Influence of Gaseous Ozone Treatments on Mechanical and Chemical Properties of Japanese Quince Fruits During Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ozone Treatment
2.3. Determination of Water Content
2.4. Evaluation of Morphological Features of Chaenomeles japonica Fruits
- φ—sphericity [%];
- L—length of the fruit [mm];
- D—diameter of the fruit [mm].
2.5. Determination of Fruits Color
2.6. Mechanical Properties of Chaenomeles japonica Fruits
2.7. Determination of pH and Acidity
2.8. Determination of Bioactive Components
2.9. Statistical Analysis
3. Results and Discussion
3.1. Determination of Morphological Features of Chaenomeles japonica
3.2. Determination of Mechanical Propeties
3.3. Determination of Fruits Color
3.4. Chemical Properties of Chaenomeles japonica Fruits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urbanavičiūtė, I.; Viškelis, P. Biochemical composition of Chaenomeles japonica (Chaenomeles japonica) and its promising value for food, cosmetic, and pharmaceutical industries. In Fruit Industry; IntechOpen: London, UK, 2022. [Google Scholar]
- Radziejewska-Kubzdela, E.; Górnaś, P. Impact of genotype on carotenoids profile in Chaenomeles japonica (Chaenomeles japonica) seed oil. J. Am. Oil Chem. Soc. 2020, 97, 789–794. [Google Scholar] [CrossRef]
- Marat, N.; Danowska-Oziewicz, M.; Narwojsz, A. Chaenomeles Species-Characteristics of Plant, Fruit and Processed Products: A Review. Plants 2022, 11, 3036. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kazimierczak, R.; Kopczyńska, K.; Ponder, A.; Hallmann, E.; Żebrowska-Krasuska, M.; Średnicka-Tober, D. The Concentrations of Phenolic Compounds and Vitamin C in Chaenomeles japonica (Chaenomeles japonica) Preserves. Foods 2025, 14, 1369. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, R.; Kuang, M.; Li, N. Phytochemistry and Pharmacology of Plants in the Genus Chaenomeles. Arch. Pharmacal Res. 2023, 46, 825–854. [Google Scholar] [CrossRef] [PubMed]
- Adewoyin, O.B. Pre-harvest and postharvest factors affecting quality and shelf life of harvested produce. In New Advances in Postharvest Technology; IntechOpen: London, UK, 2023. [Google Scholar]
- Tatari, M. Postharvest quality of new quince cultivar and promising genotype (Cydonia oblonga Mill.) in response to harvesting time and length of the cold storage period. J. Hortic. Postharvest Res. 2023, 6, 1–14. [Google Scholar]
- Marat, N.; Narwojsz, A.; Polak-Śliwińska, M.; Danowska-Oziewicz, M. The influence of processing on selected physicochemical properties, antioxidant activity and sensory quality of Chaenomeles japonica (Chaenomeles japonica) fruit preserves. Eur. Food Res. Technol. 2025, 251, 327–338. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; Domokos-Szabolcsy, E.; Abdalla, N.A.; Taha, H.S.; Fári, M. Postharvest Management of Fruits and Vegetables Storage. Sustain. Agric. Rev. 2015, 15, 65–152. [Google Scholar]
- Giannakourou, M.C.; Taoukis, P.S. Effect of alternative preservation steps and storage on vitamin C stability in fruit and vegetable products: Critical review and kinetic modelling approaches. Foods 2021, 10, 2630. [Google Scholar] [CrossRef]
- Fan, X. Gaseous ozone to preserve quality and enhance microbial safety of fresh produce: Recent developments and research needs. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4993–5014. [Google Scholar] [CrossRef]
- Sarron, E.; Gadonna-Widehem, P.; Aussenac, T. Ozone treatments for preserving fresh vegetables quality: A critical review. Foods 2021, 10, 605. [Google Scholar] [CrossRef]
- Dubey, P.; Singh, A.; Yousuf, O. Ozonation: An evolving disinfectant technology for the food industry. Food Bioprocess Technol. 2022, 15, 2102–2113. [Google Scholar] [CrossRef] [PubMed]
- Kuźniar, P.; Belcar, J.; Zardzewiały, M.; Basara, O.; Gorzelany, J. Effect of Ozonation on the Mechanical, Chemical, and Microbiological Properties of Organically Grown Red Currant (Ribes rubrum L.) Fruit. Molecules 2022, 27, 8231. [Google Scholar] [CrossRef] [PubMed]
- Matłok, N.; Piechowiak, T.; Krempa, A.; Puchalski, C.; Balawejder, M. Cyclic storage chamber ozonation as a method to inhibit ethylene generation during plum fruit storage. Agriculture 2023, 13, 2274. [Google Scholar] [CrossRef]
- PN-90·A-75101·03:1990; Determination of Dry Matter Content by the Weight Method. Polish Standard. Polish Committee for Standardization: Warsaw, Poland, 1990. (In Polish)
- Szpunar-Krok, E.; Kuźniar, P.; Pawlak, R.; Migut, D. The effect of foliar fertilization on the resistance of pea (Pisum sativum L.) seeds to mechanical damage. Agronomy 2021, 11, 189. [Google Scholar] [CrossRef]
- Commission International de Eclarage (1971) to 1-1. CIE Publication No 15 (E-1.3.1); CIE: Paris, France, 1976. [Google Scholar]
- PN-EN12147:2000; Fruit and Vegetable Juices—Determination of Titrable Acidity. Polish Committee for Standardization: Warsaw, Poland, 2000.
