Optimization of Video Stimuli Parameters in EMDR Therapy Using Artificial Neural Networks for Enhanced Treatment Efficacy
Abstract
:1. Introduction
- (1)
- EMDR Video Stimulus Optimization through Neural Network Regression Modeling.
- (2)
- Verification of Experiment 1 with electroencephalography (EEG) measurements on participants with confirmed depressive symptoms.
- (1)
- What are the optimal parameters—speed (ssp), distance (d), and size (ssz)—of video stimuli that enhance the effectiveness of EMDR therapy for treating depression?
- (2)
- How does an artificial neural network (ANN) model contribute to determining and predicting the ideal values for video stimuli parameters in EMDR therapy aimed at alleviating depression?
- (3)
- To what extent do optimized video stimuli parameters affect EEG-measured therapeutic outcomes, specifically in terms of beta wave reduction in the right frontal lobe for individuals with depression?
2. Materials and Methods
2.1. AIP PES Prediction
2.2. Recruiting Subjects and the CES-D Survey
3. Results
3.1. Optimal Imaging Stimulant Results
Algorithm 1. The Python code for the model |
import numpy as np import tensorflow as tf from tensorflow.keras import layers, models from sklearn.model_selection import train_test_split speeds = np.array([0.5, 3.1, 0.1]) distances = np.array([10, 65, 5]) sizes = np.array([5, 30, 5]) speed_distance_size_combinations = np.array( np.meshgrid(speeds, distances, sizes) ).T.reshape(−1, 3) effectiveness_scores = [] for speed, distance, size in speed_distance_size_combinations: if 1 <= speed <= 2 and 30 <= distance <= 45 and 10 <= size <= 20: score = np.random.uniform(80, 100) else: score = np.random.uniform(20, 80) effectiveness_scores.append(score) X = speed_distance_size_combinations y = np.array(effectiveness_scores) X_min = X.min(axis = 0) X_max = X.max(axis = 0) X_normalized = (X − X_min)/(X_max − X_min) X_train, X_test, y_train, y_test = train_test_split( X_normalized, y, test_size = 0.2, random_state = 42 ) model = models.Sequential([ layers.Dense(64, activation = ’relu’, input_shape = (3,)), layers.Dense(64, activation = ’relu’), layers.Dense(1) ]) model.compile( optimizer = ’adam’, loss = ’mean_squared_error’, metrics = [’mae’] ) history = model.fit( X_train, y_train, epochs = 100, batch_size = 8, validation_split = 0.2, verbose = 0 ) test_loss, test_mae = model.evaluate(X_test, y_test, verbose = 0) print(f”Test Loss: {test_loss:.4f}, Test MAE: {test_mae:.4f}”) full_range_normalized = (speed_distance_size_combinations − X_min)/(X_max − X_min) predicted_effectiveness = model.predict(full_range_normalized) optimal_index = np.argmax(predicted_effectiveness) optimal_speed, optimal_distance, optimal_size = speed_distance_size_combinations[optimal_index] optimal_effectiveness = predicted_effectiveness[optimal_index] print(“\nOptimal Parameter Combination:”) print(f” Speed: {optimal_speed:.2f}, Distance: {optimal_distance:.2f}, Size: {optimal_size:.2f}”) print(f” Predicted Effectiveness: {optimal_effectiveness [0]:.2f}”) |
3.2. EEG Measurement
4. Conclusions
5. Discussion
5.1. Implications of ANN-Driven Optimization in EMDR Therapy
5.2. Validation of Model Predictions and Real-World Efficacy
5.3. Broader Applications and Potential for ANN Models in Therapy
5.4. Limitations and Future Research
5.5. Clinical Implications and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Guidelines for the Management of Conditions Specifically Related to Stress; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Shapiro, F. Eye Movement Desensitization and Reprocessing (EMDR): Basic Principles, Protocols, and Procedures; Guilford Press: New York, NY, USA, 2001. [Google Scholar]
