Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = frontal eye field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2907 KiB  
Article
Neural Dynamics of Strategic Early Predictive Saccade Behavior in Target Arrival Estimation
by Ryo Koshizawa, Kazuma Oki and Masaki Takayose
Brain Sci. 2025, 15(7), 750; https://doi.org/10.3390/brainsci15070750 - 15 Jul 2025
Viewed by 273
Abstract
Background/Objectives: Accurately predicting the arrival position of a moving target is essential in sports and daily life. While predictive saccades are known to enhance performance, the neural mechanisms underlying the timing of these strategies remain unclear. This study investigated how the timing [...] Read more.
Background/Objectives: Accurately predicting the arrival position of a moving target is essential in sports and daily life. While predictive saccades are known to enhance performance, the neural mechanisms underlying the timing of these strategies remain unclear. This study investigated how the timing of saccadic strategies—executed early versus late—affects cortical activity patterns, as measured by electroencephalography (EEG). Methods: Sixteen participants performed a task requiring them to predict the arrival position and timing of a parabolically moving target that became occluded midway through its trajectory. Based on eye movement behavior, participants were classified into an Early Saccade Strategy Group (SSG) or a Late SSG. EEG signals were analyzed in the low beta band (13–15 Hz) using the Hilbert transform. Group differences in eye movements and EEG activity were statistically assessed. Results: No significant group differences were observed in final position or response timing errors. However, time-series analysis showed that the Early SSG achieved earlier and more accurate eye positioning. EEG results revealed greater low beta activity in the Early SSG at electrode sites FC6 and P8, corresponding to the frontal eye field (FEF) and middle temporal (MT) visual area, respectively. Conclusions: Early execution of predictive saccades was associated with enhanced cortical activity in visuomotor and motion-sensitive regions. These findings suggest that early engagement of saccadic strategies supports more efficient visuospatial processing, with potential applications in dynamic physical tasks and digitally mediated performance domains such as eSports. Full article
Show Figures

Figure 1

16 pages, 6019 KiB  
Article
Prefrontal Blood Flow Activity During Drawing Intervention in School-Age Children with Autism: An fNIRS Hyperscanning Study
by Guanghui Li, Daren Wei, Ze Lyu, Yalong Xing, Yan Li and Wu Song
Brain Sci. 2025, 15(5), 438; https://doi.org/10.3390/brainsci15050438 - 24 Apr 2025
Viewed by 1079
Abstract
Background/Objectives: Art-based interventions have been shown to enhance communication skills in children with autism spectrum disorder (ASD), yet their impact on prefrontal hemodynamics remains unclear. Methods: This study employed functional near-infrared spectroscopy (fNIRS) to examine hemoglobin oxygenation (HbO) changes in the prefrontal cortex [...] Read more.
Background/Objectives: Art-based interventions have been shown to enhance communication skills in children with autism spectrum disorder (ASD), yet their impact on prefrontal hemodynamics remains unclear. Methods: This study employed functional near-infrared spectroscopy (fNIRS) to examine hemoglobin oxygenation (HbO) changes in the prefrontal cortex of school-age children with ASD, providing empirical support for its therapeutic efficacy. Sixty age-matched children participated in a 9-week art therapy program, including twenty ASD children and forty typically developing peers. Assessments included self-portrait drawing (SPD), the Diagnostic Drawing Series (DDS), and the General Quality of Life Inventory (GQOL-74). In addition, we performed fNIRS measurements in the ASD participants and observed changes in prefrontal HbO at rest and while drawing. Results: The drawing intervention significantly enhanced drawing ability, emotional expression, and cognitive skills, with the intervention group outperforming the controls. ASD participants exhibited distinct prefrontal connectivity patterns with visual, motor, and language-related regions, including the dorsolateral prefrontal cortex, frontal eye field, and Broca’s area. Task-based painting interventions indirectly influenced the frontal lobe’s hemodynamic characteristics, indicating drawing intervention as an effective intervention for ASD. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

