Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = fruit deformities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3239 KB  
Article
Bacillus velezensis A4 Against Fungal Pathogens via Membrane Integrity Disruption and Cellular Dysfunction in Fungal Pathogens
by Yu Xu, Hongyan Zhu, Wenxin Liu, Meng Wang, Xiaofeng Tang and Min Miao
J. Fungi 2025, 11(12), 851; https://doi.org/10.3390/jof11120851 - 29 Nov 2025
Viewed by 525
Abstract
Fruit decay caused by pathogenic fungi result in serious economic and quality losses during the postharvest stage. Biological control has evolved as a promising solution to these issues due to its environmentally friendly and safe characteristics. This study investigated the inhibitory effect of [...] Read more.
Fruit decay caused by pathogenic fungi result in serious economic and quality losses during the postharvest stage. Biological control has evolved as a promising solution to these issues due to its environmentally friendly and safe characteristics. This study investigated the inhibitory effect of the biological control agent Bacillus velezensis A4 on various fungi and elucidated its antifungal mechanism. The strain demonstrated an antagonistic effect against 12 pathogenic fungi to different degrees, as well as the primary antifungal substances present in the cell-free supernatant (CFS). CFS induces the deformation of pathogenic hyphae and disrupts the permeability of hyphal cell membranes for effective biological control. Transcriptome and metabolome analysis showed that CFS disrupted lipid homeostasis and intracellular organization. In addition, the application of CFS leads to upregulation of membrane oxidation-related genes and the caspase gene family, thereby initiating the process of apoptosis. Our findings suggest that the broad-spectrum antifungal activity exhibited by B. velezensis A4 in CFS is due to the disruption of fungal cell membrane integrity and induction of fungal cell apoptosis-related pathways. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

17 pages, 1939 KB  
Article
Turning Fruit Seed Oils into High-Performance Open-Cell Polyurethane Foams: A Green Route to Petrochemical Polyol-Free Insulation
by Maria Kurańska, Elżbieta Malewska, Mateusz Barczewski, Joanna Banaś, Aleksandra Put, Julia Sędzimir, Hubert Ożóg, Natalia Kowalik, Marcin Zemła and Michał Kucała
Materials 2025, 18(23), 5387; https://doi.org/10.3390/ma18235387 - 29 Nov 2025
Viewed by 1145
Abstract
Five types of fruit seed oils have been described from the perspective of their potential use in the synthesis of biopolyols. The overall goal is to increase the participation of biopolyurethanes in polymer production, aligning with the European Green Deal. Blackcurrant, cherry, grape, [...] Read more.
Five types of fruit seed oils have been described from the perspective of their potential use in the synthesis of biopolyols. The overall goal is to increase the participation of biopolyurethanes in polymer production, aligning with the European Green Deal. Blackcurrant, cherry, grape, pomegranate, and watermelon seed oils were characterized by iodine value, acid value, density, average molecular weight, viscosity, and fatty acid profile. The thermal properties of the oils were also determined using thermogravimetry (TGA) and differential scanning calorimetry (DSC). In order to obtain reactive compounds for the synthesis of biopolyols, the vegetable oils were modified using the transesterification reaction with triethanolamine. The resulting biopolyols were characterized by their hydroxyl number, acid number, density, average molar mass, and viscosity. The biopolyols were then used to produce thermal-insulating polyurethane foams by completely replacing petrochemical polyols with counterparts derived from fruit seeds. The obtained foams were described by their closed cell content, apparent density, thermal conductivity coefficient, dimensional stability, maximum stress at 10% deformation, thermal stability, oxygen index, and water absorption. In addition, an analysis of the foaming process revealed that the properties of fruit seed oil after chemical modification had an impact on the properties of the open-cell polyurethane foams and the foaming process itself. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