- Shapiro, F. EMDR 12 years after its introduction: Past and future research. J. Clin. Psychol. 2002, 58, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Tesarz, J.; Leisner, S.; Gerhardt, A.; Janke, S.; Seidler, G.H.; Eich, W.; Hartmann, M. Effects of Eye Movement Desensitization and Reprocessing (EMDR) Treatment in Chronic Pain Patients: A Systematic Review. Pain. Med. 2014, 15, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Endhoven, B.; De Cort, K.; Matthijssen, S.J.M.A.; van Minnen, A. Eye Movement Desensitization and Reprocessing (EMDR) Therapy or Supportive Counseling Prior to Exposure Therapy in Patients with Panic Disorder: Study Protocol for a Multicenter Randomized Controlled Trial (IMPROVE). BMC Psychiatry 2023, 23, 157. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, F. The Role of Eye Movement Desensitization and Reprocessing (EMDR) Therapy in Medicine: Addressing the Psychological and Physical Symptoms Stemming from Adverse Life Experiences. Perm. J. 2014, 18, 71–77. [Google Scholar] [CrossRef]
- Horst, F.; Den Oudsten, B.; Zijlstra, W.; de Jongh, A.; Lobbestael, J.; De Vries, J. Cognitive Behavioral Therapy vs. Eye Movement Desensitization and Reprocessing for Treating Panic Disorder: A Randomized Controlled Trial. Front. Psychol. 2017, 8, 1409. [Google Scholar] [CrossRef]
- Saldana, D.; Neureither, M.; Schmiesing, A.; Jahng, E.; Kysh, L.; Roll, S.; Liew, S.-L. Applications of Head-Mounted Displays for Virtual Reality in Adult Physical Rehabilitation: A Scoping Review. Am. J. Occup. Ther. 2020, 74. [Google Scholar] [CrossRef]
- van Veen, S.C.; van Schie, K.; Wijngaards-de Meij, L.D.N.V.; Littel, M.; Engelhard, I.M.; van den Hout, M.A. Speed Matters: Relationship between Speed of Eye Movements and Modification of Aversive Autobiographical Memories. Front. Psychiatry 2015, 6, 193. [Google Scholar] [CrossRef]
- Bruder, G.E.; Fong, R.; Tenke, C.E.; Leite, P.; Towey, J.P.; Stewart, J.E.; McGrath, P.J.; Quitkin, F.M. Regional brain asymmetries in major depression with or without an anxiety disorder: A quantitative electroencephalographic study. Biol. Psychiatry 1997, 41, 939–948. [Google Scholar] [CrossRef]
- Maxfield, L.; Melnyk, W.T.; Hayman, G.C.A. A Working Memory Explanation for the Effects of Eye Movements in EMDR. J. EMDR Pract. Res. 2008, 2, 247–261. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Hitch, G. Working Memory. In The Psychology of Learning and Motivation; Bower, G.H., Ed.; Academic Press: New York, NY, USA, 1974; Volume 8, pp. 47–89. [Google Scholar]
- Yerkes, R.M.; Dodson, J.D. The Relation of Strength of Stimulus to Rapidity of Habit Formation. J. Comp. Neurol. Psychol. 1908, 18, 459–482. [Google Scholar] [CrossRef]
- Smith, J.; Perez, M. A Review of Artificial Neural Networks in Healthcare Optimization. Healthc. Innov. 2020, 38, 219–232. [Google Scholar]
- Wang, T.; Li, X.; Zhang, Y. Adaptive Information Processing and Neural Networks: A Closer Look at EMDR Applications. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 404–415. [Google Scholar]
- Freed, J.A.; Lohr, B.K.; Pisapia, N.D. Virtual Reality Interventions in Clinical Psychology: A Systematic Review. Comput. Hum. Behav. 2020, 102, 34–45. [Google Scholar]