- PN-A-04019:1998; Food Products—Determination of Vitamin C Content. Polski Komitet Normalizacyjny: Warsaw, Poland, 1998.
- Belcar, J.; Buczek, J.; Kapusta, I.; Gorzelany, J. Quality and Pro-Healthy Properties of Belgian Witbier-Style Beers Relative to the Cultivar of Winter Wheat and Raw Materials Used. Foods 2022, 11, 1150. [Google Scholar] [CrossRef]
- Česonienė, L.; Labokas, J.; Jasutienė, I.; Šarkinas, A.; Kaškonienė, V.; Kaškonas, P.; Kazernavičiūtė, R.; Pažereckaitė, A.; Daubaras, R. Bioactive compounds, antioxidant, and antibacterial properties of Lonicera caerulea berries: Evaluation of 11 cultivars. Plants 2021, 10, 624. [Google Scholar] [CrossRef]
- Raudonė, L.; Liaudanskas, M.; Vilkickytė, G.; Kviklys, D.; Žvikas, V.; Viškelis, J.; Viškelis, P. Phenolic profiles, antioxidant activity and phenotypic characterization of Lonicera caerulea L. berries, cultivated in Lithuania. Antioxidants 2021, 10, 115. [Google Scholar] [CrossRef]
- Orsavová, J.; Sytařová, I.; Mlček, J.; Mišurcová, L. Phenolic compounds, vitamins C and E and antioxidant activity of edible honeysuckle berries (Lonicera caerulea L. var. kamtschatica Pojark) in relation to their origin. Antioxidants 2022, 11, 433. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Yang, H.; Qian, J. A dynamic shelf-life prediction method considering actual uncertainty: Application to fresh fruits in long-term cold storage. J. Food Eng. 2023, 349, 111471. [Google Scholar] [CrossRef]
- Smatova, S.; Berdiyev, M.; Baysunov, B.; Zafar, M.; Majeed, S.; Ramadan, M.F.; Makhkamov, T.; Khan, M.R.; Ahmad, K.S.; Abbas, Q.; et al. Phenological and morphological adaptations of Chaenomeles japonica (Chaenomeles japonica—(Thunb.) Lindl. ex Spach.) [Rosaceae]: Insights from palynology and leaf histology. Genet. Resour. Crop Evol. 2025, 72, 8405–8417. [Google Scholar] [CrossRef]
- Stalažs, A.; Sviķe, S.; Veckalne, A. Chaenomeles japonica (Maleae, Amygdaloideae, Rosaceae): Validation of six Alberts Tīcs’ cultivar names and two new synonyms for the species. Phytotaxa 2022, 545, 294–300. [Google Scholar] [CrossRef]
- Botondi, R.; Barone, M.; Grasso, C. A Review into the Effectiveness of Ozone Technology for Improving the Safety and Preserving the Quality of Fresh-Cut Fruits and Vegetables. Foods 2021, 10, 748. [Google Scholar] [CrossRef] [PubMed]
- Afsah-Hejri, L.; Toudeshki, A.; Homayouni, T.; Mehrazi, S.; Pareh, A.G.; Gordon, P.; Ehsani, R. Potential of ozonated-air (OA) application to reduce the weight and volume loss in fresh figs (Ficus carica L.). Postharvest Biol. Technol. 2021, 180, 111631. [Google Scholar] [CrossRef]
