Trends and Determinants of Virtual Water Trade and Water Resource Utilization in Ghanaian Vegetable Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Determining VWC and VWU
2.4. Estimating IVW, EVW, and NVWT
2.5. Factors Influencing Virtual Water Trade
2.6. The Gravity Model of Trade
3. Results
3.1. Virtual Water Use (VWU) Trends of Major Ghanaian Vegetable Crops
3.2. Trends of IVW, EVW, and NVW
3.3. The Gravity Model Analysis of VWT Drivers
4. Discussion
4.1. Virtual Water Use of Ghanaians’ Major Vegetable Crops
4.2. Ghana’s Vegetable Export, Import, and NVW
4.3. Factors Influencing Ghana’s Vegetable VWT
4.4. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- World Bank. Strains on Freshwater Resources: The Impact of Food Production on Water Consumption; World Bank Open Data Blog. Available online: https://blogs.worldbank.org/en/opendata/strains-freshwater-resources-impact-food-production-water-consumption (accessed on 2 March 2025).
- Du, Y.; Zhao, D.; Qiu, S.; Zhou, F.; Peng, J. How Can Virtual Water Trade Reshape Water Stress Pattern? A Global Evaluation Based on the Metacoupling Perspective. Ecol. Indic. 2022, 145, 109712. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Water Footprint Benchmarks for Crop Production: A First Global Assessment. Ecol. Indic. 2014, 46, 214–223. [Google Scholar] [CrossRef]
- Bo, Y.; Zhou, F.; Zhao, J.; Liu, J.; Liu, J.; Ciais, P.; Chang, J.; Chen, L. Additional Surface-Water Deficit to Meet Global Universal Water Accessibility by 2030. J. Clean. Prod. 2021, 320, 128829. [Google Scholar] [CrossRef]
- D’Odorico, P.; Carr, J.; Dalin, C.; Dell’Angelo, J.; Konar, M.; Laio, F.; Ridolfi, L.; Rosa, L.; Suweis, S.; Tamea, S.; et al. Global Virtual Water Trade and the Hydrological Cycle: Patterns, Drivers, and Socio-Environmental Impacts. Environ. Res. Lett. 2019, 14, 053001. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Sustainability: Four Billion People Facing Severe Water Scarcity. Sci. Adv. 2016, 2, 2–7. [Google Scholar] [CrossRef]
- SDGs. Summary Progress Update 2021: SDG 6—Water and Sanitation for All; UN-Water: Geneva, Switzerland, 2021; pp. 1–58. Available online: https://www.unwater.org/sites/default/files/app/uploads/2021/02/SDG-6-Summary-Progress-Update-2021_Version-2021-03-03.pdf (accessed on 2 March 2025).
- Quarcoo, G.; Boamah Adomako, L.A.; Abrahamyan, A.; Armoo, S.; Sylverken, A.A.; Addo, M.G.; Alaverdyan, S.; Jessani, N.S.; Harries, A.D.; Ahmed, H.; et al. What Is in the Salad? Escherichia Coli and Antibiotic Resistance in Lettuce Irrigated with Various Water Sources in Ghana. Int. J. Environ. Res. Public Health 2022, 19, 12722. [Google Scholar] [CrossRef]
- Pawlak, K.; Kołodziejczak, M. The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- Callejas Moncaleano, D.C.; Pande, S.; Rietveld, L. Water Use Efficiency: A Review of Contextual and Behavioral Factors. Front. Water 2021, 3, 1–13. [Google Scholar] [CrossRef]
- Arfasa, G.F.; Owusu-Sekyere, E.; Doke, D.A. Predictions of Land Use/Land Cover Change, Drivers, and Their Implications on Water Availability for Irrigation in the Vea Catchment, Ghana. Geocarto Int. 2023, 38, 2243093. [Google Scholar] [CrossRef]
- Onyeaka, H.; Nwauzoma, U.M.; Akinsemolu, A.A.; Tamasiga, P.; Duan, K.; Al-Sharify, Z.T.; Siyanbola, K.F. The Ripple Effects of Climate Change on Agricultural Sustainability and Food Security in Africa. Food Energy Secur. 2024, 13, e567. [Google Scholar] [CrossRef]