12 pages, 1296 KB  
Article
Mechanical Resistance of New Apple Genotypes for Automated Harvesting
by Martin Císler, František Horejš, Jakub Lev, Petr Novák, Milan Kroulík and Lubor Zelený
Plants 2025, 14(22), 3455; https://doi.org/10.3390/plants14223455 - 12 Nov 2025
Viewed by 468
Abstract
Mechanical damage to apples that occurs without visible skin rupture represents a significant issue during handling and harvesting. The aim of this study was to evaluate the potential for detecting initial internal tissue failure using parameters derived from the deformation curve obtained during [...] Read more.
Mechanical damage to apples that occurs without visible skin rupture represents a significant issue during handling and harvesting. The aim of this study was to evaluate the potential for detecting initial internal tissue failure using parameters derived from the deformation curve obtained during a quasi-static penetration test. Particular attention was given to the parameter Pa, defined as the pressure at the yield point, which indicates the onset of structural failure in the tissue. The occurrence of Pa was monitored across five apple genotypes, and the results demonstrated the parameter’s sensitivity to latent internal damage. The parameter Pc, characterising resistance in the later phase of penetration, also showed a strong correlation with fruit bulk density. Significant differences in all mechanical characteristics were observed between the genotypes. The results highlight the potential of these parameters for assessing varietal suitability for mechanised harvesting and sorting. The proposed methodology is readily applicable in the selection of new genotypes within breeding programmes as well as in post-harvest situations. Full article
Show Figures

Figure 1

12 pages, 251 KB  
Article
Influence of Gaseous Ozone Treatments on Mechanical and Chemical Properties of Japanese Quince Fruits During Storage
by Oskar Basara, Miłosz Zardzewiały, Piotr Kuźniar, Stanisław Pluta, Justyna Belcar and Józef Gorzelany
Foods 2025, 14(19), 3412; https://doi.org/10.3390/foods14193412 - 3 Oct 2025
Cited by 1 | Viewed by 879
Abstract
Chaenomeles japonica (Chaenomeles japonica Thunb. Lindl. ex Spach.) is gaining increasing attention due to its high nutritional value and potential for industrial use. The development of new breeding clones (potential new cultivars) with improved morphological and chemical properties is essential for enhancing [...] Read more.
Chaenomeles japonica (Chaenomeles japonica Thunb. Lindl. ex Spach.) is gaining increasing attention due to its high nutritional value and potential for industrial use. The development of new breeding clones (potential new cultivars) with improved morphological and chemical properties is essential for enhancing its commercial cultivation. In this study, the impact of ozone in its gaseous form and cold storage on the morphological and chemical properties of newly selected Polish clones of Chaenomeles japonica was determined. Breeding clone ‘3b/1’ produced the largest fruits, with a significantly higher average weight of 99.8 g compared to other clones. Fruits of clones ‘3b/1’ and ‘7d/8’ had the greatest tolerance to mechanical damage, requiring the highest force and energy for puncture and showing the most extensive deformation. The highest ascorbic acid content was recorded in clone ‘4c/1’ (117.3 mg·100 g−1), while clone ‘3b/1’ had the highest total phenolic content, reaching 373.92 mg GAE·100 g−1. A 15 min ozone treatment led to an average increase of 5.3% in both ascorbic acid and total phenolic content. In contrast, cold storage for 60 days caused a reduction of approximately 29.66% of ascorbic acid. Clone ‘3b/1’ appears to be the potential new Polish cultivar and an introduction for cultivation due to its large fruit size, their high mechanical tolerance and relatively favorable chemical composition. Full article
(This article belongs to the Special Issue Quality Analysis and Control of Post-Harvest Fruits and Vegetables)
18 pages, 2356 KB  
Article
Effect of Different Larval Diets on Life History Traits and Nutritional Content in Anastrepha fraterculus (Diptera: Tephritidae)
by Fátima L. Fernández, María Josefina Ruiz, Pilar Medina Pereyra, Fabián H. Milla, Alejandra C. Scannapieco, Diego F. Segura, María Teresa Vera, David Nestel and Lucía Goane
Biology 2025, 14(10), 1332; https://doi.org/10.3390/biology14101332 - 27 Sep 2025
Viewed by 999
Abstract
Anastrepha fraterculus (Diptera: Tephritidae) is a major fruit pest in several countries of South America and is mass-reared for use in integrated pest control strategies, including the sterile insect technique (SIT), and as a host for rearing biocontrol agents. Optimizing these rearing protocols [...] Read more.
Anastrepha fraterculus (Diptera: Tephritidae) is a major fruit pest in several countries of South America and is mass-reared for use in integrated pest control strategies, including the sterile insect technique (SIT), and as a host for rearing biocontrol agents. Optimizing these rearing protocols requires a deeper understanding of how larval diet impacts adult traits. This study investigated the effects of three larval diet formulations differing in nutrient composition on larval development and adult fitness traits. All diets contained inactive non-hydrolyzed brewer’s yeast and sucrose. Two of them included wheat germ, either alone (wheat germ diet) or combined with mashed carrot (carrot diet), whereas the corn flour diet did not contain wheat germ. The carrot diet produced the heaviest pupae, adults with longer wings, and the lowest rate of deformed adults. The corn flour diet prolonged larval and pupal development and increased adult lipid and carbohydrate content. Both the corn flour and carrot diets led to greater glycogen accumulation and more skewed weight distributions compared to the wheat germ diet. Present results highlight how larval diet composition determines developmental traits with direct consequences on adult physiology in A. fraterculus. These characteristics could enhance the effectiveness of control programs such as SIT and other biological control strategies. Full article
(This article belongs to the Special Issue Feeding Biology and Nutrition in Insects)
Show Figures