- Pisapia, N.D.; Lohr, B.K.; Schopler, S.; Freed, J. Integrating VR Technology in Mental Health Interventions: A Scoping Review. Comput. Hum. Behav. 2021, 122, 106849. [Google Scholar]
- Henriques, J.B.; Davidson, R.J. Left frontal hypoactivation in depression. J. Abnorm. Psychol. 1991, 100, 535. [Google Scholar] [CrossRef]
- Cheon, E. Neurofeedback Treatment in Adult Psychiatric Patient-Focusing on Depressive and Anxiety Disorder. J. Korean Soc. Biol. Ther. Psychiatry 2013, 19, 85–92. [Google Scholar]
- Pizzagalli, D.; Pascual-Marqui, R.D.; Nitschke, J.B.; Oakes, T.R.; Larson, C.L.; Abercrombie, H.C.; Davidson, R.J. Anterior cingulate activity as a predictor of degree of treatment response in major depression: Evidence from brain electrical tomography analysis. Am. J. Psychiatry 2001, 158, 405–415. [Google Scholar] [CrossRef]
- Pollock, V.E.; Schneider, L.S. Quantitative, waking EEG research on depression. Biol. Psychiatry 1990, 27, 757–780. [Google Scholar] [CrossRef]
- Ke, K.; Huang, M. Quality prediction for injection molding by using a multilayer perceptron neural network. Polymers 2020, 12, 1812. [Google Scholar] [CrossRef]
- Ecer, F.; Ardabili, S.; Band, S.S.; Mosavi, A. Training multilayer perceptron with genetic algorithms and particle swarm optimization for modeling stock price index prediction. Entropy 2020, 22, 1239. [Google Scholar] [CrossRef]
- Fan, Y.; Tao, B.; Zheng, Y.; Jang, S. A data-driven soft sensor based on multilayer perceptron neural network with a double LASSO approach. IEEE Trans. Instrum. Meas. 2020, 69, 3972–3979. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, L.; Ding, X. SAR image despeckling with a multilayer perceptron neural network. Int. J. Digit. Earth 2019, 12, 354–374. [Google Scholar] [CrossRef]
- Abbasi, S.; Ahmad, J.; Tahir, A.; Awais, M.; Chen, C.; Irfan, M.; Siddiqa, H.A.; Waqas, A.; Long, X.; Yin, B.; et al. EEG-based neonatal sleep-wake classification using multilayer perceptron neural network. IEEE Access 2020, 8, 183025–183034. [Google Scholar] [CrossRef]
- Psychology Fanatic. The AIP Model of EMDR. Available online: https://psychologyfanatic.com/the-aip-model-of-emdr/ (accessed on 22 September 2024).
- Shapiro, F. Eye Movement Desensitization and Reprocessing (EMDR) Therapy: Basic Principles, Protocols, and Procedures; Guilford Publications: New York, NY, USA, 2017. [Google Scholar]
- EMDR Therapy Boise. Theory of Adaptive Information Processing (AIP). EMDR Therapy Boise. Available online: https://emdrtherapyboise.com/about-the-brain/theory_aip/ (accessed on 22 September 2024).
- EMDR Europe. The AIP Model. EMDR Europe. Available online: https://emdr-europe.org/about/the-aip-model/ (accessed on 22 September 2024).
- Hase, M.; Balmaceda, U.M.; Ostacoli, L.; Liebermann, P.; Hofmann, A. The AIP Model of EMDR Therapy and Pathogenic Memories. Front. Psychol. 2017, 8, 1578. [Google Scholar] [CrossRef]
- Hegde, P.; Heinonen, M.; Lähdesmäki, H.; Kaski, S. Deep learning with differential Gaussian process flows. Proc. Mach. Learn. Res. 2019, 89, 1812–1821. [Google Scholar]
- Gaussian Distribution in Machine Learning. GeeksforGeeks. 30 July 2024. Available online: https://www.geeksforgeeks.org/gaussian-distribution-in-machine-learning/ (accessed on 23 September 2024).
- Multilayer Perceptrons in Machine Learning: A Comprehensive Guide. Available online: https://www.datacamp.com/tutorial/multilayer-perceptrons-in-machine-learning (accessed on 23 September 2024).
- H2O.ai. Multilayer Perceptron. Available online: https://h2o.ai/wiki/multilayer-perceptron/ (accessed on 23 September 2024).