- Nyantakyi-Frimpong, H.; LaVanchy, G.T.; Kelley, M.M. Human and Physical Dilemmas in Small-Scale Irrigation Development: Evidence from Climate-Sensitive Northern Ghana. Prof. Geogr. 2023, 75, 591–603. [Google Scholar] [CrossRef]
- Ashiagbor, A.A.; Ablateye, S.; Essel-Mensah, K.A. Agriculture Growth in Ghana: A Time-Series Analysis with Autoregressive Distributed Lag Approach. Cogent Food Agric. 2023, 9, 2244267. [Google Scholar] [CrossRef]
- Nchanji, E.B.; Bellwood-Howard, I.; Schareika, N.; Chagomoka, T.; Schlesinger, J.; Axel, D.; Rüdiger, G. Assessing the Sustainability of Vegetable Production Practices in Northern Ghana*. Int. J. Agric. Sustain. 2017, 15, 321–337. [Google Scholar] [CrossRef]
- Awuni, S.; Adarkwah, F.; Ofori, B.D.; Purwestri, R.C.; Huertas Bernal, D.C.; Hajek, M. Managing the Challenges of Climate Change Mitigation and Adaptation Strategies in Ghana. Heliyon 2023, 9, e15491. [Google Scholar] [CrossRef]
- Dadzie, S.K.N.; Inkoom, E.W.; Akaba, S.; Annor-Frempong, F.; Afful, J. Sustainability Responses to Climate-Smart Adaptation in Africa: Implication for Food Security among Farm Households in the Central Region of Ghana. Afr. J. Econ. Manag. Stud. 2020, 12, 208–227. [Google Scholar] [CrossRef]
- Carbone, P.; Siviero, D.; de Camargo, R.I.; Masoumi, A. Water Management: A Way to Achieve a More Efficient Irrigation System. Econ. Agro-Aliment. 2020, 22, 1–19. [Google Scholar] [CrossRef]
- Akoto-Danso, E.K.; Karg, H.; Drechsel, P.; Nyarko, G.; Buerkert, A. Virtual Water Flow in Food Trade Systems of Two West African Cities. Agric. Water Manag. 2019, 213, 760–772. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Virtual Water Trade between Nations: A Global Mechanism Affecting Regional Water Systems. IGBP Glob. Chang. News Lett. 2003, 54, 2–4. [Google Scholar]
- Odey, G.; Adelodun, B.; Lee, S.; Adeyi, Q.; Choi, K.S. Assessment of the Factors Shaping the Public’s Perception of Physical and Virtual Water: A Case Study of Korean Households. Environ. Sci. Policy 2024, 151, 103629. [Google Scholar] [CrossRef]
- Cao, X.; Bao, Y.; Li, Y.; Li, J.; Wu, M. Unravelling the Effects of Crop Blue, Green and Grey Virtual Water Flows on Regional Agricultural Water Footprint and Scarcity. Agric. Water Manag. 2023, 278, 108165. [Google Scholar] [CrossRef]
- Nouri, H.; Stokvis, B.; Galindo, A.; Blatchford, M.; Hoekstra, A.Y. Water Scarcity Alleviation through Water Footprint Reduction in Agriculture: The Effect of Soil Mulching and Drip Irrigation. Sci. Total Environ. 2019, 653, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chen, X.; Wu, S.R.; Gong, M.; Du, Y.; Wang, J.; Li, Y.; Liu, J. Spatial-Temporal Assessment of Water Footprint, Water Scarcity and Crop Water Productivity in a Major Crop Production Region. J. Clean. Prod. 2019, 224, 375–383. [Google Scholar] [CrossRef]
- Delbourg, E.; Dinar, S. The Globalization of Virtual Water Flows: Explaining Trade Patterns of a Scarce Resource. World Dev. 2020, 131, 104917. [Google Scholar] [CrossRef]
- Cazcarro, I.; Schyns, J.F.; Arto, I.; Sanz, M.J. Nations’ Water Footprints and Virtual Water Trade of Wood Products. Adv. Water Resour. 2022, 164, 104188. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Wang, R.; Klemeš, J.J.; de Almeida, C.M.V.B.; Jin, M.; Zheng, X.; Qiao, Y. Environmental-Social-Economic Footprints of Consumption and Trade in the Asia-Pacific Region. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Odey, G.; Adelodun, B.; Kim, S.H.; Choi, K.S. Status of Environmental Life Cycle Assessment (Lca): A Case Study of South Korea. Sustainability 2021, 13, 6234. [Google Scholar] [CrossRef]