- Odarchenko, D.; Odarchenko, A.; Lisnichenko, O.; Spodar, K. Determining the rational modes for low-temperature storage and for obtaining products of Chaenomeles japonica processing with high consumer properties. Eastern-Eur. J. Enterp. Technol. 2019, 3, 23–29. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Satora, P.; Sroka, P.; Pogoń, P.; Machalica, J. Chaenomeles japonica, Cornus mas, Morus nigra fruits characteristics and their processing potential. J. Food Sci. Technol. 2014, 51, 3934–3941. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Zhang, H.; Ban, Z.; Li, L.; Dong, C.; Ji, H.; Xue, W. Label-free quantitative proteomics to investigate the response of strawberry fruit after controlled ozone treatment. RSC Adv. 2019, 9, 676–689. [Google Scholar] [CrossRef]
- Juhnevica-Radenkova, K.; Radenkovs, V.; Krasnova, I. The impact of 1-MCP treatment and controlled atmosphere storage on the postharvest performance of four (Chaenomeles japonica (Thunb.) Lindl. ex Spach) fruit cultivars. J. Food Process. Preserv. 2022, 46, e16193. [Google Scholar] [CrossRef]
- Kassem, H.S.; Tarabih, M.E.; Ismail, H.; Eleryan, E.E. Effectiveness of Ozonated Water for Preserving Quality and Extending Storability of Star Ruby Grapefruit. Processes 2022, 10, 277. [Google Scholar] [CrossRef]
- Zapałowska, A.; Matłok, N.; Zardzewiały, M.; Piechowiak, T.; Balawejder, M. Effect of Ozone Treatment on the Quality of Sea Buckthorn (Hippophae rhamnoides L.). Plants 2021, 10, 847. [Google Scholar] [CrossRef]
- Matłok, N.; Piechowiak, T.; Zardzewiały, M.; Balawejder, M. Effects of Post-Harvest Ozone Treatment on Some Molecular Stability Markers of Amelanchier alnifolia Nutt. Fruit During Cold Storage. Int. J. Mol. Sci. 2022, 23, 11152. [Google Scholar] [CrossRef]
- do Nascimento Nunes, M.C. Color Atlas of Postharvest Quality of Fruits and Vegetables; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Rubinskienė, M.; Viškelis, P.; Viškelis, J.; Bobinaitė, R.; Shalkevich, M.; Pigul, M.; Urbonavičienė, D. 2014. Biochemical composition and antioxidant activity of Chaenomeles japonica (Chaenomeles japonica) fruit, their syrup and candied fruit slices. Sodininkystė Ir Daržininkystė 2014, 33, 45–52. [Google Scholar]
- Turkiewicz, I.P.; Wojdyło, A.; Lech, K.; Tkacz, K.; Nowicka, P. Influence of different drying methods on the quality of Chaenomeles japonica fruit. LWT 2019, 114, 108416. [Google Scholar] [CrossRef]
- Al-Dairi, M.; Pathare, P.B.; Al-Yahyai, R. Effect of postharvest transport and storage on color and firmness quality of tomato. Horticulturae 2021, 7, 163. [Google Scholar] [CrossRef]
- Miao, J.; Zhao, C.; Li, X.; Chen, X.; Mao, X.; Huang, H.; Wang, T.; Gao, W. Chemical composition and bioactivities of two common Chaenomeles fruits in China: Chaenomeles speciosa and Chaenomeles sinensis. J. Food Sci. 2016, 81, H2049–H2058. [Google Scholar] [CrossRef] [PubMed]
