahman, T. Evaluation of lures and traps for male and female monitoring of Mediterranean fruit fly in pome and stone fruit. J. Appl. Entomol. 2017, 141, 441–449. [Google Scholar] [CrossRef]
- Hill, A.R. Comparison between trimedlure and capilure®–attractants for male Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Aust. J. Entomol. 1987, 26, 35–36. [Google Scholar] [CrossRef]
- Domínguez-Ruiz, J.; Sanchis, J.; Navarro-Llopis, V.; Primo, J. A new long-life trimedlure dispenser for mediterranean fruit fly. J. Econ. Entomol. 2008, 101, 1325–1330. [Google Scholar] [CrossRef]
- Kouloussis, N.A.; Mavraganis, V.G.; Damos, P.; Ioannou, C.A.; Bempelou, E.; Koveos, D.S.; Papadopoulos, N.T. Trapping of Ceratitis capitata using the low-cost and non-toxic attractant Biodelear. Agronomy 2022, 12, 525. [Google Scholar] [CrossRef]
- Barud, F.J.; Gómez, M.P.; Ruiz, M.J.; Bachmann, G.E.; Goane, L.; Segura, D.F.; Lara, N.; Murúa, F.; Asfennato, A.; Gómez, E.; et al. Sexual competitiveness of sterile Ceratitis capitata males exposed to essential oils from non-host plant species native to Argentina. Entomol. Exp. Appl. 2023, 171, 146–155. [Google Scholar] [CrossRef]
- Niogret, J.; Epsky, N.D. Attraction of Ceratitis capitata (Diptera: Tephritidae) sterile males to essential oils: The importance of linalool. Environ. Entomol. 2018, 47, 1287–1292. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.; Yuval, B.; Liedo, P.; Teal, P.E.A.; Shelly, T.E.; McInnis, D.O.; Hendrichs, J. Improving sterile male performance in support of programmes integrating the sterile insect technique against fruit flies. J. Appl. Entomol. 2013, 137, 178–190. [Google Scholar] [CrossRef]
- Kouloussis, N.A.; Katsoyannos, B.I.; Papadopoulos, N.T.; Ioannou, C.S.; Iliadis, I.V. Enhanced mating competitiveness of Ceratitis capitata males following exposure to citrus compounds. J. Appl. Entomol. 2013, 137, 30–38. [Google Scholar] [CrossRef]
- Shelly, T.E. Exposure to α-copaene and α-copaene-containing oils enhances mating success of male Mediterranean fruit flies (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 2001, 94, 497–502. [Google Scholar] [CrossRef]
- Warthen, J.D., Jr.; McInnis, D.O. Isolation and identification of male medfly attractive components in Litchi chinensis stems and Ficus spp. stem exudates. J. Chem. Ecol. 1989, 15, 1931–1946. [Google Scholar] [CrossRef]
- Cunningham, R.T. Parapheromones. In Fruit Flies: Their Biology, Natural Enemies and Control; Robinson, A.S., Hooper, G., Eds.; Elsevier: Amsterdam, Netherlands, 1989; Volume 3A, pp. 221–230. [Google Scholar]
- Steiner, L.F.; Miyashita, D.H.; Christenson, L.D. Angelica oils as Mediterranean fruit fly lures. J. Econ. Entomol. 1957, 50, 505. [Google Scholar] [CrossRef]
- Steiner, L.F.; Rohwer, G.G.; Ayers, E.L.; Christenson, L.D. The role of attractants in the recent Mediterranean fruit fly eradication program in Florida. J. Econ. Entomol. 1961, 50, 30–35. [Google Scholar] [CrossRef]
- Fornasiero, U.; Guiotto, A.; Caporale, G.; Baccichetti, F.; Musajo, L. Identificazione della sostanza attrattiva per i maschi della Ceratitis capitata, contenunuta nell’olio essenziale dei semi di Angelica archangelica. Gazz. Chim. Ital. 1969, 99, 700–710. [Google Scholar]
- Duke, J.A. Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants: Herbal Reference Library, 2nd ed.; Routledge: New York, NY, USA, 2001; 674p. [Google Scholar] [CrossRef]
- Blythe, E.K.; Tabanca, N.; Demirci, B.; Kendra, P.E. Chemical Composition of Essential Oil From Tetradenia riparia and Its Attractant Activity for Mediterranean Fruit Fly, Ceratitis capitata. Nat. Prod. Commun. 2020, 15. [Google Scholar] [CrossRef]
- Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove essential oil (Syzygium aromaticum L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules 2021, 26, 6387. [Google Scholar] [CrossRef] [PubMed]
- Bauer, K.; Garbe, D.; Surburg, H. Common Fragrance and Flavor Materials: Preparation, Properties and Uses, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2001. [Google Scholar]
- EC (European Commission). Authorising Certain Products and Substances for Use in Organic Production and Establishing Their Lists. C(2021) 5149 Final. Available online: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12377-Organic-farming-list-ofproducts-&-substances-authorised-in-organic-production-update-_en (accessed on 1 March 2023).
