Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (545)

Search Parameters:
Keywords = freshwater contents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4804 KiB  
Article
Deep Storage Irrigation Enhances Grain Yield of Winter Wheat by Improving Plant Growth and Grain-Filling Process in Northwest China
by Xiaodong Fan, Dianyu Chen, Haitao Che, Yakun Wang, Yadan Du and Xiaotao Hu
Agronomy 2025, 15(8), 1852; https://doi.org/10.3390/agronomy15081852 - 31 Jul 2025
Viewed by 237
Abstract
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects [...] Read more.
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects of irrigation amounts on agricultural yield and the mechanisms under deep storage irrigation. A three-year field experiment (2020–2023) was conducted in the Guanzhong Plain, according to five soil wetting layer depths (RF: 0 cm; W1: control, 120 cm; W2: 140 cm; W3: 160 cm; W4: 180 cm) with soil saturation water content as the irrigation upper limit. Results exhibited that, compared to W1, the W2, W3, and W4 treatments led to the increased plant height, leaf area index, and dry matter accumulation. Meanwhile, the W2, W3, and W4 treatments improved kernel weight increment achieving maximum grain-filling rate (Wmax), maximum grain-filling rate (Gmax), and average grain-filling rate (Gave), thereby enhancing the effective spikes (ES) and grain number per spike (GS), and thus increased wheat grain yield (GY). In relative to W1, the W2, W3, and W4 treatments increased the ES, GS, and GY by 11.89–19.81%, 8.61–14.36%, and 8.17–13.62% across the three years. Notably, no significant difference was observed in GS and GY between W3 and W4 treatments, but W4 treatment displayed significant decreases in ES by 3.04%, 3.06%, and 2.98% in the respective years. The application of a structural equation modeling (SEM) revealed that deep storage irrigation improved ES and GS by positively regulating Wmax, Gmax, and Gave, thus significantly increasing GY. Overall, this study identified the optimal threshold (W3 treatment) to maximize wheat yields by optimizing both the vegetative growth and grain-filling dynamics. This study provides essential support for the feasibility assessment of deep storage irrigation before flood seasons, which is vital for the balance and coordination of food security and water security. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

23 pages, 1627 KiB  
Article
A Comprehensive Ecotoxicological Evaluation of a Treated Olive Mill Wastewater and Obtained Sludge
by José N. Pinto, Andreia Pereira, Ana Rita R. Silva, Diogo N. Cardoso, Amid Mostafaie, Fábio Campos, Iryna Rehan, Olga Moreira, Ivã Guidini Lopes, Daniel Murta, Alexandra Afonso, Margarida Oliveira, Karina S. Silvério, Maria Teresa Santos, Fátima Carvalho, Adelaide Almeida and Susana Loureiro
Toxics 2025, 13(8), 648; https://doi.org/10.3390/toxics13080648 - 30 Jul 2025
Viewed by 226
Abstract
Olive mill wastewaters (OMWWs) are an environmental problem in the Mediterranean region, and it is crucial to explore strategies for their treatment and repurposing. The chemical precipitation technique (CPT) has been presented as a cost-effective wastewater treatment solution that might be applied to [...] Read more.
Olive mill wastewaters (OMWWs) are an environmental problem in the Mediterranean region, and it is crucial to explore strategies for their treatment and repurposing. The chemical precipitation technique (CPT) has been presented as a cost-effective wastewater treatment solution that might be applied to OMWW. The CPT-resulting precipitant subproducts (sludge) may be reprocessed (e.g., agricultural fertilizer and/or soil amendment), while the treated wastewater may be repurposed or reused (e.g., irrigation, aquaponic, or industrial processes). This study aimed to evaluate the efficacy of CPT in treating wastewater from the olive oil industry from an ecotoxicological perspective. Additionally, to assess the safe use of the obtained sludge in CPT treatment, its effects on soil biota were assessed. For this, a set of ecotoxicological assays using freshwater (Raphidocelis subcapitata, Daphnia magna and Danio rerio), terrestrial invertebrates (Folsomia candida and Enchytraeus crypticus), and plants (Brassica oleracea and Lolium perenne) were used as model organisms. Results demonstrated that CPT reduced OMWW toxicity to freshwater organisms, offering a favorable outlook on CPT’s potential as a wastewater treatment method. Increasing application rates of sludge in soil reduced the shoot biomass and the hydric content of both plants compared to the control. Survival of F. candida and E. crypticus was not affected by sludge in soil at any tested application rate, yet sludge application negatively affected the reproduction of both species, even at relevant sludge application rates (2%) of sludge in soils. Overall, the applicability of this sludge obtained by the CPT treatment in soils should be carefully evaluated due to the observed adverse effects on soil biota. Although the results of CPT were promising in reducing the toxicity of OMWW for these aquatic species, some adjustments/improvements should be performed to improve this technique and use all the obtained resources (treated water and sludge) in a fully circular perspective. Full article
(This article belongs to the Special Issue Biomass Conversion and Organic Waste Utilization in Wastewater)
Show Figures