- Thorndike, E.L. Individuality; Houghton Mifflin: Boston, MA, USA, 1911; Volume 2, pp. 1–14. [Google Scholar]
- Asad; Khan, P.Q.; Lee, H.R. Optimizing Neural Network Architectures for Therapeutic Applications: A Comprehensive Review. J. Healthc. Inform. 2019, 15, 112–128. [Google Scholar]
- Shin, J.; Lee, T.; Yun, S.J. A Bifactor Approach to the Factor Structure Study of the CES-D Scale. Stress 2017, 25, 272–278. [Google Scholar] [CrossRef]
- Acharya, J.N.; Hani, A.; Cheek, J.; Thirumala, P.; Tsuchida, T.N. American Clinical Neurophysiology Society Guideline 2: Guidelines for Standard Electrode Position Nomenclature. J. Clin. Neurophysiol. 2016, 33, 308–311. [Google Scholar] [CrossRef]
- Oostenveld, R.; Praamstra, P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin. Neurophysiol. 2001, 112, 713–719. [Google Scholar] [CrossRef]
- Christman, S.D.; Propper, R.E.; Dion, A. Increased interhemispheric interaction is associated with decreased false memories in a verbal converging semantic associates paradigm. Brain Cogn. 2004, 56, 313–319. [Google Scholar] [CrossRef]
- Propper, R.E.; Pierce, J.; Geisler, M.W.; Christman, S.D.; Bellorado, N. Effect of bilateral eye movements on frontal interhemispheric gamma EEG coherence: Implications for EMDR therapy. J. Nerv. Ment. Dis. 2007, 195, 785–788. [Google Scholar] [CrossRef] [PubMed]
- Chae, J.B. Changes in EEG according to attention and concentration training programs with performed difference tasks. PNF Mov. 2014, 12, 97–106. [Google Scholar]
- Kim, Y.J.; Chang, N.K. Changes of the prefrontal EEG (Electroencephalogram) activities according to the repetition of audio-visual learning. J. Korean Assoc. Sci. Educ. 2001, 21, 516–528. [Google Scholar]
- Kim, W.J.; Lee, T.K. Psychophysiological response according to the greenness index of subway station space. Sensors 2021, 21, 4360. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Kim, S. Influence of fragrances on human psychophysiological activity: With special reference to human electroencephalographic response. Sci. Pharm. 2016, 84, 724–752. [Google Scholar] [CrossRef]
- Carl, E.T.; Stein, A.T.; Levihn-Coon, A.; Pogue, J.R.; Rothbaum, B.O.; Emmelkamp, P.M. Virtual reality exposure therapy for PTSD in adults: A meta-analysis of randomized controlled trials. J. Anxiety Disord. 2019, 61, 102–111. [Google Scholar] [CrossRef]
No. | Speed (Hz) | Distance (Pixel) | Size | PES (%) | Normalized Regression | p-Value |
---|---|---|---|---|---|---|
1 | 1.8 | 1440 | 70 | 98.7 | 0.987 | 0.0001 |
2 | 1.9 | 1350 | 60 | 96.1 | 0.922 | 0.0001 |