- Kumar Pandey, V.; Shams, R.; Singh, R.; Dar, A.H.; Pandiselvam, R.; Rusu, A.V.; Trif, M. A comprehensive review on clove (Caryophyllus aromaticus L.) essential oil and its significance in the formulation of edible coatings for potential food applications. Front. Nutr. 2022, 9, 987674. [Google Scholar] [CrossRef] [PubMed]
- Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla-Nakbi, A.B.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review. Phytother. Res. 2007, 21, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oils by Ion-Trap Mass Spectroscopy; Academic Press Inc.: San Diego, CA, USA, 1989. [Google Scholar] [CrossRef]
- Nishida, R.; Shelly, T.E.; Whittier, T.S.; Kaneshiro, K.Y. α-Copaene, a potential rendezvous cue for the Mediterranean fruit fly, Ceratitis capitata? J. Chem. Ecol. 2000, 26, 87–100. [Google Scholar] [CrossRef]
- Flath, R.A.; Cunningham, R.T.; Mon, T.R.; John, J.O. Additional male Mediterranean fruitfly (Ceratitis capitata Wied.) attractants from angelica seed oil (Angelica archangelica L.). J. Chem. Ecol. 1994, 20, 1969–1984. [Google Scholar] [CrossRef]
- Jacobson, M.; Uebel, E.C.; Lusby, W.R.; Waters, R.M. Optical isomers of α-copaene derived from several plant sources. J. Agric. Food Chem. 1987, 35, 798–800. [Google Scholar] [CrossRef]
- Shelly, T.E.; Edu, J. Capture of mass-reared vs. wild-like males of Ceratitis capitata (Dipt., Tephritidae) in trimedlure-baited traps. J. Appl. Entomol. 2009, 133, 640–646. [Google Scholar] [CrossRef]
- Gonçalves, M.A. Mass trapping of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) on pomegranate in southern Portugal (Algarve). Acta Hortic. 2019, 1254, 269–274. [Google Scholar] [CrossRef]
- Howse, P.E.; Stevens, I.D.; Jones, C.O. Insect Pheromones and Their Use in Pest Management; Springer: Dordrecht, Netherlands, 1998; pp. 280–313. [Google Scholar]
- Leonhardt, B.A.; Rice, R.E.; Harte, E.M.; Cunningham, R.T. Evaluation of dispensers containing trimedlure, the attractant for the Mediterranean fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 1984, 77, 744–749. [Google Scholar] [CrossRef]
- Shelly, T.; Kurashima, R. Field capture of male Mediterranean fruit flies (Diptera: Tephritidae) in traps baited with varying amounts of trimedlure. Fla. Entomol. 2020, 103, 16–22. [Google Scholar] [CrossRef][Green Version]
- Bayoumy, M.H.; El-Metwally, M.M.; El-Adly, R.A.; Majerus, T.M.O. Improving the lifetime efficiency of trimedlure-dispensing system in trapping the fruit fly Ceratitis capitata using polyethylene matrix. J. Econ. Entomol. 2020, 113, 315–320. [Google Scholar] [CrossRef]
- Dean, D.; Pierre, H.; Mosser, L.; Kurashima, R.; Shelly, T. Field longevity and attractiveness of trimedlure plugs to male ceratitis capitata in Florida and Hawaii. Fla. Entomol. 2018, 101, 441–446. [Google Scholar] [CrossRef][Green Version]
- Leonhardt, B.A.; Cunningham, R.T.; Rice, R.E.; Harte, E.M.; McGovern, T.P. Performance of controlled release formulations of trimedlure to attract the Mediterranean fruit fly (Ceratitis capitata). Entomol. Exp. Appl. 1987, 44, 45–51. [Google Scholar] [CrossRef]
- Shelly, T.E.; Pahio, E. Relative attractiveness of enriched ginger root oil and trimedlure to male Mediterranean fruit flies (Diptera: Tephritidae). Fla. Entomol. 2002, 85, 545–551. [Google Scholar] [CrossRef]