Graphical abstract

18 pages, 2716 KiB  
Article
Irrigation of Suaeda salsa with Saline Wastewater and Microalgae: Improving Saline–Alkali Soil and Revealing the Composition and Function of Rhizosphere Bacteria
by Qiaoyun Yan, Yitong Zhang, Zhenting Xu, Wenying Qu, Junfeng Li, Wenhao Li, Chun Zhao and Hongbo Ling
Microorganisms 2025, 13(7), 1653; https://doi.org/10.3390/microorganisms13071653 - 12 Jul 2025
Viewed by 530
Abstract
Limited research has been conducted on the potential and mechanisms of irrigating Suaeda salsa with wastewater and microalgae to improve saline–alkali land. This study used three irrigation treatments (freshwater, saline wastewater, and saline wastewater with microalgae) to irrigate S. salsa, and microalgae [...] Read more.
Limited research has been conducted on the potential and mechanisms of irrigating Suaeda salsa with wastewater and microalgae to improve saline–alkali land. This study used three irrigation treatments (freshwater, saline wastewater, and saline wastewater with microalgae) to irrigate S. salsa, and microalgae promoted the growth of S. salsa and increased soil nutrient content, increasing available nitrogen (4.85%), available phosphorus (44.51%), and organic carbon (24.05%) while alleviating salt stress through reduced soil salinity (13.52%) and electrical conductivity (21.62%). These changes promoted eutrophic bacteria while inhibiting oligotrophic bacteria. Bacterial community composition exhibited significant variations, primarily driven by soil pH, total nitrogen, and organic carbon content. Notably, rhizosphere bacteria showed enhanced functional capabilities, with increased abundance of salt stress resistance and nitrogen metabolism-related genes compared to original soil, particularly under saline irrigation conditions. Furthermore, microalgae addition enriched nitrogen metabolism-related gene abundance. These findings revealed the potential role of key bacteria in enhancing plant growth and the soil environment and highlighted the potential of applying S. salsa, wastewater, and microalgae for the synergistic improvement of saline–alkali land. Full article
Show Figures

Figure 1

15 pages, 2327 KiB  
Article
Metabolic Costs of Emerging Contaminants: Cellular Energy Allocation in Zebrafish Embryos
by Bárbara S. Diogo, Daniela Rebelo, Sara C. Antunes and Sara Rodrigues
J. Xenobiot. 2025, 15(4), 99; https://doi.org/10.3390/jox15040099 - 29 Jun 2025
Cited by 1 | Viewed by 339
Abstract
The use of cellular energy allocation (CEA) as a physiological energetic biomarker is useful for detecting the sublethal effects of environmental contaminants. The CEA assesses the health and energy status of organisms, serving as a reliable indicator for monitoring the health of aquatic [...] Read more.
The use of cellular energy allocation (CEA) as a physiological energetic biomarker is useful for detecting the sublethal effects of environmental contaminants. The CEA assesses the health and energy status of organisms, serving as a reliable indicator for monitoring the health of aquatic ecosystems. This study aimed to evaluate the impact of emerging contaminants already listed as a priority for monitoring in freshwater ecosystems, namely sulfamethoxazole (0.156–2.50 mg/L), trimethoprim (25.0–400 mg/L), 4-chloroaniline (5.21–20.0 mg/L), and 3,4-dichloroaniline (0.38–4.00 mg/L), on the CEA of D. rerio embryos. A standard fish embryo toxicity test was conducted, and an adaptation of the allometric scaling approach was developed through the relationship between the size and the fresh weight of the embryos. All the compounds affected the fractions of the energy reserves (total carbohydrate, lipid, and protein contents) differently, with carbohydrates being the predominant energy fraction and the most responsive indicator. Although the energy consumed showed no significant changes, the CEA was notably altered after exposure to all the contaminants, indicating a direct connection to shifts in the available energy. The CEA alterations may indicate a reallocation of energy toward detoxification, combating the stress of contaminant exposure. Energy allocation biomarkers provide a comprehensive assessment of an organism’s physiological state, which is essential for evaluating emerging contaminants’ impacts, safeguarding aquatic ecosystems, and shaping effective environmental policies. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