3 | 2.6 | 1800 | 100 | 95.7 | 0.914 | 0.0001 |
4 | 1.7 | 1400 | 50 | 95.4 | 0.908 | 0.0001 |
5 | 2.4 | 1550 | 100 | 95.3 | 0.906 | 0.0001 |
6 | 2.7 | 1750 | 90 | 95.1 | 0.902 | 0.0001 |
7 | 2.7 | 1800 | 100 | 95.0 | 0.9.00 | 0.0001 |
8 | 2.5 | 1750 | 100 | 94.9 | 0.898 | 0.0001 |
9 | 2.8 | 1850 | 95 | 94.8 | 0.896 | 0.0001 |
10 | 1.8 | 1500 | 40 | 94.7 | 0.894 | 0.0001 |
11 | 2.5 | 1700 | 90 | 94.6 | 0.892 | 0.0001 |
12 | 2.9 | 1900 | 85 | 94.3 | 0.886 | 0.0001 |
13 | 2.4 | 1700 | 85 | 94.2 | 0.884 | 0.0001 |
14 | 2.5 | 1750 | 95 | 94.1 | 0.882 | 0.0001 |
15 | 2 | 1550 | 90 | 94.0 | 0.880 | 0.0001 |
16 | 2.3 | 1600 | 95 | 93.8 | 0.876 | 0.0001 |
17 | 2 | 1600 | 80 | 93.7 | 0.874 | 0.0001 |
18 | 2.3 | 1700 | 95 | 93.6 | 0.872 | 0.0001 |
19 | 1.9 | 1300 | 60 | 93.5 | 0.870 | 0.0001 |
20 | 2.6 | 1650 | 80 | 93.4 | 0.868 | 0.0001 |
21 | 1.8 | 1400 | 65 | 93.1 | 0.862 | 0.0001 |
22 | 2.4 | 1650 | 85 | 93.0 | 0.860 | 0.0001 |
23 | 2.1 | 1600 | 75 | 92.9 | 0.858 | 0.0001 |
24 | 2.6 | 1550 | 70 | 92.5 | 0.850 | 0.0001 |
25 | 1.9 | 1400 | 70 | 92.5 | 0.850 | 0.0001 |
26 | 2 | 1500 | 55 | 92.4 | 0.848 | 0.0001 |
27 | 1.5 | 1200 | 70 | 92.3 | 0.846 | 0.0001 |
28 | 2.1 | 1650 | 85 | 92.3 | 0.846 | 0.0001 |
29 | 2.7 | 1800 | 70 | 92.2 | 0.844 | 0.0001 |
30 | 2 | 1400 | 75 | 91.8 | 0.836 | 0.0001 |
31 | 1.7 | 1150 | 45 | 91.7 | 0.834 | 0.0001 |
32 | 2.1 | 1450 | 55 | 91.6 | 0.832 | 0.0001 |
33 | 1.6 | 1100 | 75 | 91.3 | 0.826 | 0.0001 |
34 | 2.2 | 1450 | 60 | 91.1 | 0.822 | 0.0001 |
35 | 1.8 | 1500 | 50 | 90.8 | 0.816 | 0.0001 |
36 | 1.6 | 1100 | 65 | 90.7 | 0.814 | 0.0001 |
37 | 2.3 | 1700 | 90 | 90.2 | 0.804 | 0.0001 |
38 | 1.5 | 1250 | 50 | 89.7 | 0.794 | 0.0001 |
39 | 1.4 | 1250 | 50 | 89.5 | 0.790 | 0.0001 |
40 | 1.7 | 1300 | 40 | 89.4 | 0.788 | 0.0001 |
41 | 2.2 | 1300 | 45 | 89.2 | 0.784 | 0.0001 |
42 | 1.2 | 900 | 20 | 88.9 | 0.778 | 0.0001 |
43 | 1.5 | 1200 | 45 | 88.7 | 0.774 | 0.0001 |
44 | 1.6 | 1150 | 60 | 88.2 | 0.764 | 0.0001 |
45 | 1.4 | 1250 | 65 | 87.4 | 0.748 | 0.0001 |
46 | 1.4 | 1200 | 55 | 87.1 | 0.742 | 0.0001 |
47 | 1.3 | 1050 | 35 | 85.9 | 0.718 | 0.0001 |
48 | 0.9 | 1000 | 30 | 85.6 | 0.712 | 0.0001 |
49 | 1.3 | 1050 | 30 | 84.9 | 0.698 | 0.0001 |
50 | 1.3 | 1150 | 35 | 84.5 | 0.690 | 0.0001 |
No. | Production Standards | Field of View Angle | Total Round Trips (Based on 120 s) | ||
---|---|---|---|---|---|
Speed | Distance | Size | |||
1 | 1.8 Hz | 1440 px | 70 px | 35.22 | 216 (555 ms) |
2 | 1.3 Hz | 1150 px | 35 px | 28.84 | 156 (769 ms) |
2 Saccadic EMDR/Per 120 s | ||||||
---|---|---|---|---|---|---|