- Moshrefi Zenoozi, Z.; Soltaninezhad, B.; Hashemi, M.; Noori, S.M.A. A review of effective essential oils and their biologically active compounds to protect the safety of food stored against insect pests. J. Essent. Oil Res. 2022, 34, 111–122. [Google Scholar] [CrossRef]
- Lucia, A.; Guzmán, E. Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management. Adv. Colloid. Interface Sci. 2021, 287, 102330. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Kedia, A.; Das, S.; Dubey, N.K. Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: Prospects and retrospects. Environ. Sci. Pollut. Res. 2021, 28, 18918–18940. [Google Scholar] [CrossRef]
- Heathcock, C.H.; Badger, R.A.; Patterson, J.W., Jr. Total synthesis of (±)-copaene and (±)-ylangene. A General Method for the Synthesis of Tricyclo[4.4.0.02,7]decanes. J. Am. Chem. Soc. 1967, 89, 4133–4145. [Google Scholar] [CrossRef]
- Corey, E.J.; Watt, D.S. A Total Synthesis of (±)-α- and (±)-β-Copaenes and Ylangenes. J. Am. Chem. Soc. 1973, 95, 2303–2311. [Google Scholar] [CrossRef]
- Heathcock, C.H. The Total Synthesis of (±)-Copaene and (±)-8-Isocopaene. J. Am. Chem. Soc. 1966, 88, 4110–4112. [Google Scholar] [CrossRef]
- Archer, D.A.; Bromidge, S.M.; Sammes, P.G. Studies on a new route to (±)-copaene and (±)-ylangene. J. Chem. Soc. Perkin trans. 1 1988, 1, 3223–3228. [Google Scholar] [CrossRef]
- Wenkert, E.; Bookser, B.C.; Arrhenius, T.S. Total Syntheses of (±)-α-and (±)-β-Copaene and Formal Total Syntheses of (±)-Sativene, (±)-cis-Sativenediol, and (±)-Helminthosporalt. J. Am. Chem. Soc. 1992, 114, 644–654. [Google Scholar] [CrossRef]
- Morris, W.L.; Ducreux, L.J.M.; Shepherd, T.; Lewinsohn, E.; Davidovich-Rikanati, R.; Sitrit, Y.; Taylor, M.A. Utilisation of the MVA pathway to produce elevated levels of the sesquiterpene α-copaene in potato tubers. Phytochemistry 2011, 72, 2288–2293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhao, X.; He, X.; Yang, L.; Wang, Y.; Liu, F.; Wang, C.; Hua, Q.; Wu, Y.; Liu, Z. Metabolic engineering of Escherichia coli for the biosynthesis of α-copaene from glucose. Biochem. Eng. J. 2022, 186, 108561. [Google Scholar] [CrossRef]
- Izadi, R.; Assarian, D.; Altaee, A.; Mahinroosta, M. Investigation of methods for fuel desulfurization wastewater treatment. Chem. Eng. Res. Des. 2023, 190, 198–219. [Google Scholar] [CrossRef]
- Faisal, F.; Rasul, M.G.; Jahirul, M.I.; Schaller, D. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs. Sci. Total Environ. 2023, 861, 160721. [Google Scholar] [CrossRef]
- Bamasag, A.; Almatrafi, E.; Alqahtani, T.; Phelan, P.; Ullah, M.; Mustakeem, M.; Obaid, M.; Ghaffour, N. Recent advances and future prospects in direct solar desalination systems using membrane distillation technology. J. Clean. Prod. 2023, 385, 135737. [Google Scholar] [CrossRef]
- Alves-Ferreira, J.; Duarte, L.C.; Fernandes, M.C.; Pereira, H.; Carvalheiro, F. Cistus ladanifer as a potential feedstock for biorefineries: A review. Energies 2023, 16, 391. [Google Scholar] [CrossRef]
- Roni, K.A.; Martini, S. The effectiveness of octane booster as additive for fuel quality improvement. Asia-Pac. J. Sci. Technol. 2022, 27. [Google Scholar] [CrossRef]
- Thomann, R.; Bauermann, U.; Trautmann, S.; Trautmann, L. Experiences in the development of a container system for the distillation of essential oils at the agrargenossenschaft hedersleben e.G. Z. Arznei Gewurzpflanz. 2012, 17, 84–88. [Google Scholar]