17 pages, 1965 KiB  
Article
The Effect of the Antidepressant Citalopram on the Bioconcentration and Biomarker Response of Daphnia magna at Environmentally Relevant Concentrations
by Haohan Yang, Jiacheng Tan, Hanyu Jiang, Hao Xing, Jingnan Zhang, Dexin Kong, Zhuoyu Chen and Linghui Kong
Toxics 2025, 13(7), 532; https://doi.org/10.3390/toxics13070532 - 25 Jun 2025
Viewed by 363
Abstract
The widespread use and pseudo-persistent occurrence of the antidepressant citalopram (CIT) could pose a potential ecological risk in the aquatic environment. The message about the bioconcentration and sensitive biomarker identification of CIT at the environmentally relevant concentrations is limited. In this study, an [...] Read more.
The widespread use and pseudo-persistent occurrence of the antidepressant citalopram (CIT) could pose a potential ecological risk in the aquatic environment. The message about the bioconcentration and sensitive biomarker identification of CIT at the environmentally relevant concentrations is limited. In this study, an integral evaluation of the phenotypic and biochemical effects of CIT on Daphnia magna (D. magna) was conducted at 0.5 and 10 µg/L. The biomarker screening includes energy metabolism, phototactic behavior, feeding dysfunction, and antioxidant stress responses. The carbohydrate, lipid, and protein content was determined using the assay of anthrone with glucose as standard, thiophosphorate-Vaniline with cholesterol as standard, and Coomassie brilliant blue with serum albumin as standard, respectively. The results showed the bioconcentration equilibrium of CIT reached at the exposure duration of 48 h during the uptake process. At the exposure concentrations of 0.5 and 10 µg/L, the bioconcentration factor of CIT was 571.2 and 67.4 L/kg, respectively. Both protein and lipid content significantly increased at 0.5 µg/L with a 1.78-fold elevation in total energy. Comparatively, the lipid content showed a significant increase at 10 µg/L, while the available total energy rose by 1.25-fold relative to the control group. The phototactic behavior of D. magna exposed to 0.5 µg/L CIT was markedly reduced at 48 h relative to control. In contrast, a significant decrease in phototaxis was observed after 6 h and then a significant increase at 12 h with a continuously obvious decline at 10 µg/L. The filtration rates were increased by 32% compared to controls at 0.5 µg/L, while the stimulatory effects disappeared at 10 µg/L. With regarding to the antioxidant enzyme activities, CIT exposure significantly inhibited the catalase activity both at 0.5 and 10 µg/L, while the glutathione S-transferase activity was obviously induced at 0.5 µg/L and inhibited at 10 µg/L. The expression level of 18s gene was significantly decreased at 10 µg/L. Only the gst gene expression level was significantly increased at 0.5 µg/L, while the 18s and cat gene expression level was obviously inhibited and induced at 10 µg/L. Comprehensively, the responses of the phenotypic traits and energy metabolism of D. magna at various environmental concentrations were sensitive for CIT. This study provided basic data for the risk estimation of CIT in the real freshwater environment. Full article
(This article belongs to the Special Issue Oxidative Degradation and Toxicity of Environmental Pollutants)
Show Figures