Figure 1

25 pages, 487 KB  
Review
Deformable and Fragile Object Manipulation: A Review and Prospects
by Yicheng Zhu, David Yang and Yangming Lee
Sensors 2025, 25(17), 5430; https://doi.org/10.3390/s25175430 - 2 Sep 2025
Cited by 1 | Viewed by 3455
Abstract
Deformable object manipulation (DOM) is a primary bottleneck for the real-world application of autonomous robots, requiring advanced frameworks for sensing, perception, modeling, planning, and control. When fragile objects such as soft tissues or fruits are involved, ensuring safety becomes the paramount concern, fundamentally [...] Read more.
Deformable object manipulation (DOM) is a primary bottleneck for the real-world application of autonomous robots, requiring advanced frameworks for sensing, perception, modeling, planning, and control. When fragile objects such as soft tissues or fruits are involved, ensuring safety becomes the paramount concern, fundamentally altering the manipulation problem from one of pure trajectory optimization to one of constrained optimization and real-time adaptive control. Existing DOM methodologies, however, often fall short of addressing fragility constraints as a core design feature, leading to significant gaps in real-time adaptiveness and generalization. This review systematically examines individual components in DOM with a focus on their effectiveness in handling fragile objects. We identified key limitations in current approaches and, based on this analysis, discussed a promising framework that utilizes both low-latency reflexive mechanisms and global optimization to dynamically adapt to specific object instances. Full article
(This article belongs to the Special Issue Advanced Robotic Manipulators and Control Applications)
Show Figures

Figure 1

21 pages, 12646 KB  
Article
A Vision-Based Information Processing Framework for Vineyard Grape Picking Using Two-Stage Segmentation and Morphological Perception
by Yifei Peng, Jun Sun, Zhaoqi Wu, Jinye Gao, Lei Shi and Zhiyan Shi
Horticulturae 2025, 11(9), 1039; https://doi.org/10.3390/horticulturae11091039 - 2 Sep 2025
Viewed by 932
Abstract
To achieve efficient vineyard grape picking, a vision-based information processing framework integrating two-stage segmentation with morphological perception is proposed. In the first stage, an improved YOLOv8s-seg model is employed for coarse segmentation, incorporating two key enhancements: first, a dynamic deformation feature aggregation module [...] Read more.
To achieve efficient vineyard grape picking, a vision-based information processing framework integrating two-stage segmentation with morphological perception is proposed. In the first stage, an improved YOLOv8s-seg model is employed for coarse segmentation, incorporating two key enhancements: first, a dynamic deformation feature aggregation module (DDFAM), which facilitates the extraction of complex structural and morphological features; and second, an efficient asymmetric decoupled head (EADHead), which improves boundary awareness while reducing parameter redundancy. Compared with mainstream segmentation models, the improved model achieves superior performance, attaining the highest mAP@0.5 of 86.75%, a lightweight structure with 10.34 M parameters, and a real-time inference speed of 10.02 ms per image. In the second stage, the fine segmentation of fruit stems is performed using an improved OTSU thresholding algorithm, which is applied to a single-channel image derived from the hue component of the HSV color space, thereby enhancing robustness under complex lighting conditions. Morphological features extracted from the preprocessed fruit stem, including centroid coordinates and a skeleton constructed via medial axis transform (MAT), are further utilized to establish the spatial relationships with a picking point and cutting axis. The visualization analysis confirms the high feasibility and adaptability of the proposed framework, providing essential technical support for the automation of grape harvesting. Full article
Show Figures