- Shaw, D.; Tripathi, A.D.; Paul, V.; Agarwal, A.; Mishra, P.K.; Kumar, M. Valorization of essential oils from citrus peel powder using hydro-distillation. Sustain. Chem. Pharm. 2023, 32, 101036. [Google Scholar] [CrossRef]
- Ainane, A.; Mohamed Abdoul-Latif, F.; Mohamed Abdoul-Latif, T.; Ainane, T. Evaluation of biological activities of two essential oils as a safe environmental bioinsecticides: Case of Eucalyptus globulus and Rosmarinus officinalis. Sci. Rev. Eng. Environ. Sci. 2021, 29, 544–556. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential-A review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Hatami, T.; Johner, J.C.F.; Zabot, G.L.; Meireles, M.A.A. Supercritical fluid extraction assisted by cold pressing from clove buds: Extraction performance, volatile oil composition, and economic evaluation. J. Supercrit. Fluids 2019, 144, 39–47. [Google Scholar] [CrossRef]
- Golmakani, M.T.; Zare, M.; Razzaghi, S. Eugenol enrichment of clove bud essential oil using different microwave-assisted distillation methods. Food Sci. Technol. Res. 2017, 23, 385–394. [Google Scholar] [CrossRef][Green Version]
- Ayub, M.A.; Goksen, G.; Fatima, A.; Zubair, M.; Abid, M.A.; Starowicz, M. Comparison of conventional extraction techniques with superheated steam distillation on chemical characterization and biological activities of Syzygium aromaticum L. essential oil. Separations 2023, 10, 27. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Iqbal, J.; Bathula, C.; Al-Muhtaseb, A.H. Challenges and perspectives on innovative technologies for biofuel production and sustainable environmental management. Fuel 2022, 325, 124845. [Google Scholar] [CrossRef]
- Das, N.; Dey, A.; Mandal, S.K.; Chatterjee, D.; Logesh, R.; Devkota, H.P. Secondary metabolites of clove (Syzygium aromaticum). In Clove (Syzygium aromaticum): Chemistry, Functionality and Applications; Ramadan, M.F., Ed.; Academic Press (Elsevier): London, UK, 2022; pp. 175–193. [Google Scholar] [CrossRef]
- Moustafa, S.A.; Nabih, S.A.; Kenawy, I.M.; Abou-Elzahab, M.M.; Abdel-Mogib, M. Clove oil as a source of attractant pheromones to the fruit flies, Ceratits capitata (Wiedemann) and Bactrocera zonata (saunders) (Diptera: Tephritidae). J. Plant. Protect. Pathol. 2012, 3, 1377–1385. [Google Scholar] [CrossRef]
- Hu, Z.J.; Yang, J.W.; Chen, Z.H.; Chang, C.; Ma, Y.P.; Li, N.; Deng, M.; Mao, G.L.; Bao, Q.; Deng, S.Z.; et al. Exploration of clove bud (Syzygium aromaticum) essential oil as a novel attractant against Bactrocera dorsalis (Hendel) and its safety evaluation. Insects 2022, 13, 918. [Google Scholar] [CrossRef]
- Singh, G.; Arora, H.; Hariprasad, P.; Sharma, S. Development of clove oil based nanoencapsulated biopesticide employing mesoporous nanosilica synthesized from paddy straw via bioinspired sol-gel route. Environ. Res. 2023, 220, 115208. [Google Scholar] [CrossRef]
- Milićević, Z.; Krnjajić, S.; Stević, M.; Ćirković, J.; Jelušić, A.; Pucarević, M.; Popović, T. Encapsulated clove bud essential oil: A new perspective as an eco-friendly biopesticide. Agriculture 2022, 12, 338. [Google Scholar] [CrossRef]
- Coetzee, D.; Militky, J.; Venkataraman, M. Functional coatings by natural and synthetic agents for insect control and their applications. Coatings 2022, 12, 476. [Google Scholar] [CrossRef]