- Watychowicz, K.; Janda, K.; Jakubczyk, K.; Wolska, J. Chaenomeles–health promoting benefits. Rocz. Państwowego Zakładu Hig. 2017, 68, 217–227. [Google Scholar]
- Kostecka-Gugała, A. Quinces (Cydonia oblonga, Chaenomeles sp. and Pseudocydonia sinensis) as medicinal fruits of the Rosaceae family: Current state of knowledge on properties and use. Antioxidants 2024, 13, 71. [Google Scholar] [CrossRef] [PubMed]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A-Mbéguié, D.; Bugaud, C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef]
- Hellín, P.; Vila, R.; Jordán, M.J.; Laencina, J.; Rumpunen, K.; Ros, J.M. Characteristics and composition of Chaenomeles fruit juice. In Japanese Quince—Potential Fruit Crop for Northern Europe; Department of Crop Science, Swedish University of Agricultural Sciences: Alnarp, Sweden, 2003. [Google Scholar]
- Baranowska-Bosiacka, I.; Bosiacka, B.; Rast, J.; Gutowska, I.; Wolska, J.; Rębacz-Maron, E.; Dębia, K.; Janda, K.; Korbecki, J.; Chlubek, D. Macro-and microelement content and other properties of Chaenomeles japonica L. fruit and protective effects of its aqueous extract on hepatocyte metabolism. Biol. Trace Elem. Res. 2017, 178, 327–337. [Google Scholar] [CrossRef]
- Verbeyst, L.; Bogaerts, R.; Van der Plancken, I.; Hendrickx, M.; Van Loey, A. Modelling of Vitamin C degradation during thermal and high-pressure treatments of red fruit. Food Bioprocess Technol. 2013, 6, 1015–1023. [Google Scholar] [CrossRef]
- Ros, J.M.; Laencina, J.; Hellín, P.; Jordán, M.J.; Vila, R.; Rumpunem, K. Characterisation of juice in fruits of different Chaenomeles species. Leb.-Wissen Technol. 2004, 37, 301–307. [Google Scholar] [CrossRef]
- Pinto, L.; Palma, A.; Cefola, M.; Pace, B.; D’Aquino, S.; Carboni, C.; Baruzzi, F. Effect of modified atmosphere packaging (MAP) and gaseous ozone pre-packaging treatment on the physico-chemical, microbiological and sensory quality of small berry fruit. Food Packag. Shelf Life 2020, 26, 100573. [Google Scholar] [CrossRef]
- Radenkovs, V.; Krasnova, I.; Cinkmanis, I.; Juhnevica-Radenkova, K.; Rubauskis, E.; Seglina, D. Comparative Analysis of Chaenomeles japonica Juice Concentrate as a Substitute for Lemon Juice Concentrate: Functional Applications as a Sweetener, Acidifier, Stabilizer, and Flavoring Agent. Horticulturae 2024, 10, 1362. [Google Scholar] [CrossRef]
- Klymenko, S.; Kucharska, A.Z.; Sokół-Łętowska, A.; Piórecki, N. Determination of Antioxidant Capacity and Polyphenols Contents in Fruits of Genotypes of Chaenomeles japonica (Thunb.) Lindl. Agrobiodivers. Improv. Nutr. Health Life Qual. 2019, 3, 473–483. [Google Scholar]