20 pages, 3538 KiB  
Article
Optimization of Video Stimuli Parameters in EMDR Therapy Using Artificial Neural Networks for Enhanced Treatment Efficacy
by Jungho Suh, Sungbok Chang and Hyunjun Park
Appl. Sci. 2025, 15(2), 934; https://doi.org/10.3390/app15020934 - 18 Jan 2025
Viewed by 1184
Abstract
Eye Movement Desensitization and Reprocessing (EMDR) was recognized by the World Health Organization in 2013 as an evidence-based therapy for post-traumatic stress disorder (PTSD) and found to be effective for depression. Since then, EMDR has evolved into a personalized treatment focusing on stabilizing [...] Read more.
Eye Movement Desensitization and Reprocessing (EMDR) was recognized by the World Health Organization in 2013 as an evidence-based therapy for post-traumatic stress disorder (PTSD) and found to be effective for depression. Since then, EMDR has evolved into a personalized treatment focusing on stabilizing the physiological and psychological processes to alleviate symptoms of depression and stress. However, optimized parameters for video stimuli, such as speed (ssp), distance (d), and size (ssz), are not yet well defined in EMDR protocols. This study addresses this gap by employing an artificial neural network (ANN) methodology based on Francine Shapiro’s Adaptive Information Processing (AIP) model. The ANN was used to determine ideal values for video stimuli parameters, developing an integrated model to enhance EMDR outcomes. Of the 2860 ANN-modeled combinations, stimulus settings of 1.8 Hz speed, 70-pixel size, and 1440-pixel distance achieved the highest Predicted Effectiveness Score (PES) of 98.7%. An EMDR field test with electroencephalography (EEG) was conducted to assess the optimized video stimuli’s efficacy. Further, 16 participants, selected from a sample of 56 meeting CES-D depression criteria, were evaluated, and the top 50 PES values were selected for further analysis. EEG results indicated a 12.31% increase in effectiveness, showing a reduction in right frontal lobe beta waves. These findings highlight the technical advancements and therapeutic potential of the proposed ANN-optimized EMDR stimuli, demonstrating statistically significant improvements over traditional methods. Full article
Show Figures

Figure 1

14 pages, 3709 KiB  
Article
The Brain Activation of Two Motor Imagery Strategies in a Mental Rotation Task
by Cancan Wang, Yuxuan Yang, Kewei Sun, Yifei Wang, Xiuchao Wang and Xufeng Liu
Brain Sci. 2025, 15(1), 8; https://doi.org/10.3390/brainsci15010008 - 25 Dec 2024
Cited by 1 | Viewed by 1462
Abstract
Background: Motor imagery includes visual imagery and kinesthetic imagery, which are two strategies that exist for mental rotation and are currently widely studied. However, different mental rotation tests can lead to different strategic performances. There are also many research results where two different [...] Read more.
Background: Motor imagery includes visual imagery and kinesthetic imagery, which are two strategies that exist for mental rotation and are currently widely studied. However, different mental rotation tests can lead to different strategic performances. There are also many research results where two different strategies appear simultaneously under the same task. Previous studies on the comparative brain mechanisms of kinesthetic imagery and visual imagery have not adopted consistent stimulus images or mature mental rotation paradigms, making it difficult to effectively compare these types of imagery. Methods: In this study, we utilized functional near-infrared spectroscopy (fNIRS) to investigate the brain activation of sixty-seven young right-handed participants with different strategy preferences during hand lateral judgment tasks (HLJT). Results: The results showed that the accuracy of the kinesthetic imagery group was significantly higher than that of the visual imagery group, and the reaction time of the kinesthetic imagery group was significantly shorter than that of the visual imagery group. The areas significantly activated in the kinesthetic imagery group were wider than those in the visual imagery group, including the dorsolateral prefrontal cortex (BA9, 46), premotor cortex (BA6), supplementary motor area (SMA), primary motor cortex (BA4), and parietal cortex (BA7, 40). It is worth noting that the activation levels in the frontal eye fields (BA8), primary somatosensory cortex (BA1, 2, 3), primary motor cortex (BA4), and parietal cortex (BA40) of the kinesthetic imagery group were significantly higher than those in the visual imagery group. Conclusion: Therefore, we speculate that kinesthetic imagery has more advantages than visual imagery in the mental rotation of egocentric transformations. Full article
(This article belongs to the Section Neuropsychology)
Show Figures