- Xia, W.; Chen, X.; Song, C.; Pérez-Carrera, A. Driving Factors of Virtual Water in International Grain Trade: A Study for Belt and Road Countries. Agric. Water Manag. 2022, 262, 107441. [Google Scholar] [CrossRef]
- Tamea, S.; Carr, J.A.; Laio, F.; Ridolfi, L. Drivers of the Virtual Water Trade. Water Resour. Res. 2014, 50, 17–28. [Google Scholar] [CrossRef]
- Head, K.; Mayer, T. Gravity Equations: Workhorse, Toolkit, and Cookbook Appendix. Handb. Int. Econ. 2014, 4, 131–195. [Google Scholar]
- Duarte, R.; Pinilla, V.; Serrano, A. Factors Driving Embodied Carbon in International Trade: A Multiregional Input–Output Gravity Model. Econ. Syst. Res. 2018, 30, 545–566. [Google Scholar] [CrossRef]
- Fu, T.; Xu, C.; Huang, X. Analysis of Virtual Water Trade Flow and Driving Factors in the European Union. Water 2021, 13, 1771. [Google Scholar] [CrossRef]
- Sun, S.K.; Song, J.F.; Wang, F.F.; Wu, P.T.; Wang, Y.B. Evaluating the Impacts of Socio-Economic Factors on Regional Grain Virtual Water Flows in China Using a Structural Equation Modeling Approach. J. Hydrol. 2019, 571, 132–141. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, F.; Li, Y.; Wang, D.; Lu, Q.; Liu, F.; Li, Y.; Wang, D. Study on the Relationship between Water Resources Utilization and Economic Growth in Tarim River Basin from the Perspective of Water Footprint. Water 2022, 14, 1655. [Google Scholar] [CrossRef]
- Zhao, D.; Hubacek, K.; Feng, K.; Sun, L.; Liu, J. Explaining Virtual Water Trade: A Spatial-Temporal Analysis of the Comparative Advantage of Land, Labor and Water in China. Water Res. 2019, 153, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Fracasso, A.; Sartori, M.; Schiavo, S. Determinants of Virtual Water Flows in the Mediterranean. Sci. Total Environ. 2016, 543, 1054–1062. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Tian, Q.; Man, X.; Wang, M. Virtual Water Flows and Drivers in the International Trade of Agricultural Products of the Regional Comprehensive Economic Partnership. Water Sci. Technol. 2024, 89, 730–744. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y. Water Footprints of Nations: Volume 1—Main Report; Unesco-IHE Institute for Water Education: Delft, The Netherlands, 2004; Available online: https://www.waterfootprint.org/resources/Report16Vol1.pdf (accessed on 27 November 2023).
- da Silva, V. de P.R.; de Oliveira, S.D.; Hoekstra, A.Y.; Neto, J.D.; Campos, J.H.B.C.; Braga, C.C.; de Araújo, L.E.; de Oliveira Aleixo, D.; de Brito, J.I.B.; de Souza, M.D.; et al. Water Footprint and Virtual Water Trade of Brazil. Water 2016, 8, 517. [Google Scholar]
- Zhang, C.; Anadon, L.D. A Multi-Regional Input-Output Analysis of Domestic Virtual Water Trade and Provincial Water Footprint in China. Ecol. Econ. 2014, 100, 159–172. [Google Scholar] [CrossRef]
- Tette, A.S.K.; Odey, G.; Ahmad, M.J.; Adelodun, B.; Choi, K.S. Crop Water Use and a Gravity Model Exploration of Virtual Water Trade in Ghana’s Cereal Agriculture. Water 2024, 16, 2077. [Google Scholar] [CrossRef]
- Yamba, E.I.; Aryee, J.N.A.; Quansah, E.; Davies, P.; Wemegah, C.S.; Osei, M.A.; Ahiataku, M.A.; Amekudzi, L.K. Revisiting the Agro-Climatic Zones of Ghana: A Re-Classification in Conformity with Climate Change and Variability. PLOS Clim. 2023, 2, e0000023. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators. Available online: https://data.worldbank.org/ (accessed on 10 January 2025).