- Butkevičiūtė, A.; Urbštaitė, R.; Liaudanskas, M.; Obelevičius, K.; Janulis, V. Phenolic Content and Antioxidant Activity in Fruit of the Genus Rosa L. Antioxidants 2022, 11, 912. [Google Scholar] [CrossRef] [PubMed]
- Piechowiak, T.; Balawejder, M. Impact of ozonation process on the level of selected oxidative stress markers in raspberries stored at room temperature. Food Chem. 2019, 298, 125093. [Google Scholar] [CrossRef]
- Balawejder, M.; Matłok, N.; Sowa, W.; Kończyk, N.; Piechowiak, T.; Zapałowska, A. Effect of two types of ozone treatments on the quality of apple fruits. Acta Univ. Cinbinesis Ser. E Food Technol. 2021, 25, 285–292. [Google Scholar] [CrossRef]
- Basara, O.; Gorzelany, J. Assessment of Selected Chemical and Morphological Properties of Lonicera var. kamtschatica and Lonicera var. emphyllocalyx Treated with Gaseous Ozone. Molecules 2024, 29, 3616. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
- Gutowska, I.; Ścibisz, I.; Kmiecik, D.; Czyż, J.; Klepacki, P.; Byczyńska, U. Fruit and vegetables—Fresh or processed—Which are a better source of vitamin C? Pomeranian J. Life Sci. 2019, 65, 5–9. [Google Scholar] [CrossRef]
- Zheng, X.; Gong, M.; Zhang, Q.; Tan, H.; Li, L.; Tang, Y.; Li, Z.; Peng, M.; Deng, W. Metabolism and Regulation of Ascorbic Acid in Fruits. Plants 2022, 11, 1602. [Google Scholar] [CrossRef]
Variables | Length (mm) | Diameter (mm) | Sphericity (%) | Weight (g) | Density (10−3 kg·m−3) | |
---|---|---|---|---|---|---|
Breeding clone | 3b/1 | 57.49 ± 4.58 e | 56.43 ± 4.97 e | 98.68 ± 3.14 cd | 99.85 ± 21.97 f | 1.035 ± 0.078 b |
4c/1 | 48.25 ± 5.13 d | 52.45 ± 5.68 d | 105.20 ± 4.22 f | 68.60 ± 18.60 e | 0.988 ± 0.090 a | |
7c/10 | 39.02 ± 2.28 a | 40.32 ± 2.00 a | 102.19 ± 2.96 e | 37.41 ± 5.70 a | 1.123 ± 0.062 d | |
7d/8 | 45.59 ± 3.62 bc | 45.57 ± 3.25 c | 100.01 ± 3.16 d | 53.16 ± 12.07 d | 1.059 ± 0.073 bc | |
8c/12 | 46.81 ± 3.49 cd | 44.43 ± 3.38 bc | 96.42 ± 2.77 bc | 51.44 ± 10.05 cd | 1.063 ± 0.099 c | |
10d/8 | 47.02 ± 4.41 cd | 41.57 ± 3.98 ab | 91.90 ± 3.71 a | 49.76 ± 13.93 bc | 1.159 ± 0.049 d | |
12b/5 | 44.52 ± 3.26 b | 42.81 ± 3.29 b | 97.39 ± 3.38 b | 44.25 ± 12.15 ab | 1.018 ± 0.073 ab | |
Duration of storage | 1st day | 49.45 ± 7.06 b | 48.43 ± 7.94 b | 98.37 ± 4.61 a | 67.45 ± 29.06 b | 1.065 ± 0.086 a |
30th day | 45.68 ± 6.40 a | 45.34 ± 6.26 a | 99.46 ± 5.86 a | 53.60 ± 21.64 a | 1.062 ± 0.104 a | |
60th day | 45.75 ± 4.99 a | 44.91 ± 5.47 a | 98.65 ± 4.94 a | 52.29 ± 16.99 a | 1.063 ± 0.090 a | |
Mean | 46.96 ± 6.42 | 46.23 ± 6.78 | 98.83 ± 5.16 | 57.78 ± 23.99 | 1.064 ± 0.093 |
Variables | Moisture Content (%) | Force (N) | Deformation (mm) | Energy (mJ) | |
---|---|---|---|---|---|