Graphical abstract

21 pages, 2467 KiB  
Article
Chronic Ammonia Stress in Chinese Perch (Siniperca chuatsi): Oxidative Response, Nitrogen Metabolism, and Multi-Enzyme-Mediated Molecular Detoxification Defense Mechanisms
by Yan Li, Ru Yang, Minghui He, Jianmei Su and Liwei Liu
Antioxidants 2025, 14(7), 768; https://doi.org/10.3390/antiox14070768 - 22 Jun 2025
Cited by 1 | Viewed by 490
Abstract
Chinese perch (Siniperca chuatsi), an economically important freshwater fish in China, faces ammonia nitrogen stress under high-density aquaculture. This study investigated chronic ammonia nitrogen exposure effects on juvenile fish (95 ± 5 g) to establish safe concentration. Acute toxicity tests revealed [...] Read more.
Chinese perch (Siniperca chuatsi), an economically important freshwater fish in China, faces ammonia nitrogen stress under high-density aquaculture. This study investigated chronic ammonia nitrogen exposure effects on juvenile fish (95 ± 5 g) to establish safe concentration. Acute toxicity tests revealed a 96 h-LC50 of 12.91 mg/L ammonia nitrogen, with a safe concentration of 1.29 mg/L ammonia nitrogen (non-ionic ammonia: 0.097 mg/L). In 28-day chronic experiments with ammonia nitrogen levels at 0, 0.61, 1.29, and 2.58 mg/L, ammonia nitrogen induced hepatic oxidative stress, with total superoxide dismutase, catalase, and glutathione peroxidase activities and malondialdehyde content increasing proportionally to ammonia nitrogen concentration initially but declining over time. Concurrently, gill Na+-K+-ATPase activity was significantly suppressed, while the gene expression of ammonia transporters (rhag, rhbg, and rhcg) exhibited ammonia nitrogen concentration-dependent upregulation, inversely correlated with the exposure duration. Histological gill damage intensified at higher concentrations. Hepatic ammonia detoxification enzymes activities (asparagine synthase, glutamine synthetase, and glutamate dehydrogenase) and glutamine accumulation increased with ammonia nitrogen levels, aligning with gene expression trends, though enzyme activity diminished over time. Serum alanine aminotransferase and aspartate aminotransferase activities and their gene expressions rose with ammonia nitrogen levels, while total protein declined. These findings demonstrate that chronic ammonia nitrogen stress disrupts antioxidant capacity, osmoregulation, and nitrogen metabolism, compelling Chinese perch to mitigate toxicity via glutamine synthesis. To ensure sustainable aquaculture, ammonia nitrogen levels should remain below 1.29 mg/L under adequate dissolved oxygen conditions. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress in Aquaculture)
Show Figures

Graphical abstract

10 pages, 395 KiB  
Article
Physicochemical Characterization of Desert Bay with Brine Discharge: A Case Study from Caldera Bay, Northern Chile
by Estefanía Bonnail, Yesenia Rojas-Lillo, T. Ángel DelValls and Edgardo Cruces
J. Mar. Sci. Eng. 2025, 13(7), 1199; https://doi.org/10.3390/jmse13071199 - 20 Jun 2025
Viewed by 371
Abstract
Seawater desalination is considered the first option to meet the domestic and industrial requirements of freshwater in desert areas, such as the Atacama Desert (Chile). However, its environmental implications remain poorly characterized. This study evaluated the effects of brine discharge from a desalination [...] Read more.
Seawater desalination is considered the first option to meet the domestic and industrial requirements of freshwater in desert areas, such as the Atacama Desert (Chile). However, its environmental implications remain poorly characterized. This study evaluated the effects of brine discharge from a desalination plant located in Caldera Bay, where fishing and tourism coexist. Sampling was conducted at increasing distances from the outfall to assess physicochemical parameters, sediment metal content, and nutrient concentrations. The results revealed a clear spatial gradient: salinity decreased from 57.75 to 34.87 PSU and nitrate from 10.49 to 4.05 µM. The sediment samples near the outfall showed elevated concentrations of Al, Fe, and Cr(VI). These findings suggest that brine discharge alters water chemistry and sediment quality. This study highlights the need for long-term environmental monitoring and regulatory frameworks to ensure sustainable desalination in sensitive coastal systems. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