Figure 1

45 pages, 6442 KiB  
Tutorial
Seeing without a Scene: Neurological Observations on the Origin and Function of the Dorsal Visual Stream
by Robert D. Rafal
J. Intell. 2024, 12(5), 50; https://doi.org/10.3390/jintelligence12050050 - 11 May 2024
Cited by 2 | Viewed by 2723
Abstract
In all vertebrates, visual signals from each visual field project to the opposite midbrain tectum (called the superior colliculus in mammals). The tectum/colliculus computes visual salience to select targets for context-contingent visually guided behavior: a frog will orient toward a small, moving stimulus [...] Read more.
In all vertebrates, visual signals from each visual field project to the opposite midbrain tectum (called the superior colliculus in mammals). The tectum/colliculus computes visual salience to select targets for context-contingent visually guided behavior: a frog will orient toward a small, moving stimulus (insect prey) but away from a large, looming stimulus (a predator). In mammals, visual signals competing for behavioral salience are also transmitted to the visual cortex, where they are integrated with collicular signals and then projected via the dorsal visual stream to the parietal and frontal cortices. To control visually guided behavior, visual signals must be encoded in body-centered (egocentric) coordinates, and so visual signals must be integrated with information encoding eye position in the orbit—where the individual is looking. Eye position information is derived from copies of eye movement signals transmitted from the colliculus to the frontal and parietal cortices. In the intraparietal cortex of the dorsal stream, eye movement signals from the colliculus are used to predict the sensory consequences of action. These eye position signals are integrated with retinotopic visual signals to generate scaffolding for a visual scene that contains goal-relevant objects that are seen to have spatial relationships with each other and with the observer. Patients with degeneration of the superior colliculus, although they can see, behave as though they are blind. Bilateral damage to the intraparietal cortex of the dorsal stream causes the visual scene to disappear, leaving awareness of only one object that is lost in space. This tutorial considers what we have learned from patients with damage to the colliculus, or to the intraparietal cortex, about how the phylogenetically older midbrain and the newer mammalian dorsal cortical visual stream jointly coordinate the experience of a spatially and temporally coherent visual scene. Full article
(This article belongs to the Special Issue On the Origins and Development of Attention Networks)
Show Figures

Figure 1

24 pages, 3656 KiB  
Article
Visual Field Restriction in the Recognition of Basic Facial Expressions: A Combined Eye Tracking and Gaze Contingency Study
by Melina Boratto Urtado, Rafael Delalibera Rodrigues and Sergio Sheiji Fukusima
Behav. Sci. 2024, 14(5), 355; https://doi.org/10.3390/bs14050355 - 23 Apr 2024
Cited by 1 | Viewed by 3050
Abstract
Uncertainties and discrepant results in identifying crucial areas for emotional facial expression recognition may stem from the eye tracking data analysis methods used. Many studies employ parameters of analysis that predominantly prioritize the examination of the foveal vision angle, ignoring the potential influences [...] Read more.
Uncertainties and discrepant results in identifying crucial areas for emotional facial expression recognition may stem from the eye tracking data analysis methods used. Many studies employ parameters of analysis that predominantly prioritize the examination of the foveal vision angle, ignoring the potential influences of simultaneous parafoveal and peripheral information. To explore the possible underlying causes of these discrepancies, we investigated the role of the visual field aperture in emotional facial expression recognition with 163 volunteers randomly assigned to three groups: no visual restriction (NVR), parafoveal and foveal vision (PFFV), and foveal vision (FV). Employing eye tracking and gaze contingency, we collected visual inspection and judgment data over 30 frontal face images, equally distributed among five emotions. Raw eye tracking data underwent Eye Movements Metrics and Visualizations (EyeMMV) processing. Accordingly, the visual inspection time, number of fixations, and fixation duration increased with the visual field restriction. Nevertheless, the accuracy showed significant differences among the NVR/FV and PFFV/FV groups, despite there being no difference in NVR/PFFV. The findings underscore the impact of specific visual field areas on facial expression recognition, highlighting the importance of parafoveal vision. The results suggest that eye tracking data analysis methods should incorporate projection angles extending to at least the parafoveal level. Full article
(This article belongs to the Section Cognition)
Show Figures