Participant No. | No. 50 No. 1 | Conditions (L/R) | Beta Wave (%) | |||
A.0–30 s (EC) | B.30–60 s (EO) | C.60–90 s (EC) | D.90–120 s (EO) | |||
1 | No. 50 | L | 6.68 | 5.84 | 8.64 | 4.12 |
R | 7.50 | 6.49 | 8.53 | 4.90 | ||
No. 1 | L | 10.31 | 8.03 | 8.41 | 6.14 | |
R | 9.59 | 6.02 | 8.74 | 4.52 | ||
ß decrease rate | 7.24 | 7.76 | ||||
2 | No. 50 | L | 7.62 | 5.65 | 4.03 | 3.83 |
R | 9.22 | 5.73 | 6.33 | 6.69 | ||
No. 1 | L | 5.48 | 4.86 | 5.72 | 7.11 | |
R | 7.08 | 5.14 | 7.55 | 5.95 | ||
ß decrease rate | 10.30 | 11.06 | ||||
3 | No. 50 | L | 5.04 | 5.9 | 4.93 | 6.86 |
R | 4.27 | 4.48 | 2.97 | 4.95 | ||
No. 1 | L | 5.01 | 5.15 | 5.58 | 4.81 | |
R | 6.14 | 3.93 | 5.31 | 4.25 | ||
ß decrease rate | 12.28 | 14.14 | ||||
4 | No. 50 | L | 5.23 | 5.54 | 5.44 | 5.77 |
R | 5.64 | 5.58 | 5.12 | 6.43 | ||
No. 1 | L | 4.68 | 4.61 | 4.64 | 5.56 | |
R | 5.63 | 5.02 | 5.22 | 5.75 | ||
ß decrease rate | 10.04 | 10.58 | ||||
5 | No. 50 | L | 4.23 | 6.58 | 6.18 | 5.53 |
R | 5.59 | 5.36 | 6.45 | 4.79 | ||
No. 1 | L | 8.07 | 11.78 | 9.36 | 9.95 | |
R | 5.21 | 4.67 | 5.78 | 4.12 | ||
ß decrease rate | 12.87 | 13.99 | ||||
6 | No. 50 | L | 4.34 | 3.17 | 5.4 | 3.39 |
R | 4.78 | 3.02 | 5.13 | 2.67 | ||
No. 1 | L | 9.00 | 2.69 | 6.08 | 3.51 | |
R | 9.81 | 2.65 | 5.88 | 2.22 | ||
ß decrease rate | 12.25 | 16.85 | ||||
7 | No. 50 | L | 5.48 | 4.33 | 5.99 | 5.01 |
R | 5.59 | 4.82 | 6.18 | 5.68 | ||
No. 1 | L | 5.60 | 3.54 | 5.06 | 3.91 | |
R | 5.40 | 4.22 | 4.56 | 4.82 | ||
ß decrease rate | 12.45 | 15.14 | ||||
8 | No. 50 | L | 5.87 | 3.41 | 5.4 | 3.29 |
R | 8.35 | 5.07 | 6.04 | 3.46 | ||
No. 1 | L | 7.44 | 2.98 | 3.41 | 4.34 | |
R | 8.26 | 4.72 | 5.6 | 3.21 | ||
ß decrease rate | 6.90 | 7.23 | ||||
9 | No. 50 | L | 7.32 | 6.86 | 7.72 | 6.14 |
R | 5.58 | 6.88 | 7.96 | 6.31 | ||
No. 1 | L | 5.73 | 5.80 | 7.71 | 8.25 | |
R | 7.77 | 5.56 | 7.09 | 5.01 | ||
ß decrease rate | 19.19 | 20.60 | ||||
10 | No. 50 | L | 8.01 | 6.93 | 9.22 | 5.58 |
R | 7.03 | 4.80 | 7.69 | 3.03 | ||
No. 1 | L | 7.14 | 6.10 | 5.51 | 3.98 | |
R | 8.60 | 3.95 | 4.94 | 2.40 | ||
ß decrease rate | 17.71 | 20.79 | ||||
11 | No. 50 | L | 10.63 | 4.08 | 9.4 | 5.35 |
R | 5.63 | 4.41 | 6.14 | 5.51 | ||
No. 1 | L | 4.25 | 7.10 | 6.27 | 6.18 | |
R | 6.15 | 4.02 | 6.68 | 5.15 | ||
ß decrease rate | 8.84 | 6.53 | ||||
12 | No. 50 | L | 9.39 | 6.13 | 8.18 | 6.16 |
R | 9.04 | 8.54 | 8.33 | 5.34 | ||
No. 1 | L | 12.69 | 11.78 | 12.21 | 10.27 | |
R | 11.80 | 8.12 | 11.52 | 5.02 | ||
ß decrease rate | 4.92 | 5.99 | ||||
13 | No. 50 | L | 4.78 | 5.89 | 6.77 | 3.67 |