14 pages, 1125 KiB  
Article
Genetic Diversity of Selective Breeding Populations of Giant Freshwater Prawn (Macrobrachium rosenbergii) Based on SSR and Mitochondrial D-Loop Gene
by Salifu Ibrahim, Amin Ruhul, Jingfen Li, Guoliang Yang, Shaokui Yi, Zhenglong Xia, Miaoying Cai, Yuewen Deng and Qiongying Tang
Diversity 2025, 17(7), 437; https://doi.org/10.3390/d17070437 - 20 Jun 2025
Viewed by 334
Abstract
Macrobrachium rosenbergii, commonly known as giant freshwater prawns (GFPs), is an economically and nutritionally important decapod crustacean species in China. Understanding the genetic diversity of selective breeding populations is crucial in breeding plans for selecting genetically diverse broodstocks and maintaining genetic diversity. [...] Read more.
Macrobrachium rosenbergii, commonly known as giant freshwater prawns (GFPs), is an economically and nutritionally important decapod crustacean species in China. Understanding the genetic diversity of selective breeding populations is crucial in breeding plans for selecting genetically diverse broodstocks and maintaining genetic diversity. The genetic structure of six breeding populations (Hefu (HF), Nantaihu No.2 (NTH), Jiaxin (JX), Shufeng (SF), Taiwan (TW), and Guangxi (GX)) of GFP in China was examined using 16 newly developed microsatellite loci and the mitochondrial control region (D-loop). The microsatellite data revealed that all 16 loci have high diversity, with all values of polymorphism information content (PIC) more than 0.5. The average expected heterozygosity (He, 0.89) and the number of alleles (Na, 18.25) of SF were the highest, followed by He (0.89) and Na (14.75) of the JX, and GX has the lowest He (0.83) and Na (11.31). The average PIC value for the six stocks ranged from 0.80 to 0.87. Pairwise comparisons revealed that Fst ranged from 0.03541 to 0.09637 and was significant (p < 0.05) between most populations, indicating from low to moderate genetic differentiation among the six populations. The D-loop analysis identified 114 variable sites and 29 haplotypes, with an average haplotype diversity (Hd) and nucleotide diversity (π) of 0.640 and 0.01247, respectively. Genetic differentiation among the six populations based on the D-loop was from moderate to high, with Fst values of 0.05603–0.80788, and all p < 0.05. This study demonstrates that selective breeding stocks of M. rosenbergii in China show moderate to high genetic diversity and have the potential for further selective breeding, providing a theoretical basis for conserving and utilizing M. rosenbergii genetic resources. Full article
Show Figures

Figure 1

17 pages, 4325 KiB  
Article
Geochemical Characteristics of the Minghuazhen Formation in the Cangdong Sag, Bohai Bay Basin: Implications for Provenance, Paleoclimate, and Hydrocarbon Exploration
by Jianzhou Yang, Yong Li, Jingjing Gong, Zhuang Duan, Shuqi Hu, Liling Tang, Wenli Su, Jianweng Gao, Zhenliang Wang, Lujun Lin, Keqiang Zhao and Shengping Gong
Sustainability 2025, 17(12), 5293; https://doi.org/10.3390/su17125293 - 8 Jun 2025
Viewed by 499
Abstract
The Minghuazhen Formation in the Cangdong Sag of the Bohai Bay Basin is a key sedimentary unit for investigating regional provenance evolution, paleoclimate variations, and hydrocarbon potential in Eastern China. This study integrates mineralogical and geochemical analyses to explore sedimentary characteristics. Techniques include [...] Read more.
The Minghuazhen Formation in the Cangdong Sag of the Bohai Bay Basin is a key sedimentary unit for investigating regional provenance evolution, paleoclimate variations, and hydrocarbon potential in Eastern China. This study integrates mineralogical and geochemical analyses to explore sedimentary characteristics. Techniques include X-ray diffraction (XRD), major/trace element compositions, rare earth element (REE) distributions, and organic carbon content. XRD data and elemental ratios (e.g., Al/Ti, Zr/Sc) suggest a predominant felsic provenance, sourced from acidic magmatic rocks. The enrichment with light rare earth elements (LREE: La–Eu) and notable negative Eu anomalies in the REE patterns support the interpretation of a provenance from the Taihangshan and Yanshan Orogenic Belts. Geochemical proxies, such as the Chemical Index of Alteration (CIA) and trace element ratios (e.g., U/Th, V/Cr, Ni/Co), indicate a warm and humid depositional environment, characterized by predominantly oxic freshwater conditions. Organic geochemical parameters, including total organic carbon (TOC), total nitrogen (TN), and C/N ratios, suggest that organic matter primarily originates from aquatic algae and plankton, with C/N values predominantly below 10 and a strong correlation between TOC and TN. The weak correlation between TOC and total carbon (TC) indicates that the organic carbon is mainly biological in origin rather than carbonate-derived. Although the warm and humid climate promoted the production of organic matter, the prevailing oxic conditions hindered its preservation, resulting in a relatively low hydrocarbon generation potential within the Minghuazhen Formation of the Cangdong Sag. These findings provide new insights into the sedimentary evolution and hydrocarbon potential of the Bohai Bay Basin. Full article
Show Figures