Figure 1

14 pages, 1644 KiB  
Article
Working Memory Maintenance of Visual and Auditory Spatial Information Relies on Supramodal Neural Codes in the Dorsal Frontoparietal Cortex
by Aurora Rizza, Tiziana Pedale, Serena Mastroberardino, Marta Olivetti Belardinelli, Rob H. J. Van der Lubbe, Charles Spence and Valerio Santangelo
Brain Sci. 2024, 14(2), 123; https://doi.org/10.3390/brainsci14020123 - 24 Jan 2024
Viewed by 2579
Abstract
The frontoparietal attention network plays a pivotal role during working memory (WM) maintenance, especially under high-load conditions. Nevertheless, there is ongoing debate regarding whether this network relies on supramodal or modality-specific neural signatures. In this study, we used multi-voxel pattern analysis (MVPA) to [...] Read more.
The frontoparietal attention network plays a pivotal role during working memory (WM) maintenance, especially under high-load conditions. Nevertheless, there is ongoing debate regarding whether this network relies on supramodal or modality-specific neural signatures. In this study, we used multi-voxel pattern analysis (MVPA) to evaluate the neural representation of visual versus auditory information during WM maintenance. During fMRI scanning, participants maintained small or large spatial configurations (low- or high-load trials) of either colour shades or sound pitches in WM for later retrieval. Participants were less accurate in retrieving high- vs. low-load trials, demonstrating an effective manipulation of WM load, irrespective of the sensory modality. The frontoparietal regions involved in maintaining high- vs. low-load spatial maps in either sensory modality were highlighted using a conjunction analysis. Widespread activity was found across the dorsal frontoparietal network, peaking on the frontal eye fields and the superior parietal lobule, bilaterally. Within these regions, MVPAs were performed to quantify the pattern of distinctness of visual vs. auditory neural codes during WM maintenance. These analyses failed to reveal distinguishable patterns in the dorsal frontoparietal regions, thus providing support for a common, supramodal neural code associated with the retention of either visual or auditory spatial configurations. Full article
(This article belongs to the Special Issue New Horizons in Multisensory Perception and Processing)
Show Figures

Figure 1

12 pages, 1770 KiB  
Article
Altered Sexual Response-Related Functional Connectivity and Morphometric Changes Influenced by Sex Hormones across Menopausal Status
by Chung Man Moon, Suk Hee Heo, Woong Yoon, Byung Hyun Baek, Sang Soo Shin, Seul Kee Kim and Yun Young Lee
J. Clin. Med. 2024, 13(2), 387; https://doi.org/10.3390/jcm13020387 - 10 Jan 2024
Cited by 3 | Viewed by 1664
Abstract
Our study retrospectively investigated differential patterns of the functional connectivity (FC) of core brain regions synchronous with morphometric changes associated with sexual dysfunction in menopausal women, and their correlations with sexual hormones. Twenty-three premenopausal women (mean age: 41.52 ± 7.38 years) and 21 [...] Read more.
Our study retrospectively investigated differential patterns of the functional connectivity (FC) of core brain regions synchronous with morphometric changes associated with sexual dysfunction in menopausal women, and their correlations with sexual hormones. Twenty-three premenopausal women (mean age: 41.52 ± 7.38 years) and 21 menopausal women (mean age: 55.52 ± 2.80 years) underwent sex hormone level measurements with high-resolution T1 and functional magnetic resonance imaging (MRI) during rest, neutral, and sexual arousal conditions. Analysis of covariance adjusted for age was used to compare the FC and gray matter (GM) volume between the two groups. Menopausal women showed lower GM volumes in the superior frontal gyrus (SFG), superior temporal pole, parahippocampal gyrus (PHG), hippocampus (Hip), amygdala (Amg), and cerebellum (Cb) compared to premenopausal women (p < 0.05). In addition, compared to premenopausal women, menopausal women showed decreased FC of seed regions involved in the SFG, frontal eye fields, and Amg, as well as target regions involved in the PHG, Hip, inferior frontal gyrus, Cb, and vermis (p < 0.005). Furthermore, the FC between the right Amg and right Cb and between the left Amg and right Cb during sexual arousal in both groups was positively correlated with total estrogen and estradiol levels, respectively (p < 0.01). The GM volume values in the right Amg and right Cb were positively correlated with total estrogen and estradiol levels (p < 0.05). Our study demonstrated an association between menopause-related differential FC and GM volume variations and fluctuating sex hormones. Our findings highlight that overlapping brain regions with functional alterations and morphometric changes are closely linked with menopausal symptom-related decreases in sexual arousal and hormone levels. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

