Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (379)

Search Parameters:
Keywords = frequency amplitude relationship

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 16811 KiB  
Article
Force Element Analysis of Vortex-Induced Vibration Mechanism of Three Side-by-Side Cylinders at Low Reynolds Number
by Su-Xiang Guo, Meng-Tian Song, Jie-Chao Lei, Hai-Long Xu and Chien-Cheng Chang
J. Mar. Sci. Eng. 2025, 13(8), 1446; https://doi.org/10.3390/jmse13081446 - 29 Jul 2025
Viewed by 96
Abstract
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The [...] Read more.
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The lift and drag forces are decomposed into three physical components: volume vorticity force, surface vorticity force, and surface acceleration force. The present work systematically examines varying S/D and Ur effects on vibration amplitudes, frequencies, phase relationships, and transitions between distinct vortex-shedding patterns. By quantitative force decomposition, underlying physical mechanisms governing VIV in the triple-cylinder system are elucidated, including vortex dynamics, inter-cylinder interference, and flow structures. Results indicate that when S/D < 4, cylinders exhibit “multi-frequency” vibration responses. When S/D > 4, the “lock-in” region broadens, and the wake structure approaches the patterns of an isolated single cylinder; in addition, the trajectories of cylinders become more regularized. The forces acting on the central cylinder present characteristics of stochastic synchronization, significantly different from those observed in two-cylinder systems. The results can advance the understanding of complex interactions between hydrodynamic and structural dynamic forces under different geometric parameters that govern VIV response characteristics of marine structures. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 1461 KiB  
Article
Vulnerability-Based Economic Loss Rate Assessment of a Frame Structure Under Stochastic Sequence Ground Motions
by Zheng Zhang, Yunmu Jiang and Zixin Liu
Buildings 2025, 15(15), 2584; https://doi.org/10.3390/buildings15152584 - 22 Jul 2025
Viewed by 221
Abstract
Modeling mainshock–aftershock ground motions is essential for seismic risk assessment, especially in regions experiencing frequent earthquakes. Recent studies have often employed Copula-based joint distributions or machine learning techniques to simulate the statistical dependency between mainshock and aftershock parameters. While effective at capturing nonlinear [...] Read more.
Modeling mainshock–aftershock ground motions is essential for seismic risk assessment, especially in regions experiencing frequent earthquakes. Recent studies have often employed Copula-based joint distributions or machine learning techniques to simulate the statistical dependency between mainshock and aftershock parameters. While effective at capturing nonlinear correlations, these methods are typically black box in nature, data-dependent, and difficult to generalize across tectonic settings. More importantly, they tend to focus solely on marginal or joint parameter correlations, which implicitly treat mainshocks and aftershocks as independent stochastic processes, thereby overlooking their inherent spectral interaction. To address these limitations, this study proposes an explicit and parameterized modeling framework based on the evolutionary power spectral density (EPSD) of random ground motions. Using the magnitude difference between a mainshock and an aftershock as the control variable, we derive attenuation relationships for the amplitude, frequency content, and duration. A coherence function model is further developed from real seismic records, treating the mainshock–aftershock pair as a vector-valued stochastic process and thus enabling a more accurate representation of their spectral dependence. Coherence analysis shows that the function remains relatively stable between 0.3 and 0.6 across the 0–30 Rad/s frequency range. Validation results indicate that the simulated response spectra align closely with recorded spectra, achieving R2 values exceeding 0.90 and 0.91. To demonstrate the model’s applicability, a case study is conducted on a representative frame structure to evaluate seismic vulnerability and economic loss. As the mainshock PGA increases from 0.2 g to 1.2 g, the structure progresses from slight damage to complete collapse, with loss rates saturating near 1.0 g. These findings underscore the engineering importance of incorporating mainshock–aftershock spectral interaction in seismic damage and risk modeling, offering a transparent and transferable tool for future seismic resilience assessments. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