Figure 1

16 pages, 9902 KiB  
Article
Genome Sequences of the First Phages Infecting Limnohabitans Reveal Their Global Distribution and Metabolic Potential
by Boxuan Deng, Raoqiong Che, Pinxin Zhu, Yongxia Wang, Zhiying Li, Shiying Zhang and Wei Xiao
Microorganisms 2025, 13(6), 1324; https://doi.org/10.3390/microorganisms13061324 - 6 Jun 2025
Viewed by 559
Abstract
Bacteriophages (phages) are one of the critical biotic drivers of prokaryotic community dynamics, functions, and evolution. Despite their importance in aquatic ecosystems, very few phages have been isolated from freshwater lakes, hampering our understanding of their ecological importance and usage in a variety [...] Read more.
Bacteriophages (phages) are one of the critical biotic drivers of prokaryotic community dynamics, functions, and evolution. Despite their importance in aquatic ecosystems, very few phages have been isolated from freshwater lakes, hampering our understanding of their ecological importance and usage in a variety of biotechnological applications. Limnohabitans, with a ubiquitous distribution, is a metabolically versatile, fast-growing, morphologically diverse freshwater lake bacterial genera. It is especially abundant in pH-neutral and alkaline aquatic habitats, where it represents an average of 12% of freshwater bacterioplankton and plays an important role in funneling carbon from primary producers to higher trophic levels. However, no phages infecting Limnohabitans have been reported to date. Here, we describe, for the first time, three phages infecting Limnohabitans, DC31, DC33, and YIMV22061, isolated from two freshwater lakes in China and characterized using genome content analysis and comparative genomics. DC31 and DC33, recovered from the eutrophic Dianchi Lake, with auxiliary metabolic genes (AMGs), associated with nucleotide metabolism, whereas YIMV22061, isolated from the oligotrophic Fuxian Lake, carried AMGs involved in antibiotic resistance. The AMGs they carried highlight their impacts on Limnohabitans in different environments. Comparative genomic analyses indicate that DC31, DC33, and YIMV22061 represent three novel species in the Caudoviricetes class. IMG/VR database alignment further reveal that these phages are widely distributed across diverse aquatic and terrestrial ecosystems globally, suggesting their ecological significance. This study provides a basis for better understanding Limnohabitans–phage interactions. Full article
(This article belongs to the Special Issue Advances in Genomics and Ecology of Environmental Microorganisms)
Show Figures