26 pages, 2922 KiB  
Systematic Review
Brain MRI Biomarkers in Isolated Rapid Eye Movement Sleep Behavior Disorder: Where Are We? A Systematic Review
by Stephan Grimaldi, Maxime Guye, Marta Bianciardi and Alexandre Eusebio
Brain Sci. 2023, 13(10), 1398; https://doi.org/10.3390/brainsci13101398 - 30 Sep 2023
Cited by 13 | Viewed by 3580
Abstract
The increasing number of MRI studies focused on prodromal Parkinson’s Disease (PD) demonstrates a strong interest in identifying early biomarkers capable of monitoring neurodegeneration. In this systematic review, we present the latest information regarding the most promising MRI markers of neurodegeneration in relation [...] Read more.
The increasing number of MRI studies focused on prodromal Parkinson’s Disease (PD) demonstrates a strong interest in identifying early biomarkers capable of monitoring neurodegeneration. In this systematic review, we present the latest information regarding the most promising MRI markers of neurodegeneration in relation to the most specific prodromal symptoms of PD, namely isolated rapid eye movement (REM) sleep behavior disorder (iRBD). We reviewed structural, diffusion, functional, iron-sensitive, neuro-melanin-sensitive MRI, and proton magnetic resonance spectroscopy studies conducted between 2000 and 2023, which yielded a total of 77 relevant papers. Among these markers, iron and neuromelanin emerged as the most robust and promising indicators for early neurodegenerative processes in iRBD. Atrophy was observed in several regions, including the frontal and temporal cortices, limbic cortices, and basal ganglia, suggesting that neurodegenerative processes had been underway for some time. Diffusion and functional MRI produced heterogeneous yet intriguing results. Additionally, reduced glymphatic clearance function was reported. Technological advancements, such as the development of ultra-high field MRI, have enabled the exploration of minute anatomical structures and the detection of previously undetectable anomalies. The race to achieve early detection of neurodegeneration is well underway. Full article
Show Figures

Figure 1

15 pages, 2953 KiB  
Article
Cortical Response Variation with Social and Non-Social Affective Touch Processing in the Glabrous and Hairy Skin of the Leg: A Pilot fMRI Study
by Larisa Mayorova, Galina Portnova and Ivan Skorokhodov
Sensors 2023, 23(18), 7881; https://doi.org/10.3390/s23187881 - 14 Sep 2023
Cited by 4 | Viewed by 2099
Abstract
Despite the crucial role of touch in social development and its importance for social interactions, there has been very little functional magnetic resonance imaging (fMRI) research on brain mechanisms underlying social touch processing. Moreover, there has been very little research on the perception [...] Read more.
Despite the crucial role of touch in social development and its importance for social interactions, there has been very little functional magnetic resonance imaging (fMRI) research on brain mechanisms underlying social touch processing. Moreover, there has been very little research on the perception of social touch in the lower extremities in humans, even though this information could expand our understanding of the mechanisms of the c-tactile system. Here, variations in the neural response to stimulation by social and non-social affective leg touch were investigated using fMRI. Participants were subjected to slow a (at 3–5 cm/s) stroking social touch (hand, skin-to-skin) and a non-social touch (peacock feather) to the hairy skin of the shin and to the glabrous skin of the foot sole. Stimulation of the glabrous skin of the foot sole, regardless of the type of stimulus, elicited a much more widespread cortical response, including structures such as the medial segment of precentral gyri, left precentral gyrus, bilateral putamen, anterior insula, left postcentral gyrus, right thalamus, and pallidum. Stimulation of the hairy skin of the shin elicited a relatively greater response in the left middle cingulate gyrus, left angular gyrus, left frontal eye field, bilateral anterior prefrontal cortex, and left frontal pole. Activation of brain structures, some of which belong to the “social brain”—the pre- and postcentral gyri bilaterally, superior and middle occipital gyri bilaterally, left middle and superior temporal gyri, right anterior cingulate gyrus and caudate, left middle and inferior frontal gyri, and left lateral ventricle area, was associated with the perception of non-social stimuli in the leg. The left medial segment of pre- and postcentral gyri, left postcentral gyrus and precuneus, bilateral parietal operculum, right planum temporale, left central operculum, and left thalamus proper showed greater activation for social tactile touch. There are regions in the cerebral cortex that responded specifically to hand and feather touch in the foot sole region. These areas included the posterior insula, precentral gyrus; putamen, pallidum and anterior insula; superior parietal cortex; transverse temporal gyrus and parietal operculum, supramarginal gyrus and planum temporale. Subjective assessment of stimulus ticklishness was related to activation of the left cuneal region. Our results make some contribution to understanding the physiology of the perception of social and non-social tactile stimuli and the CT system, including its evolution, and they have clinical impact in terms of environmental enrichment. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