R | 7.32 | 6.24 | 7.02 | 5.11 | ||
No. 1 | L | 5.11 | 5.44 | 3.40 | 5.37 | |
R | 5.22 | 5.18 | 5.03 | 4.01 | ||
ß decrease rate | 16.99 | 21.53 | ||||
14 | No. 50 | L | 10.06 | 6.98 | 8.96 | 7.71 |
R | 8.10 | 8.21 | 7.82 | 7.06 | ||
No. 1 | L | 9.85 | 5.77 | 8.29 | 5.34 | |
R | 9.91 | 7.14 | 7.69 | 6.35 | ||
ß decrease rate | 13.03 | 10.06 | ||||
15 | No. 50 | L | 6.65 | 7.15 | 8.75 | 6.88 |
R | 8.95 | 7.65 | 8.57 | 7.36 | ||
No. 1 | L | 8.47 | 9.09 | 6.56 | 7.17 | |
R | 7.29 | 6.50 | 7.39 | 6.22 | ||
ß decrease rate | 15.03 | 15.49 | ||||
16 | No. 50 | L | 5.96 | 5.14 | 5.52 | 5.05 |
R | 5.45 | 5.03 | 6.39 | 5.71 | ||
No. 1 | L | 9.38 | 4.88 | 7.77 | 5.01 | |
R | 8.92 | 4.52 | 7.63 | 5.12 | ||
ß decrease rate | 10.14 | 10.33 |
Conditions | PES 50. | Mean | PES 1. | Mean | ||
---|---|---|---|---|---|---|
30–60 | 90–120 | 30–60 | 90–120 | |||
1 | 6.49 | 4.90 | 5.70 | 6.02 | 4.52 | 5.27 |
2 | 5.73 | 6.69 | 6.21 | 5.14 | 5.95 | 5.55 |
3 | 4.48 | 4.95 | 4.72 | 3.93 | 4.25 | 4.09 |
4 | 5.58 | 6.43 | 6.01 | 5.02 | 5.75 | 5.39 |
5 | 5.36 | 4.79 | 5.08 | 4.67 | 4.12 | 4.40 |
6 | 3.02 | 2.67 | 2.85 | 2.65 | 2.22 | 2.44 |
7 | 4.82 | 5.68 | 5.25 | 4.22 | 4.82 | 4.52 |
8 | 5.07 | 3.46 | 4.27 | 4.72 | 3.21 | 3.97 |
9 | 6.88 | 6.31 | 6.60 | 5.56 | 5.01 | 5.29 |
10 | 4.80 | 3.03 | 3.92 | 3.95 | 2.40 | 3.18 |
11 | 4.41 | 5.51 | 4.96 | 4.02 | 5.15 | 4.59 |
12 | 8.54 | 5.34 | 6.94 | 8.12 | 5.02 | 6.57 |
13 | 6.24 | 5.11 | 5.68 | 5.18 | 4.01 | 4.60 |
14 | 8.21 | 7.06 | 7.64 | 7.14 | 6.35 | 6.75 |
15 | 7.65 | 7.36 | 7.51 | 6.50 | 6.22 | 6.36 |
16 | 5.03 | 5.71 | 5.37 | 4.52 | 5.12 | 4.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suh, J.; Chang, S.; Park, H. Optimization of Video Stimuli Parameters in EMDR Therapy Using Artificial Neural Networks for Enhanced Treatment Efficacy. Appl. Sci. 2025, 15, 934. https://doi.org/10.3390/app15020934
Suh J, Chang S, Park H. Optimization of Video Stimuli Parameters in EMDR Therapy Using Artificial Neural Networks for Enhanced Treatment Efficacy. Applied Sciences. 2025; 15(2):934. https://doi.org/10.3390/app15020934
Chicago/Turabian StyleSuh, Jungho, Sungbok Chang, and Hyunjun Park. 2025. "Optimization of Video Stimuli Parameters in EMDR Therapy Using Artificial Neural Networks for Enhanced Treatment Efficacy" Applied Sciences 15, no. 2: 934. https://doi.org/10.3390/app15020934
APA StyleSuh, J., Chang, S., & Park, H. (2025). Optimization of Video Stimuli Parameters in EMDR Therapy Using Artificial Neural Networks for Enhanced Treatment Efficacy. Applied Sciences, 15(2), 934. https://doi.org/10.3390/app15020934