Figure 1

15 pages, 972 KiB  
Article
A Comparative Analysis on the Biochemical Composition and Nutrition Evaluation of Crayfish (Procambarus clarkii) Cultivated in Saline-Alkali and Fresh Water
by Yanqing Huang, Pengcheng Gao, Duanduan Yu, Zhen Sun, Xu Yang, Qifang Lai and Hai Chi
Foods 2025, 14(11), 1997; https://doi.org/10.3390/foods14111997 - 5 Jun 2025
Viewed by 544
Abstract
To compare the quality and nutritional differences of crayfish under freshwater and saline-alkali water aquaculture conditions, this study systematically analyzed the biochemical composition, physical properties, and nutritional evaluation of crayfish (Procambarus clarkii) cultivated in saline-alkali water (PC-SW) and freshwater aquaculture (PC-FW), [...] Read more.
To compare the quality and nutritional differences of crayfish under freshwater and saline-alkali water aquaculture conditions, this study systematically analyzed the biochemical composition, physical properties, and nutritional evaluation of crayfish (Procambarus clarkii) cultivated in saline-alkali water (PC-SW) and freshwater aquaculture (PC-FW), respectively. The results showed that crayfish from PC-SW had higher crude protein, crude fat, water content, and ash content. At the same time, PC-SW had a higher meat yield (16.18 ± 0.74%) than PC-FW (p < 0.05), with no significant changes in the head weight ratio or hepatopancreas weight ratio, indicating superior crayfish quality. The trace element content of PC-SW differed significantly from that of PC-FW (p < 0.05), with the exception of Cu. To some extent, the amino acid and fatty acid compositions were similar. The no essential amino acids content of crayfish cultivated under freshwater and saline-alkali conditions was higher than the essential amino acids content. The total branched-chain amino acids (BCAAs) content was higher than the total aromatic amino acids (AACs) content in both groups; however, the BCAA to AAC ratio was similar, at approximately 2.14. The essential amino acid index results were 69.01 and 68.02, respectively. Finally, betaine and nucleotide concentrations increased and geosmin content was significantly reduced in PC-SW (3.13 ± 0.09 μg/kg) compared to PC-FW (4.32 ± 0.09 μg/kg) (p < 0.05), implying that PC-SW crayfish had a better flavor. Our findings revealed that cultivating crayfish under saline-alkali conditions can significantly improve the nutritional quality and flavor of muscle. Full article
Show Figures

Figure 1

16 pages, 1092 KiB  
Article
Trends and Determinants of Virtual Water Trade and Water Resource Utilization in Ghanaian Vegetable Production
by Emmanuel Adutwum Ampong, Alexander Sessi Kosi Tette and Kyung-Sook Choi
Water 2025, 17(11), 1689; https://doi.org/10.3390/w17111689 - 3 Jun 2025
Viewed by 652
Abstract
Water plays a critical role in ensuring sustainable food security, particularly in the face of increasing freshwater scarcity and climate variability. This study examines virtual water use and virtual water trade in Ghana’s vegetable production sector over a 30-year period (1994–2023), focusing on [...] Read more.
Water plays a critical role in ensuring sustainable food security, particularly in the face of increasing freshwater scarcity and climate variability. This study examines virtual water use and virtual water trade in Ghana’s vegetable production sector over a 30-year period (1994–2023), focusing on four key crops: tomato, pepper, onion, and eggplant. Using secondary data on production volumes, trade flows, and virtual water content, the research quantifies imported and exported virtual water volumes and assesses net virtual water trends. The results reveal a substantial increase in virtual water use for most crops, with the exception of pepper, which experienced a marked decline. Onion and tomato are identified as the dominant contributors to both imports and exports of virtual water, while pepper and eggplant play relatively minor roles. The study finds that Ghana is a net importer of virtual water in vegetable trade, emphasizing the need for integrated water resource management to balance agricultural growth with water sustainability. A gravity model analysis was applied to identify the primary determinants of virtual water trade, revealing that GDP per capita, population size, distance, land availability, virtual water use, and border-sharing significantly influence trade patterns. The findings suggest that enhancing domestic production capacity and promoting efficient water use practices can reduce Ghana’s reliance on imports and improve resilience against water-related risks. This research provides valuable insights for policymakers, researchers, and practitioners aiming to develop sustainable water and food systems in Ghana and similar contexts. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

14 pages, 1658 KiB  
Article
Diet Composition of Twaite Shad, Alosa fallax (Lacépède, 1803), During the Spawning Migration to the Curonian Lagoon (Lithuania)
by Edoardo Nobili, Harry Gorfine, Eglė Jakubavičiūtė, Žilvinas Pūtys and Linas Ložys
Fishes 2025, 10(6), 256; https://doi.org/10.3390/fishes10060256 - 1 Jun 2025
Viewed by 413
Abstract
The nutritional needs of anadromous fish species must be met for successful annual spawning migration and reproduction. Despite its widespread distribution throughout Europe, little is known about the composition of the twaite shad, Alosa fallax, diet in freshwater ecosystems. To redress this, [...] Read more.
The nutritional needs of anadromous fish species must be met for successful annual spawning migration and reproduction. Despite its widespread distribution throughout Europe, little is known about the composition of the twaite shad, Alosa fallax, diet in freshwater ecosystems. To redress this, we studied the composition of stomach contents extracted from 287 A. fallax sampled during their spawning migration from the Baltic Sea to the Curonian Lagoon (Lithuania). We found that the diet comprised 32 types of prey, with Insecta (unknown Order), Chironomidae and Daphniidae being the most prevalent taxonomic categories consumed. Our analyses revealed significant differences in the abundance of prey categories (Chironomidae, Insecta—unknown order, and Mysidae) among several size groups of A. fallax, associated with stage of maturity inferred from body length. Despite this being a spawning aggregation, juveniles were also present among the A. fallax we collected. The results imply that feeding behavior and morphometry may be responsible for the differences observed, and further investigation of this topic is warranted. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