22 pages, 6749 KiB  
Review
Beyond Broca’s and Wernicke’s: Functional Mapping of Ancillary Language Centers Prior to Brain Tumor Surgery
by Ashley Lawrence, Michael Carvajal and Jacob Ormsby
Tomography 2023, 9(4), 1254-1275; https://doi.org/10.3390/tomography9040100 - 25 Jun 2023
Cited by 4 | Viewed by 6620
Abstract
Functional MRI is a well-established tool used for pre-surgical planning to help the neurosurgeon have a roadmap of critical functional areas that should be avoided, if possible, during surgery to minimize morbidity for patients with brain tumors (though this also has applications for [...] Read more.
Functional MRI is a well-established tool used for pre-surgical planning to help the neurosurgeon have a roadmap of critical functional areas that should be avoided, if possible, during surgery to minimize morbidity for patients with brain tumors (though this also has applications for surgical resection of epileptogenic tissue and vascular lesions). This article reviews the locations of secondary language centers within the brain along with imaging findings to help improve our confidence in our knowledge on language lateralization. Brief overviews of these language centers and their contributions to the language networks will be discussed. These language centers include primary language centers of “Broca’s Area” and “Wernicke’s Area”. However, there are multiple secondary language centers such as the dorsal lateral prefrontal cortex (DLPFC), frontal eye fields, pre- supplemental motor area (pre-SMA), Basal Temporal Language Area (BTLA), along with other areas of activation. Knowing these foci helps to increase self-assurance when discussing the nature of laterality with the neurosurgeon. By knowing secondary language centers for language lateralization, via fMRI, one can feel confident on providing neurosurgeon colleagues with appropriate information on the laterality of language in preparation for surgery. Full article
(This article belongs to the Special Issue Current Trends in Diagnostic and Therapeutic Imaging of Brain Tumors)
Show Figures