Figure 1

19 pages, 636 KB  
Review
Advances in Cold Stress Response Mechanisms of Cucurbits
by Lili Li, Juan Hou, Jianbin Hu and Wenwen Mao
Horticulturae 2025, 11(9), 1032; https://doi.org/10.3390/horticulturae11091032 - 1 Sep 2025
Cited by 2 | Viewed by 1265
Abstract
Cold stress can inhibit the growth of cucurbits, disrupt pollination and fertilization, induce fruit deformities, reduce plant resistance, and increase susceptibility to diseases, ultimately resulting in yield reduction, quality deterioration, or even complete crop failure. This review focuses on the main cucurbits, such [...] Read more.
Cold stress can inhibit the growth of cucurbits, disrupt pollination and fertilization, induce fruit deformities, reduce plant resistance, and increase susceptibility to diseases, ultimately resulting in yield reduction, quality deterioration, or even complete crop failure. This review focuses on the main cucurbits, such as melon, cucumber, and watermelon, systematically expounding the roles of plant hormones, signaling molecules, soluble sugars, key regulatory factors, molecular mechanisms, and network interactions in their response to cold stress. Furthermore, it highlights future research directions and application potential. By analyzing existing challenges and prospective advancements in this field, the review aims to provide a comprehensive reference for facilitating genetic improvement in cold tolerance. Full article
(This article belongs to the Special Issue Germplasm Resources and Genetics Improvement of Watermelon and Melon)
Show Figures

Figure 1

17 pages, 5981 KB  
Article
Nano Emulsion of Essential Oils Loaded in Chitosan Coating for Controlling Anthracnose in Tomatoes (Solanum lycopersicum) During Storage
by Sibahle Gumede, Semakaleng Mpai, Sreejarani Kesavan Pillai and Dharini Sivakumar
Foods 2025, 14(17), 3038; https://doi.org/10.3390/foods14173038 - 29 Aug 2025
Viewed by 1392
Abstract
Tomato fruit is susceptible to decay caused by Colletotrichum gloeosporioides. An edible coating derived from essential oils loaded into a chitosan polysaccharide polymer is a sustainable delivery approach to improve coating versatility and stability for reduced reliance on synthetic fungicides to combat anthracnose [...] Read more.
Tomato fruit is susceptible to decay caused by Colletotrichum gloeosporioides. An edible coating derived from essential oils loaded into a chitosan polysaccharide polymer is a sustainable delivery approach to improve coating versatility and stability for reduced reliance on synthetic fungicides to combat anthracnose incidence in tomatoes. The objective of this study was to evaluate the antifungal efficacy of nanostructured thyme essential oil incorporated into chitosan coatings [Nano-(T)-EO-CS] against Colletotrichum gloeosporioides in tomato fruits, and to investigate the underlying mechanisms contributing to its inhibitory effects. Nano-(T)-EO of (1% v/v) showed the greatest antifungal activities while achieving complete inhibition of C. gloeosporioides. At (0.8% w/v) concentration, chitosan inhibited 78% of radial mycelial growth in C. gloeosporioides. Loading Nano-(T)-EO (1% v/v) into chitosan (0.8% w/v) completely inhibited spore germination (100%). The surface electron microscopy revealed that the Nano-(T)-EO-CS coating induced significant deformation and inhibited the growth of C. gloeosporioides. Compared with the control, the Nano-(T)-EO-CS coating reduced disease incidence by 50%, whereas the commercial antifungal agent Sporekill® reduced incidence by 40% in preventively inoculated tomatoes stored at 10 °C and 85% relative humidity (RH) for 14 days after harvest, and at 18 °C for 3 days at the market shelf condition. Despite chitinase activity peaking on day 14 of cold storage, it peaked significantly on day 7 in Nano-(T)-EO-CS and Sporekill®-treated tomatoes. The Nano-(T)-EO-CS coating enhanced ferric-reducing antioxidant power and total phenol content in tomatoes for 7 and 14 d of postharvest storage. The chitosan-based edible coating loaded with thyme essential oil offers a sustainable, eco-friendly alternative to chemical fungicides for improving tomato shelf life and reducing decay. Full article
Show Figures