Breeding clone | 3b/1 | 85.28 ± 1.21 b | 38.63 ± 6.13 d | 3.34 ± 1.50 d | 87.08 ± 21.88 c |
4c/1 | 85.61 ± 0.40 b | 35.77 ± 4.40 c | 2.29 ± 0.91 bc | 78.99 ± 14.29 b | |
7c/10 | 83.45 ± 1.55 a | 36.24 ± 4.24 c | 2.41 ± 0.88 c | 77.73 ± 11.94 b | |
7d/8 | 85.88 ± 0.96 b | 39.37 ± 7.61 d | 2.56 ± 1.10 c | 81.83 ± 18.55 b | |
8c/12 | 85.45 ± 1.22 b | 28.64 ± 4.92 a | 2.52 ± 1.11 c | 61.73 ± 13.11 a | |
10d/8 | 87.78 ± 0.63 c | 30.43 ± 4.66 b | 1.77 ± 0.75 a | 56.84 ± 10.15 a | |
12b/5 | 85.00 ± 1.12 b | 36.81 ± 5.13 c | 1.99 ± 0.54 ab | 80.41 ± 14.05 b | |
Ozone exposure time | 0 min | 85.45 ± 1.63 a | 35.35 ± 6.87 a | 2.36 ± 1.03 a | 76.36 ± 18.86 b |
15 min | 85.53 ± 1.65 a | 34.97 ± 6.45 a | 2.53 ± 1.19 b | 73.78 ± 17.36 a | |
30 min | 85.50 ± 1.52 a | 35.07 ± 6.40 a | 2.34 ± 1.09 a | 74.69 ± 19.01 a | |
Duration of storage | 1st day30th day60th day | 86.32 ± 1.08 c | 33.73 ± 7.19 a | 1.81 ± 0.36 a | 69.05 ± 9.01 a |
85.71 ± 1.10 b | 36.12 ± 6.58 b | 2.50 ± 0.80 b | 81.79 ± 14.39 b | ||
84.45 ± 1.86 a | 35.53 ± 5.64 b | 3.24 ± 1.16 c | 83.99 ± 18.71 b | ||
Average | 85.49 ± 1.59 | 35.13 ± 6.56 | 2.51 ± 1.11 | 78.27 ± 18.42 |
Variables | L* | a* | b* | |
---|---|---|---|---|
Breeding clone | 3b/1 | 70.91 ± 2.46 e | 10.44 ± 2.12 a | 57.00 ± 2.37 cd |
4c/1 | 69.32 ± 3.50 d | 10.51 ± 2.17 a | 55.69 ± 3.27 c | |
7c/10 | 62.40 ± 5.24 b | 18.35 ± 1.76 c | 53.60 ± 7.35 b | |
7d/8 | 58.71 ± 4.36 a | 19.21 ± 1.57 d | 48.60 ± 6.41 a | |
8c/12 | 68.63 ± 2.01 d | 13.37 ± 1.65 b | 57.87 ± 2.00 d | |
10d/8 | 65.87 ± 3.01 c | 10.77 ± 2.47 a | 49.89 ± 2.35 a | |
12b/5 | 65.77 ± 2.54 c | 13.75 ± 1.34 a | 52.23 ± 2.34 b | |
Ozone exposure time | 0 min | 66.42 ± 4.77 b | 13.45 ± 3.92 a | 53.74 ± 4.71 a |
15 min | 65.71 ± 6.01 a | 14.08 ± 3.96 a | 53.15 ± 6.20 a | |
30 min | 65.70 ± 4.81 a | 13.76 ± 3.83 a | 53.75 ± 5.00 a | |
Duration of storage | 1st day | 67.69 ± 4.17 b | 12.55 ± 3.99 a | 54.95 ± 3.79 b |
30th day | 65.54 ± 4.36 a | 13.75 ± 3.71 b | 53.44 ± 4.41 a | |
60th day | 64.59 ± 6.39 a | 14.99 ± 3.63 c | 52.23 ± 6.95 a | |
Mean | 65.94 ± 5.22 | 13.76 ± 3.90 | 53.550 ± 5.33 |
Variables | pH | Titratable Acidity [g·100 g−1] | |
---|---|---|---|
Cultivar | 3b/1 | 2.85 ± 0.19 a | 3.39 ± 0.24 b |
4c/1 | 3.1 ± 0.08 f | 3.4 ± 0.21 b | |
7c/10 | 2.88 ± 0.11 b | 3.68 ± 0.11 c | |
7d/8 | 3.07 ± 0.12 e | 3.23 ± 0.15 a | |
8c/12 | 3.11 ± 0.07 f | 3.65 ± 0.18 c | |
10d/8 | 2.91 ± 0.13 c | 3.67 ± 0.12 c | |
12b/5 | 3.01 ± 0.10 d | 4.04 ± 0.11 d | |
Ozone exposure time | 0 min | 2.99 ± 0.19 b | 3.57 ± 0.11 a |
15 min | 2.97 ± 0.17 a | 3.6 ± 0.18 b | |
30 min | 3.01 ± 0.18 b | 3.57 ± 0.14 b | |
Duration of storage | 1st day | 2.98 ± 0.11 a | 3.64 ± 0.16 b |
30th day | 2.99 ± 0.08 a | 3.54 ± 0.17 a | |
60th day | 2.99 ± 0.05 a | 3.54 ± 0.18 b | |