Figure 1

20 pages, 2266 KiB  
Article
Conventional and HD-tDCS May (or May Not) Modulate Overt Attentional Orienting: An Integrated Spatio-Temporal Approach and Methodological Reflections
by Lorenzo Diana, Giulia Scotti, Edoardo N. Aiello, Patrick Pilastro, Aleksandra K. Eberhard-Moscicka, René M. Müri and Nadia Bolognini
Brain Sci. 2022, 12(1), 71; https://doi.org/10.3390/brainsci12010071 - 31 Dec 2021
Cited by 4 | Viewed by 3489
Abstract
Transcranial Direct Current Stimulation (tDCS) has been employed to modulate visuo-spatial attentional asymmetries, however, further investigation is needed to characterize tDCS-associated variability in more ecological settings. In the present research, we tested the effects of offline, anodal conventional tDCS (Experiment 1) and HD-tDCS [...] Read more.
Transcranial Direct Current Stimulation (tDCS) has been employed to modulate visuo-spatial attentional asymmetries, however, further investigation is needed to characterize tDCS-associated variability in more ecological settings. In the present research, we tested the effects of offline, anodal conventional tDCS (Experiment 1) and HD-tDCS (Experiment 2) delivered over the posterior parietal cortex (PPC) and Frontal Eye Field (FEF) of the right hemisphere in healthy participants. Attentional asymmetries were measured by means of an eye tracking-based, ecological paradigm, that is, a Free Visual Exploration task of naturalistic pictures. Data were analyzed from a spatiotemporal perspective. In Experiment 1, a pre-post linear mixed model (LMM) indicated a leftward attentional shift after PPC tDCS; this effect was not confirmed when the individual baseline performance was considered. In Experiment 2, FEF HD-tDCS was shown to induce a significant leftward shift of gaze position, which emerged after 6 s of picture exploration and lasted for 200 ms. The present results do not allow us to conclude on a clear efficacy of offline conventional tDCS and HD-tDCS in modulating overt visuospatial attention in an ecological setting. Nonetheless, our findings highlight a complex relationship among stimulated area, focality of stimulation, spatiotemporal aspects of deployment of attention, and the role of individual baseline performance in shaping the effects of tDCS. Full article
Show Figures

Figure 1

20 pages, 1881 KiB  
Article
Effective Connectivity between Major Nodes of the Limbic System, Salience and Frontoparietal Networks Differentiates Schizophrenia and Mood Disorders from Healthy Controls
by Sevdalina Kandilarova, Drozdstoy St. Stoyanov, Rositsa Paunova, Anna Todeva-Radneva, Katrin Aryutova and Michael Maes
J. Pers. Med. 2021, 11(11), 1110; https://doi.org/10.3390/jpm11111110 - 28 Oct 2021
Cited by 23 | Viewed by 4122
Abstract
This study was conducted to examine whether there are quantitative or qualitative differences in the connectome between psychiatric patients and healthy controls and to delineate the connectome features of major depressive disorder (MDD), schizophrenia (SCZ) and bipolar disorder (BD), as well as the [...] Read more.
This study was conducted to examine whether there are quantitative or qualitative differences in the connectome between psychiatric patients and healthy controls and to delineate the connectome features of major depressive disorder (MDD), schizophrenia (SCZ) and bipolar disorder (BD), as well as the severity of these disorders. Toward this end, we performed an effective connectivity analysis of resting state functional MRI data in these three patient groups and healthy controls. We used spectral Dynamic Causal Modeling (spDCM), and the derived connectome features were further subjected to machine learning. The results outlined a model of five connections, which discriminated patients from controls, comprising major nodes of the limbic system (amygdala (AMY), hippocampus (HPC) and anterior cingulate cortex (ACC)), the salience network (anterior insula (AI), and the frontoparietal and dorsal attention network (middle frontal gyrus (MFG), corresponding to the dorsolateral prefrontal cortex, and frontal eye field (FEF)). Notably, the alterations in the self-inhibitory connection of the anterior insula emerged as a feature of both mood disorders and SCZ. Moreover, four out of the five connectome features that discriminate mental illness from controls are features of mood disorders (both MDD and BD), namely the MFG→FEF, HPC→FEF, AI→AMY, and MFG→AMY connections, whereas one connection is a feature of SCZ, namely the AMY→SPL connectivity. A large part of the variance in the severity of depression (31.6%) and SCZ (40.6%) was explained by connectivity features. In conclusion, dysfunctions in the self-regulation of the salience network may underpin major mental disorders, while other key connectome features shape differences between mood disorders and SCZ, and can be used as potential imaging biomarkers. Full article
Show Figures