- Ansah, S.O.; Ahiataku, M.A.; Yorke, C.K.; Otu-Larbi, F.; Yahaya, B.; Lamptey, P.N.L.; Tanu, M. Meteorological Analysis of Floods in Ghana. Adv. Meteorol. 2020, 4230627, 1–14. [Google Scholar] [CrossRef]
- Aryee, J.N.A.; Amekudzi, L.K.; Quansah, E.; Klutse, N.A.B.; Atiah, W.A.; Yorke, C. Development of High Spatial Resolution Rainfall Data for Ghana. Int. J. Climatol. 2018, 38, 1201–1215. [Google Scholar] [CrossRef]
- Agodzo, S.K.; Bessah, E.; Nyatuame, M. A Review of the Water Resources of Ghana in a Changing Climate and Anthropogenic Stresses. Front. Water 2023, 4, 973825. [Google Scholar] [CrossRef]
- Macrotrends. Ghana Urban Population 1960–2024. Available online: https://www.macrotrends.net/global-metrics/countries/GHA/ghana/urban-population (accessed on 3 January 2025).
- Wongnaa, C.A.; Akuriba, M.A.; Ebenezer, A.; Danquah, K.S.; Ofosu, D.A. Profitability and Constraints to Urban Exotic Vegetable Production Systems in the Kumasi Metropolis of Ghana: A Recipe for Job Creation. J. Glob. Entrep. Res. 2019, 9, 33. [Google Scholar] [CrossRef]
- FAOSTAT. Data—Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data (accessed on 4 January 2025).
- Hoekstra, A.Y.; Mekonnen, M.M. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products; 2010; Volume 1. Available online: https://www.waterfootprint.org/resources/Report47-WaterFootprintCrops-Vol1.pdf (accessed on 28 December 2024).
- Distance.to. Distance Calculator. Available online: https://www.distance.to/ (accessed on 12 January 2025).
- Hoekstra, A.Y.; Hung, P.Q. Virtual Water Trade: A Quantification of Virtual Water Flows Between Nations in Relation to International Crop Trade; 2002. Available online: https://www.waterfootprint.org/resources/Report11.pdf (accessed on 27 November 2023).
- Odey, G.; Adelodun, B.; Adeyi, Q.; Hammed, A.A.; Abiodun, S.R.; Choi, K.S. Quantifying Resource Nexus: Virtual Water Flows, Water Stress Indices, and Unsustainable Import Fraction in South Korea’s Grain Trade Landscape. Sustainability 2024, 16, 2419. [Google Scholar] [CrossRef]
- Odey, G.; Adelodun, B.; Lee, S.; Adeyemi, K.A.; Cho, G.; Choi, K.S. Environmental and Socioeconomic Determinants of Virtual Water Trade of Grain Products: An Empirical Analysis of South Korea Using Decomposition and Decoupling Model. Agronomy 2022, 12, 3105. [Google Scholar] [CrossRef]
- Fracasso, A. A Gravity Model of Virtual Water Trade. Ecol. Econ. 2014, 108, 215–228. [Google Scholar] [CrossRef]
- Tuninetti, M.; Tamea, S.; Laio, F.; Ridolfi, L. To Trade or Not to Trade: Link Prediction in the Virtual Water Network. Adv. Water Resour. 2017, 110, 528–537. [Google Scholar] [CrossRef]
- Duarte, R.; Pinilla, V.; Serrano, A. Long Term Drivers of Global Virtual Water Trade: A Trade Gravity Approach for 1965–2010. Ecol. Econ. 2019, 156, 318–326. [Google Scholar] [CrossRef]
- Garcia, S.; Mejia, A. Characterizing and Modeling Subnational Virtual Water Networks of US Agricultural and Industrial Commodity Flows. Adv. Water Resour. 2019, 130, 314–324. [Google Scholar] [CrossRef]
- Shivaswamy, G.P.; Kallega, H.K.; Anuja, A.R.; Singh, K.N. An Assessment of India’s Virtual Water Trade in Major Food Products. Agric. Econ. Res. Rev. 2021, 34, 133–141. [Google Scholar] [CrossRef]