Mean | 2.99 ± 0.12 | 3.58 ± 0.16 |
Variables | AA [mg·100 g−1] | TPC [mg GAE·100 g−1] | DPPH [mM TE·100 g−1] | ABTS [mM TE·100 g−1] | FRAP [mM Fe·100 g−1] | |
---|---|---|---|---|---|---|
Breeding clone | 3b/1 | 114.7 ± 17.6 b | 373.92 ± 55.36 de | 2.37 ± 0.13 ab | 1.59 ± 0.10 ab | 0.33 ± 0.02 c |
4c/1 | 117.3 ± 15.7 b | 359.14 ± 26.56 bc | 2.34 ± 0.13 a | 1.64 ± 0.09 c | 0.32 ± 0.02 b | |
7c/10 | 115.7 ± 18.1 b | 365.11 ± 29.31 cd | 2.33 ± 0.14 a | 1.56 ± 0.09 a | 0.33 ± 0.02 bc | |
7d/8 | 107.2 ± 18.3 a | 373.41 ± 27.63 de | 2.33 ± 0.13 a | 1.64 ± 0.10 c | 0.32 ± 0.02 b | |
8c/12 | 108.2 ± 18.5 ab | 347.09 ± 25.54 ab | 2.33 ± 0.14 a | 1.62 ± 0.10 bc | 0.32 ± 0.02 b | |
10d/8 | 105.7 ± 17.3 a | 361.13 ± 26.70 c | 2.40 ± 0.14 b | 1.58 ± 0.10 a | 0.32 ± 0.02 b | |
12b/5 | 111.7 ± 18.4 ab | 343.84 ± 23.85 a | 2.38 ± 0.13 ab | 1.64 ± 0.09 c | 0.31 ± 0.02 a | |
Ozone exposure time | 0 min | 107.2 ± 18.4 a | 347.78 ± 33.85 a | 2.33 ± 0.14 a | 1.60 ± 0.10 a | 0.32 ± 0.02 a |
15 min | 113.2 ± 18.2 b | 367.32 ± 29.93 b | 2.37 ± 0.13 b | 1.62 ± 0.10 b | 0.32 ± 0.02 a | |
30 min | 114.0 ± 17.0 b | 366.47 ± 34.30 b | 2.35 ± 0.14 ab | 1.61 ± 0.10 ab | 0.32 ± 0.02 a | |
Duration of storage | 1st day | 127.4 ± 7.9 c | 396.95 ± 29.37 c | 2.56 ± 0.05 c | 1.73 ± 0.04 c | 0.35 ± 0.01 c |
30th day | 116.9 ± 8.3 b | 348.05 ± 13.19 b | 2.27 ± 0.04 b | 1.55 ± 0.04 b | 0.31 ± 0.01 b | |
60th day | 90.1 ± 10.4 a | 336.56 ± 18.82 a | 2.24 ± 0.04 a | 1.53 ± 0.05 a | 0.30 ± 0.01 a | |
Mean | 111.5 ± 18.1 | 360.52 ± 33.89 | 2.35 ± 0.14 | 1.61 ± 0.10 | 0.32 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basara, O.; Zardzewiały, M.; Kuźniar, P.; Pluta, S.; Belcar, J.; Gorzelany, J. Influence of Gaseous Ozone Treatments on Mechanical and Chemical Properties of Japanese Quince Fruits During Storage. Foods 2025, 14, 3412. https://doi.org/10.3390/foods14193412
Basara O, Zardzewiały M, Kuźniar P, Pluta S, Belcar J, Gorzelany J. Influence of Gaseous Ozone Treatments on Mechanical and Chemical Properties of Japanese Quince Fruits During Storage. Foods. 2025; 14(19):3412. https://doi.org/10.3390/foods14193412
Chicago/Turabian StyleBasara, Oskar, Miłosz Zardzewiały, Piotr Kuźniar, Stanisław Pluta, Justyna Belcar, and Józef Gorzelany. 2025. "Influence of Gaseous Ozone Treatments on Mechanical and Chemical Properties of Japanese Quince Fruits During Storage" Foods 14, no. 19: 3412. https://doi.org/10.3390/foods14193412
APA StyleBasara, O., Zardzewiały, M., Kuźniar, P., Pluta, S., Belcar, J., & Gorzelany, J. (2025). Influence of Gaseous Ozone Treatments on Mechanical and Chemical Properties of Japanese Quince Fruits During Storage. Foods, 14(19), 3412. https://doi.org/10.3390/foods14193412