Graphical abstract

25 pages, 9225 KB  
Article
Enhanced YOLO11n-Seg with Attention Mechanism and Geometric Metric Optimization for Instance Segmentation of Ripe Blueberries in Complex Greenhouse Environments
by Rongxiang Luo, Rongrui Zhao and Bangjin Yi
Agriculture 2025, 15(15), 1697; https://doi.org/10.3390/agriculture15151697 - 6 Aug 2025
Viewed by 956
Abstract
This study proposes an improved YOLO11n-seg instance segmentation model to address the limitations of existing models in accurately identifying mature blueberries in complex greenhouse environments. Current methods often lack sufficient accuracy when dealing with complex scenarios, such as fruit occlusion, lighting variations, and [...] Read more.
This study proposes an improved YOLO11n-seg instance segmentation model to address the limitations of existing models in accurately identifying mature blueberries in complex greenhouse environments. Current methods often lack sufficient accuracy when dealing with complex scenarios, such as fruit occlusion, lighting variations, and target overlap. To overcome these challenges, we developed a novel approach that integrates a Spatial–Channel Adaptive (SCA) attention mechanism and a Dual Attention Balancing (DAB) module. The SCA mechanism dynamically adjusts the receptive field through deformable convolutions and fuses multi-scale color features. This enhances the model’s ability to recognize occluded targets and improves its adaptability to variations in lighting. The DAB module combines channel–spatial attention and structural reparameterization techniques. This optimizes the YOLO11n structure and effectively suppresses background interference. Consequently, the model’s accuracy in recognizing fruit contours improves. Additionally, we introduce Normalized Wasserstein Distance (NWD) to replace the traditional intersection over union (IoU) metric and address bias issues that arise in dense small object matching. Experimental results demonstrate that the improved model significantly improves target detection accuracy, recall rate, and mAP@0.5, achieving increases of 1.8%, 1.5%, and 0.5%, respectively, over the baseline model. On our self-built greenhouse blueberry dataset, the mask segmentation accuracy, recall rate, and mAP@0.5 increased by 0.8%, 1.2%, and 0.1%, respectively. In tests across six complex scenarios, the improved model demonstrated greater robustness than mainstream models such as YOLOv8n-seg, YOLOv8n-seg-p6, and YOLOv9c-seg, especially in scenes with dense occlusions. The improvement in mAP@0.5 and F1 scores validates the effectiveness of combining attention mechanisms and multiple metric optimizations, for instance, segmentation tasks in complex agricultural scenes. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

21 pages, 2608 KB  
Article
Quality and Quantity Losses of Tomatoes Grown by Small-Scale Farmers Under Different Production Systems
by Tintswalo Molelekoa, Edwin M. Karoney, Nazareth Siyoum, Jarishma K. Gokul and Lise Korsten
Horticulturae 2025, 11(8), 884; https://doi.org/10.3390/horticulturae11080884 - 1 Aug 2025
Viewed by 3273
Abstract
Postharvest losses amongst small-scale farmers in developing countries are high due to inadequate resources and infrastructure. Among the various affected crops, tomatoes are particularly vulnerable; however, studies on postharvest losses of most fruits and vegetables are limited. Therefore, this study aimed to assess [...] Read more.
Postharvest losses amongst small-scale farmers in developing countries are high due to inadequate resources and infrastructure. Among the various affected crops, tomatoes are particularly vulnerable; however, studies on postharvest losses of most fruits and vegetables are limited. Therefore, this study aimed to assess postharvest tomato losses under different production systems within the small-scale supply chain using the indirect assessment (questionnaires and interviews) and direct quantification of losses. Farmers reported tomato losses due to insects (82.35%), cracks, bruises, and deformities (70.58%), and diseases (64.71%). Chemical sprays were the main form of pest and disease control reported by all farmers. The direct quantification sampling data revealed that 73.07% of the tomatoes were substandard at the farm level, with 47.92% and 25.15% categorized as medium-quality and poor-quality, respectively. The primary contributors to the losses were decay (39.92%), mechanical damage (31.32%), and blotchiness (27.99%). Postharvest losses were significantly higher under open-field production systems compared to closed tunnels. The fungi associated with decay were mainly Geotrichum, Fusarium spp., and Alternaria spp. These findings demonstrate the main drivers behind postharvest losses, which in turn highlight the critical need for intervention through training and support, including the use of postharvest loss reduction technologies to enhance food security. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Graphical abstract