- Wei, K.; Ma, C.; Xia, J.; Song, J.; Sun, H.; Gao, J.; Liu, J. The Impacts of China’s Crops Trade on Virtual Water Flow and Water Use Sustainability of the “Belt and Road”. J. Environ. Manag. 2022, 323, 116156. [Google Scholar] [CrossRef]
- Krisztin, T.; Fischer, M.M. The Gravity Model for International Trade: Specification and Estimation Issues. Spat. Econ. Anal. 2015, 10, 451–470. [Google Scholar] [CrossRef]
- Mihrete, T.B.; Mihretu, F.B. Crop Diversification for Ensuring Sustainable Agriculture, Risk Management and Food Security. Glob. Chall. 2025, 9, 2400267. [Google Scholar] [CrossRef]
- International Water Management Institute. Integrated Agricultural Water Management Is a Game Changer in Mixed Farming Systems. Available online: https://www.iwmi.org/blogs/agricultural-water-management-is-a-game-changer-in-mixed-farming-systems/ (accessed on 2 March 2025).
- González, A.M.; Pesqueira, A.M.; García, L.; Santalla, M. Effects of Photoperiod and Drought on Flowering and Growth Development of Protein-Rich Legumes under Atlantic Environments. Agronomy 2023, 13, 1025. [Google Scholar] [CrossRef]
- Molden, D.; Vithanage, M.; de Fraiture, C.; Faures, J.M.; Gordon, L.; Molle, F.; Peden, D. Water Availability and Its Use in Agriculture. Treatise Water Sci. 2011, 4, 707–732. [Google Scholar]
- FreshPlaza. Ghana Spends $2 Million Weekly on Onion Imports Amid Rising Challenges. Available online: https://www.freshplaza.com/asia/article/9684347/ghana-spends-2-million-weekly-on-onion-imports-amid-rising-challenges/ (accessed on 16 January 2025).
- FreshPlaza. Ghana’s Retail Tomato Prices Remain High Despite Wholesale Drop. Available online: https://www.freshplaza.com/europe/article/9593366/ghana-s-retail-tomato-prices-remain-high-despite-wholesale-drop/ (accessed on 16 January 2025).
- Asselt, J.; Masias, I.; Kolavalli, S. Competitiveness of the Ghanaian Vegetable Sector: Findings from a Farmer Survey. In GSSP Working Paper—Ghana Strategy Support Program; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2018; Volume 47, pp. 1–28. [Google Scholar]
- Oki, T.; Yano, S.; Hanasaki, N. Economic Aspects of Virtual Water Trade. Environ. Res. Lett. 2017, 12, 044002. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y. The Global Component of Freshwater Demand and Supply: An Assessment of Virtual Water Flows between Nations as a Result of Trade in Agricultural and Industrial Products. Water Int. 2008, 33, 19–32. [Google Scholar] [CrossRef]
- Andrews, N.; Anku, J.H.; Akolgo-Azupogo, H. Gender, Land Grabbing and Agrarian Livelihoods: Contradictory Gendered Outcomes of Land Transactions in Ghana. J. Peasant Stud. 2025, 1–24. [Google Scholar] [CrossRef]
- Matthee, M.; Santana-Gallego, M. Identifying the Determinants of South Africa’s Extensive and Intensive Trade Margins: A Gravity Model Approach. S. Afr. J. Econ. Manag. Sci. 2017, 20, 13. [Google Scholar] [CrossRef]
- Dodorico, P.; Carr, J.; Laio, F.; Ridolfi, L. Spatial Organization and Drivers of the Virtual Water Trade: A Community-Structure Analysis. Environ. Res. Lett. 2012, 7, 034007. [Google Scholar] [CrossRef]