- Casaña-Giner, V.; Navarro-Llopis, V.; Levi, V.; Jang, E.B. Implication of SAR of male medfly attractants in insect olfaction. SAR QSAR Environ. Res. 2002, 13, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Flath, R.A.; Cunningham, R.T.; Mon, T.R.; John, J.O. Male lures for mediterranean fruitfly (Ceratitis capitata Wied.): Structural analogs of α-copaene. J. Chem. Ecol. 1994, 20, 2595–2609. [Google Scholar] [CrossRef] [PubMed]
- Delrio, G.; Nannini, M.; Ortu, S. Field observations on attraction of Ceratitis capitata Wiedemann to alphacopaene. Bull. OILB SROP 1995, 18, 136–139. [Google Scholar]
- Shelly, T.E.; Cowan, A.N.; Edu, J.; Pahio, E. Mating success of male Mediterranean fruit flies following exposure to two sources of α-copaene, manuka oil and mango. Fla. Entomol. 2008, 91, 9–15. [Google Scholar] [CrossRef]
- De Alfonso, I.; Vacas, S.; Primo, J. Role of α-copaene in the susceptibility of olive fruits to Bactrocera oleae (Rossi). J. Agric. Food Chem. 2014, 62, 11976–11979. [Google Scholar] [CrossRef]
- Owens, D.; Kendra, P.E.; Tabanca, N.; Narvaez, T.I.; Montgomery, W.S.; Schnell, E.Q.; Carrillo, D. Quantitative analysis of contents and volatile emissions from α-copaene and quercivorol lures, and longevity for attraction of Euwallacea nr. fornicatus in Florida. J. Pest Sci. 2019, 92, 237–252. [Google Scholar] [CrossRef]
- Kendra, P.E.; Montgomery, W.S.; Schnell, E.Q.; Deyrup, M.A.; Epsky, N.D. Efficacy of α-copaene, cubeb, and eucalyptol lures for detection of redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae). J. Econ. Entomol. 2016, 109, 2428–2435. [Google Scholar] [CrossRef][Green Version]
Fraction | Vol (mL) | % | Tª (°C) | α-cubebene (%) | α-copaene (%) | β-caryophyllene (%) | α-humulene (%) | δ-cadinene (%) |
---|---|---|---|---|---|---|---|---|
Total | 500 | 0.76 | 2.12 | 87.63 | 8.46 | 1.03 | ||
DCO1 | 5.3 | 1.06 | 40–106 | 5.15 | 5.79 | 62.32 | 2.21 | ND |
DCO2 | 14.1 | 2.82 | 106–114 | 4.81 | 6.06 | 82.91 | 3.03 | ND |
DCO3 | 133.9 | 26.78 | 114–122 | 1.30 | 3.48 | 88.51 | 5.02 | 0.05 |
DCO4 | 82.7 | 16.54 | 122 | 0.54 | 2.3 | 89.21 | 6.58 | 0.28 |
DCO5 | 153 | 30.6 | 122 | 0.18 | 1.28 | 87.88 | 8.66 | 0.51 |
DCO6 | 31.5 | 6.3 | 122 | ND | 0.52 | 85 | 13 | 1.03 |
DCO7 | 79.5 | 15.9 | – | ND | ND | 52.19 | 16.63 | 8.24 |
Fraction | Vol (mL) | % | Tª (°C) | α-cubebene (%) | α-copaene (%) | β-caryophyllene (%) | α-humulene (%) |
---|---|---|---|---|---|---|---|
Total | 500 | 2.46 | 4.62 | 86.27 | 6.02 | ||
IF1 | 16 | 3.2 | 68–109 | 10.02 | 9.75 | 65.63 | 1.78 |
IF2 | 50 | 17.6 | 109 | 5.12 | 7.50 | 82.00 | 2.63 |
IF3 | 396 | 79.2 | – | 1.93 | 4.10 | 86.68 | 6.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lull, C.; Gil-Ortiz, R.; Cantín, Á. A Chemical Approach to Obtaining α-copaene from Clove Oil and Its Application in the Control of the Medfly. Appl. Sci. 2023, 13, 5622. https://doi.org/10.3390/app13095622
Lull C, Gil-Ortiz R, Cantín Á. A Chemical Approach to Obtaining α-copaene from Clove Oil and Its Application in the Control of the Medfly. Applied Sciences. 2023; 13(9):5622. https://doi.org/10.3390/app13095622
Chicago/Turabian StyleLull, Cristina, Ricardo Gil-Ortiz, and Ángel Cantín. 2023. "A Chemical Approach to Obtaining α-copaene from Clove Oil and Its Application in the Control of the Medfly" Applied Sciences 13, no. 9: 5622. https://doi.org/10.3390/app13095622
APA StyleLull, C., Gil-Ortiz, R., & Cantín, Á. (2023). A Chemical Approach to Obtaining α-copaene from Clove Oil and Its Application in the Control of the Medfly. Applied Sciences, 13(9), 5622. https://doi.org/10.3390/app13095622