16 pages, 2280 KB  
Article
Mechanical Properties of Korla Fragrant Pear Fruiting Branches and Pedicels: Implications for Non-Destructive Harvesting
by Yanwu Jiang, Jun Chen, Zhiwei Wang, Jianguo Zhou and Guangrui Hu
Horticulturae 2025, 11(8), 880; https://doi.org/10.3390/horticulturae11080880 - 29 Jul 2025
Viewed by 991
Abstract
The Korla fragrant pear is a highly valued economic fruit in China’s Xinjiang region. However, biomechanical data on the fruit-bearing branches and pedicels of this species remain incomplete, which to some extent hinders the advancement of harvesting equipment and techniques. Therefore, refining these [...] Read more.
The Korla fragrant pear is a highly valued economic fruit in China’s Xinjiang region. However, biomechanical data on the fruit-bearing branches and pedicels of this species remain incomplete, which to some extent hinders the advancement of harvesting equipment and techniques. Therefore, refining these data is of great significance for the development of efficient and non-destructive harvesting strategies. This study aims to elucidate the mechanical properties of the fruiting branches and peduncles of Korla fragrant pears, thereby establishing a theoretical foundation for the future development of intelligent harvesting technology for this variety. The research utilized axial and radial compression tests, along with three-point bending test methods, to quantitatively analyze the elastic modulus and shear modulus of the branches and peduncles. The test results reveal that the elastic modulus of the fruiting branches under axial compression is 263.51 ± 76.51 MPa, while under radial compression, it measures 135.53 ± 73.73 MPa (where ± represents the standard deviation). In comparison, the elastic modulus of the peduncles is recorded at 152.96 ± 119.95 MPa. Additionally, the three-point bending test yielded a shear modulus of 75.48 ± 32.84 MPa for the branches and 30.23 ± 8.50 MPa for the peduncles. Using finite element static structural analysis, the simulation results aligned closely with the experimental data, falling within an acceptable error range, thus validating the reliability of the testing methods and outcomes. The mechanical parameters obtained in this study are critical for modeling the stress and deformation behaviors of pear-bearing structures during mechanical harvesting. These findings provide valuable theoretical support for the optimization of harvesting device design and operational strategies, with the aim of reducing fruit damage and improving harvesting efficiency in pear orchards. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

26 pages, 13192 KB  
Article
Investigating a Large-Scale Creeping Landmass Using Remote Sensing and Geophysical Techniques—The Case of Stropones, Evia, Greece
by John D. Alexopoulos, Ioannis-Konstantinos Giannopoulos, Vasileios Gkosios, Spyridon Dilalos, Nicholas Voulgaris and Serafeim E. Poulos
Geosciences 2025, 15(8), 282; https://doi.org/10.3390/geosciences15080282 - 25 Jul 2025
Viewed by 1019
Abstract
The present paper deals with an inhabited, creeping mountainous landmass with profound surface deformation that affects the local community. The scope of the paper is to gather surficial and subsurface information in order to understand the parameters of this creeping mass, which is [...] Read more.
The present paper deals with an inhabited, creeping mountainous landmass with profound surface deformation that affects the local community. The scope of the paper is to gather surficial and subsurface information in order to understand the parameters of this creeping mass, which is usually affected by several parameters, such as its geometry, subsurface water, and shear zone. Therefore, a combined aerial and surface investigation has been conducted. The aerial investigation involves UAV’s LiDAR acquisition for the terrain model and a comparison of historical aerial photographs for land use changes. The multi-technique surface investigation included resistivity (ERT) and seismic (SRT, MASW) measurements and density determination of geological formations. This combination of methods proved to be fruitful since several aspects of the landslide were clarified, such as water flow paths, the internal geological structure of the creeping mass, and its geometrical extent. The depth of the shear zone of the creeping mass is delineated at the first five to ten meters from the surface, especially from the difference in diachronic resistivity change. Full article
Show Figures