- Konar, M.; Dalin, C.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Temporal Dynamics of Blue and Green Virtual Water Trade Networks. Water Resour. Res. 2012, 48, W07509. [Google Scholar] [CrossRef]
Referenced Study | Spatial Scale | Study Period | Findings |
---|---|---|---|
Tamea et al. (2014) [30] | Global | 1986–2010 | GDP, geographical distance, and population of both importer and exporter countries were fundamental drivers of VWF |
Fracasso (2014) [56] | Global | 2006 | Traditional trade factors, national water availability, and water resource pressure levels influence bilateral VWF |
Fracasso (2016) [37] | Global | 2004 | Larger water endowment does not necessarily lead to larger exports of VW |
Tuninetti et al. (2017) [57] | Global | 1986–2011 | Key drivers of VWT include distance, population, and fertilizer application |
Duarte et al. (2019) [58] | Global | 1965–2010 | Economic, geographical, institutional, and environmental factors had a significant influence on VWT |
Garcia & Mejia (2019) [59] | Subnational | 2007 | Geographical distance, GDP, agricultural land, and population had a significant impact on VWT |
Shivaswamy et al. (2021) [60] | Global | 1990–2017 | Distance is the key factor influencing VWT, while arable land availability and water usage are crucial in determining virtual water flows |
Xia et al. (2022) [61] | Global | 2000–2019 | GDP and exchange rate positively influenced VWT but are negatively affected by arable land, per capita water resources, population, and geographic distance |
Tette et al. (2024) [42] | Global | 1992–2021 | Significant drivers on VWT include GDP per capita, water use, land per capita, and population |
Current study | Global | 1994–2023 | - |
Variable | IVW | EVW |
---|---|---|
C | 89.945 (0.2058) | −106.707 (0.1955) |
ln GDPG | −0.411 (0.8505) | −0.898 (0.4746) |
ln LG | −3.27 (0.4038) | 11.364 (0.0255) |
ln PG | −4.136 (0.2821) | 4.5764 (0.1421) |
ln VWUG | 1.571 (0.3935) | −2.3335 (0.0831) |
ln DGP | 0.007 (0.9873) | −0.932 (0.0472) |
ln B | 1.51 (0.1575) | 2.024 (0.0299) |
ln GDPP | −1.226 (0.0000) | 0.157 (0.5082) |
ln LP | −0.393 (0.0323) | 0.031 (0.8713) |
ln PP | −0.3766 (0.1299) | 0.979 (0.0000) |
ln VWUP | 0.299 (0.027) | −0.38 (0.0052) |
Adjusted R2 | 0.384 | 0.404 |
F-stat | 15.051 | 10.703 |
Prob (F-statistic) | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ampong, E.A.; Tette, A.S.K.; Choi, K.-S. Trends and Determinants of Virtual Water Trade and Water Resource Utilization in Ghanaian Vegetable Production. Water 2025, 17, 1689. https://doi.org/10.3390/w17111689
Ampong EA, Tette ASK, Choi K-S. Trends and Determinants of Virtual Water Trade and Water Resource Utilization in Ghanaian Vegetable Production. Water. 2025; 17(11):1689. https://doi.org/10.3390/w17111689
Chicago/Turabian StyleAmpong, Emmanuel Adutwum, Alexander Sessi Kosi Tette, and Kyung-Sook Choi. 2025. "Trends and Determinants of Virtual Water Trade and Water Resource Utilization in Ghanaian Vegetable Production" Water 17, no. 11: 1689. https://doi.org/10.3390/w17111689
APA StyleAmpong, E. A., Tette, A. S. K., & Choi, K.-S. (2025). Trends and Determinants of Virtual Water Trade and Water Resource Utilization in Ghanaian Vegetable Production. Water, 17(11), 1689. https://doi.org/10.3390/w17111689