16 pages, 4591 KiB  
Article
Influence of Process Parameters on the Ultrasonic Atomization Efficiency and Possibility of Testing Properties of Liquid Metals
by Rafał Szostak-Staropiętka, Wojciech Presz, Roksana Pawlic, Anna Dziubińska and Katarzyna Kołacz
Metrology 2025, 5(3), 39; https://doi.org/10.3390/metrology5030039 - 2 Jul 2025
Viewed by 239
Abstract
Over recent years, ultrasonic atomization, especially with regard to liquid metals, has become an object of increased interest, mainly from industry, for additive manufacturing, but also from investigators, for research purposes. A strong correlation between the average particle size, distribution of particle sizes, [...] Read more.
Over recent years, ultrasonic atomization, especially with regard to liquid metals, has become an object of increased interest, mainly from industry, for additive manufacturing, but also from investigators, for research purposes. A strong correlation between the average particle size, distribution of particle sizes, and other process parameters like frequency and vibration amplitude was noted based on the analysis of available theoretical studies, simulations and experiments. The influence of parameters of the atomized fluid-like viscosity and surface tension on process parameters was also mentioned. The objective of this study is further research on the feasibility of using ultrasonic atomization to examine the properties of liquids, especially metals in liquid state. It attempts to close a gap in existing knowledge in searching for a new, possibly simple and cost-effective method to study the properties of liquid metals and further clarify the relationship between ultrasonic atomization parameters (amplitude, frequency, characteristics of metal being spilled on a vibrating surface) and obtained atomization results meant by average particle size and atomization time. Using numerical modeling (finite element method and computational fluid dynamics) as a methodology, combined with tests of using ultrasonic atomization as an instrument to determine properties of liquid metals, was considered as an introduction to a series of experiments. These tests were followed by real experiments that are also presented. At the first stage, numerical modeling was applied to a case of a specific liquid being spilled over a vibrating surface of different angles of inclination and specified, constant frequency and amplitude. The results of the simulation are in line with the current state of knowledge about ultrasonic atomization. Moreover, they can provide some more information on scalability, thus easing the comparison of the results of other experiments presented in the available literature. As a result, the relationship between fluid properties and the average size of atomized particles was demonstrated independently of the surface inclination angle. In the same way, the dependence of successful atomization on a sufficiently thin layer of a liquid was demonstrated. Thirdly, a correlation between the aforementioned layer thickness and the value of vibration amplitude has also been shown. Taking all the above into consideration, ultrasonic atomization can also be considered a research method and can be applied to study the properties of liquid metals. Further research, simulations and experimentation will be conducted to verify, develop and describe this method in full. Full article
Show Figures

Figure 1

21 pages, 3031 KiB  
Article
Influence and Potential of Additive Manufactured Reference Geometries for Ultrasonic Testing
by Stefan Keuler, Anne Jüngert, Martin Werz and Stefan Weihe
J. Manuf. Mater. Process. 2025, 9(7), 224; https://doi.org/10.3390/jmmp9070224 - 1 Jul 2025
Viewed by 476
Abstract
This study researches and discusses the impact of different manufacturing-induced effects of additive manufacturing (AM), such as anisotropy on sound propagation and attenuation, on the production of test specimens for ultrasonic testing (UT). It was shown that a linear, alternating hatching pattern led [...] Read more.
This study researches and discusses the impact of different manufacturing-induced effects of additive manufacturing (AM), such as anisotropy on sound propagation and attenuation, on the production of test specimens for ultrasonic testing (UT). It was shown that a linear, alternating hatching pattern led to strong anisotropy in sound velocity and attenuation, with a deviation in sound velocity and gain of over 840 m/s and 9 dB, depending on the measuring direction. Furthermore, it was demonstrated that the build direction exhibits distinct acoustic properties. The influence of surface roughness on both the reflector and coupling surfaces was analyzed. It was demonstrated that post-processing of the reflector surface is not necessary, as varying roughness levels did not significantly change the signal amplitude. However, for high frequencies, pre-treatment of the coupling surface can improve sound transmission up to 6 dB at 20 MHz. Finally, the reflection properties of flat bottom holes (FBH) in reference blocks produced by AM and electrical discharge machining (EDM) were compared. The equivalent reflector size (ERS) of the FBH, which refers to the size of an idealized defect with the same ultrasonic reflection behavior as the measured defect, was determined using the distance gain size (DGS) method—a method that uses the relationship between reflector size, scanning depth, and echo amplitude to evaluate defects. The findings suggest that printed FBHs achieve an improved match between the ERS and the actual manufactured reflector size with a deviation of less than 13%, thereby demonstrating the potential for producing standardized test blocks through additive manufacturing. Full article
Show Figures