Figure 1

22 pages, 2429 KB  
Article
Integrated Physical–Mechanical Characterization of Fruits for Enhancing Post-Harvest Quality and Handling Efficiency
by Mohamed Ghonimy, Raed Alayouni, Garsa Alshehry, Hassan Barakat and Mohamed M. Ibrahim
Foods 2025, 14(14), 2521; https://doi.org/10.3390/foods14142521 - 18 Jul 2025
Cited by 2 | Viewed by 2123
Abstract
Quality and mechanical resilience are crucial for reducing losses in fruit production and for supporting food chains. Indeed, integrating empirical data with rheological models bridges gaps in fruit processing equipment design. Therefore, the objective of this research is to analyze the relationship between [...] Read more.
Quality and mechanical resilience are crucial for reducing losses in fruit production and for supporting food chains. Indeed, integrating empirical data with rheological models bridges gaps in fruit processing equipment design. Therefore, the objective of this research is to analyze the relationship between the mechanical and physical properties of seven economically important fruits—nectarine, kiwi, cherry, apple, peach, pear, and apricot—to assess their mechanical behavior and post-harvest quality. Standardized compression, creep, and puncture tests were conducted to establish mechanical parameters, such as rupture force, elasticity, and deformation energy. Physical characteristics including size, weight, density, and moisture content were also measured. The results indicated significant differences among the various categories of fruits; apples and pears were most suitable for mechanical harvesting and long storage periods, whereas cherries and apricots were least resistant and susceptible to injury. Correlations were high among the physical measurements, tissue firmness, and viscoelastic properties, thereby confirming structural properties’ contribution in influencing fruit quality and handling efficiency. The originality of this research is in its holistic examination of physical and mechanical properties under standardized testing conditions, thus offering an integrated framework for enhancing post-harvest operations. These findings offer practical insights for optimizing harvesting, packaging, transportation, and quality monitoring strategies based on fruit-specific mechanical profiles. Full article
Show Figures

Figure 1

22 pages, 5828 KB  
Article
An Accurate Optimized Contour Segmentation Model for Green Spherical Fruits
by Ting Zhang, Ying Xu, Kai Cao, Xiude Chen, Qiaolian Liu and Weikuan Jia
Horticulturae 2025, 11(7), 761; https://doi.org/10.3390/horticulturae11070761 - 1 Jul 2025
Viewed by 714
Abstract
Accurate fruit detection in complex orchard environments remains challenging due to variable lighting conditions and weather factors. This paper proposes an optimized contour segmentation model for green spherical fruits (apples and persimmons) based on the E2EC framework. The model employs DLA34 as the [...] Read more.
Accurate fruit detection in complex orchard environments remains challenging due to variable lighting conditions and weather factors. This paper proposes an optimized contour segmentation model for green spherical fruits (apples and persimmons) based on the E2EC framework. The model employs DLA34 as the backbone network for feature extraction enhanced by a path aggregation balanced feature pyramid network (PAB FPN) with embedded attention mechanisms to refine feature representation. For contour segmentation, we introduce a Cycle MLP Aggregation Deformation (CMAD) module that incorporates cycleMLP to expand the receptive field and improve contour accuracy. Experimental results demonstrate the model’s effectiveness, achieving average precision (AP) and average recall (AR) of 75.5% and 80.4%, respectively, for green persimmons and 57.8% and 64.0% for green apples, outperforming previous segmentation methods. These advancements contribute to the development of more robust smart agriculture systems. Full article
Show Figures

Figure 1

Back to TopTop