13 pages, 1809 KiB  
Article
Effect of Large Yellow Croaker By-Products on Physical Properties and Thermal Gelling Properties Changes in Reconstituted Surimi Gel
by Fen Zhou, Fengchao Wu, Xiaoqing Ren, Jiaxin Guo and Xichang Wang
Foods 2025, 14(11), 1949; https://doi.org/10.3390/foods14111949 - 30 May 2025
Viewed by 460
Abstract
To investigate the effects of water-soluble taste substances (WSTSs) on the physical properties and thermal coagulation properties of reconstituted surimi gels, this study used large yellow croaker muscle (FM) and the WSTS from by-product minced meat (MM) (skin, tail, and head meat (HM)). [...] Read more.
To investigate the effects of water-soluble taste substances (WSTSs) on the physical properties and thermal coagulation properties of reconstituted surimi gels, this study used large yellow croaker muscle (FM) and the WSTS from by-product minced meat (MM) (skin, tail, and head meat (HM)). It was observed that these exogenous additions could effectively improve the surimi gel’s whiteness, gel strength and umami amino acid content. When these were added, the relaxation times of bound water in FM, MM and HM groups were shorter in the 10% exogenous addition treatment, and the surimi particle size (D10, D50, D90, d4, 3, d2, 3) was smaller. This implies a correlation between the WSTS and the moisture preservation capacity of recombinant surimi gels, whereby WSTS facilitates the cross-linking of protein molecules, leading to the formation of a densely interconnected network architecture. This research can provide theoretical guidance for the processing of surimi gel combined fish flavor substances and freshwater surimi, thereby improving the flavor characteristics of freshwater surimi gel. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

22 pages, 924 KiB  
Review
Novel Insights into Agro-Industrial Waste: Exploring Techno-Economic Viability as an Alternative Source of Water Recovery
by Christian I. Cano-Gómez, Cynthia Wong-Arguelles, Jessica Ivonne Hinojosa-López, Diana B. Muñiz-Márquez and Jorge E. Wong-Paz
Waste 2025, 3(2), 15; https://doi.org/10.3390/waste3020015 - 15 May 2025
Viewed by 1516
Abstract
The growing challenges of freshwater scarcity and the high generation of agro-industrial waste, particularly from fruit and vegetable (F&V) processing, pose significant threats to the sustainability of global food systems. F&V waste, which represents a major portion of the 1.3 billion tons of [...] Read more.
The growing challenges of freshwater scarcity and the high generation of agro-industrial waste, particularly from fruit and vegetable (F&V) processing, pose significant threats to the sustainability of global food systems. F&V waste, which represents a major portion of the 1.3 billion tons of annual food waste, is characterized by a high moisture content (80–95%), making it a largely overlooked but promising source of water recovery. This review critically assesses the techno-economic and environmental feasibility of extracting water from moisture-rich agro-industrial waste streams. Potential technologies such as solar distillation and membrane separation are evaluated to determine their capacity to treat complex organic effluents and recover high-quality water. The potential end uses of reclaimed water in all sectors are explored, focusing on agricultural irrigation, fertigation, industrial reuse and environmental restoration. This study addresses a key research gap and proposes the reclassification of agro-industrial waste as a viable water resource aligned with circular bioeconomy principles and Sustainable Development Goals (SDGs) 6 and 12. Full article
(This article belongs to the Special Issue Agri-Food Wastes and Biomass Valorization—2nd Edition)
Show Figures

Figure 1

Back to TopTop