Figure 1

12 pages, 2086 KiB  
Article
Hemodynamic Response to Three Types of Urban Spaces before and after Lockdown during the COVID-19 Pandemic
by Agnieszka Olszewska-Guizzo, Ayako Mukoyama, Sho Naganawa, Ippeita Dan, Syeda Fabeha Husain, Cyrus S. Ho and Roger Ho
Int. J. Environ. Res. Public Health 2021, 18(11), 6118; https://doi.org/10.3390/ijerph18116118 - 6 Jun 2021
Cited by 59 | Viewed by 5839
Abstract
(1) Background: Prolonged lockdowns with stay-at-home orders have been introduced in many countries since the outbreak of the COVID-19 pandemic. They have caused a drastic change in the everyday lives of people living in urbanized areas, and are considered to contribute to a [...] Read more.
(1) Background: Prolonged lockdowns with stay-at-home orders have been introduced in many countries since the outbreak of the COVID-19 pandemic. They have caused a drastic change in the everyday lives of people living in urbanized areas, and are considered to contribute to a modified perception of the public space. As research related to the impact of COVID-19 restrictions on mental health and well-being emerges, the associated longitudinal changes of brain hemodynamics in healthy adults remain largely unknown. (2) Methods: this study examined the hemodynamic activation patterns of the prefrontal and occipital cortices of 12 participants (5 male, Mage = 47.80, SDage = 17.79, range 25 to 74, and 7 female, Mage = 39.00, SDage = 18.18, range 21 to 65) passively viewing videos from three urban sites in Singapore (Urban Park, Neighborhood Landscape and City Center) at two different time points—T1, before the COVID-19 pandemic and T2, soon after the lockdown was over. (3) Results: We observed a significant and marginally significant decrease in average oxyhemoglobin (Oxy-Hb) over time for each of the visual conditions. For both green spaces (Urban Park and Neighborhood Landscape), the decrease was in the visual cortex, while for the City Center with no green elements, the marginal decrease was observed in the visual cortex and the frontal eye fields. (4) Conclusions: The results suggest that the COVID-19-related lockdown experienced by urban inhabitants may have contributed to decreased brain hemodynamics, which are further related to a heightened risk of mental health disorders, such as depression or a decline in cognitive functions. Moreover, the busy City Center scenes induced a hemodynamic pattern associated with stress and anxiety, while urban green spaces did not cause such an effect. Urban green scenes can be an important factor to offset the negative neuropsychological impact of busy urban environments post-pandemic. Full article
(This article belongs to the Special Issue Adult Psychiatry)
Show Figures

Figure 1

17 pages, 5513 KiB  
Article
RoboEye, an Efficient, Reliable and Safe Semi-Autonomous Gaze Driven Wheelchair for Domestic Use
by Luca Maule, Alessandro Luchetti, Matteo Zanetti, Paolo Tomasin, Marco Pertile, Mattia Tavernini, Giovanni M. A. Guandalini and Mariolino De Cecco
Technologies 2021, 9(1), 16; https://doi.org/10.3390/technologies9010016 - 24 Feb 2021
Cited by 7 | Viewed by 4893
Abstract
Any severe motor disability is a condition that limits the ability to interact with the environment, even the domestic one, caused by the loss of control over one’s mobility. This work presents RoboEYE, a power wheelchair designed to allow users to move easily [...] Read more.
Any severe motor disability is a condition that limits the ability to interact with the environment, even the domestic one, caused by the loss of control over one’s mobility. This work presents RoboEYE, a power wheelchair designed to allow users to move easily and autonomously within their homes. To achieve this goal, an innovative, cost-effective and user-friendly control system was designed, in which a non-invasive eye tracker, a monitor, and a 3D camera represent some of the core elements. RoboEYE integrates functionalities from the mobile robotics field into a standard power wheelchair, with the main advantage of providing the user with two driving options and comfortable navigation. The most intuitive and direct modality foresees the continuous control of frontal and angular wheelchair velocities by gazing at different areas of the monitor. The second, semi-autonomous modality allows navigation toward a selected point in the environment by just pointing and activating the wished destination while the system autonomously plans and follows the trajectory that brings the wheelchair to that point. The purpose of this work was to develop the control structure and driving interface designs of the aforementioned driving modalities taking into account also uncertainties in gaze detection and other sources of uncertainty related to the components to ensure user safety. Furthermore, the driving modalities, in particular the semi-autonomous one, were modeled and qualified through numerical simulations and experimental verification by testing volunteers, who are regular users of standard electric wheelchairs, to verify the efficiency, reliability and safety of the proposed system for domestic use. RoboEYE resulted suitable for environments with narrow passages wider than 1 m, which is comparable with a standard domestic door and due to its properties with large commercialization potential. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Figure 1

Back to TopTop