Figure 1

10 pages, 783 KiB  
Article
Accelerated Plethysmography in Glaucoma Patients
by Hinako Takei, Yuto Yoshida, Misaki Ukisu, Keigo Takagi and Masaki Tanito
Biomedicines 2025, 13(7), 1542; https://doi.org/10.3390/biomedicines13071542 - 24 Jun 2025
Viewed by 429
Abstract
Background: Systemic arterial stiffness and atherosclerosis have been increasingly recognized as potential contributors to the pathogenesis of glaucoma. Several studies have reported associations between glaucoma and various surrogate markers of vascular stiffness. However, despite the growing interest in the vascular components of glaucoma, [...] Read more.
Background: Systemic arterial stiffness and atherosclerosis have been increasingly recognized as potential contributors to the pathogenesis of glaucoma. Several studies have reported associations between glaucoma and various surrogate markers of vascular stiffness. However, despite the growing interest in the vascular components of glaucoma, no previous studies have specifically explored the relationship between the indices derived from acceleration plethysmography (APG) and glaucoma. This study seeks to address this gap by investigating the potential association between APG parameters and the presence of glaucoma. Methods: The subjects were 701 patients (mean age 68.6 years, 54% male) with open-angle glaucoma (primary open-angle glaucoma [POAG] or exfoliation glaucoma [EXG]), and 94 control subjects (mean age 60.1 years, 57% male) who had no eye diseases other than cataracts. The subjects were all cases in which APG was measured using a sphygmograph (TAS9 Pulse Analyzer Plus View; YKC Corp., Tokyo, Japan). The amplitude of waveform types (a, b, c, d, and e-waves) and derived vascular types (A, B, and C) of the accelerated pulse wave components were statistically compared between the cases and controls. Results: The accelerated pulse wave components (mean ± standard deviation) of the control and glaucoma groups were a-wave 785 ± 99 and 776 ± 93 (p = 0.40), b-wave −522 ± 161 and −491 ± 143 (p = 0.050), c-wave −142 ± 108 and −156 ± 105 (p = 0.24), d-wave −288 ± 144 and −322 ± 122 (p = 0.014), and e-wave 103 ± 79 and 90 ± 58 (p = 0.059), with differences between the groups being observed in the b and d-waves. For derived vascular types, compared with the controls and POAG, patients with EXG had a lower frequency of Type A and a higher frequency of Type C than the other groups (p = 0.044). Multivariate analysis showed that factors significantly associated with vascular type included age (p < 0.0001), sex (p < 0.0001), diastolic blood pressure (p = 0.021), and pulse rate (p < 0.0001), while BMI, systolic blood pressure, history of hypertension, history of diabetes, presence or absence of glaucoma, and presence or absence of pseudoexfoliation material were not significant. Conclusions: This is the first study to investigate the relationship between APG and glaucoma with a large sample size. In elderly glaucoma patients, particularly those with EXG, systemic vascular changes are often present. APG parameters may reflect vascular alterations in glaucoma. Full article
(This article belongs to the Special Issue Glaucoma: New Diagnostic and Therapeutic Approaches, 2nd Edition)
Show Figures

Figure 1

16 pages, 1957 KiB  
Article
Study on Molybdenum–Rhenium Alloy Ultrasonic Resonance Temperature Sensor
by Haijian Liang, Gao Wang, Xiaomei Yang, Yanlong Wei and Hongxin Xue
Appl. Sci. 2025, 15(13), 6965; https://doi.org/10.3390/app15136965 - 20 Jun 2025
Viewed by 269
Abstract
Compared to traditional temperature measurement methods, ultrasonic temperature measurement technology based on the principle of resonance offers advantages such as shorter section lengths, higher signal amplitude, and reduced signal attenuation. First, the type of sensor-sensitive element was determined, with a resonant design chosen [...] Read more.
Compared to traditional temperature measurement methods, ultrasonic temperature measurement technology based on the principle of resonance offers advantages such as shorter section lengths, higher signal amplitude, and reduced signal attenuation. First, the type of sensor-sensitive element was determined, with a resonant design chosen to improve measurement performance; using magnetostrictive and resonant temperature measurement principles, the length, diameter, and resonator dimensions of the waveguide rod were designed, and a molybdenum–rhenium alloy (Mo-5%Re) material suitable for high-temperature environments was selected; COMSOL finite element simulation was used to simulate the propagation characteristics of acoustic signals in the waveguide rod, observing the distribution of sound pressure and energy attenuation, verifying the applicability of the model in high-temperature testing environments. Second, a resonant temperature sensor consistent with the simulation parameters was prepared using a molybdenum–rhenium alloy waveguide rod, and an ultrasonic resonant temperature-sensing system suitable for high-temperature environments up to 1800 °C was constructed using the molybdenum–rhenium alloy waveguide rod. The experiment used a tungsten–rhenium calibration furnace to perform static calibration of the sensor. The temperature range was set from room temperature to 1800 °C, with the temperature increased by 100 °C at a time, and it was maintained at each temperature point for 5 to 10 min to ensure thermal stability. This was conducted to verify the performance of the sensor and obtain the functional relationship between temperature and resonance frequency. Experimental results show that during the heating process, the average resonance frequency of the sensor decreased from 341.8 kHz to 310.37 kHz, with an average sensitivity of 17.66 Hz/°C. During the cooling process, the frequency increased from 309 kHz to 341.8 kHz, with an average sensitivity of 18.43 Hz/°C. After cooling to room temperature, the sensor’s resonant frequency returned to its initial value of 341.8 kHz, demonstrating excellent repeatability and thermal stability. This provides a reliable technical foundation for its application in actual high-temperature environments. Full article
Show Figures

Figure 1

19 pages, 5533 KiB  
Article
Design and Development of a New Long-Pulse-Width Power Supply
by Kangqiao Ma, Lifeng Zhang and Tianwei Zhang
Energies 2025, 18(12), 3150; https://doi.org/10.3390/en18123150 - 16 Jun 2025
Viewed by 330
Abstract
In order to achieve a long-pulse-width output, a new long-pulse-width modulator based on the charging power supply of LCC-type high-frequency resonant converters and the pulse-generating unit in series IGBT switching technology has been designed. The relationship between the resonant cavity gain and the [...] Read more.
In order to achieve a long-pulse-width output, a new long-pulse-width modulator based on the charging power supply of LCC-type high-frequency resonant converters and the pulse-generating unit in series IGBT switching technology has been designed. The relationship between the resonant cavity gain and the switching frequency has been derived. In the charging phase, the critical intermittent control mode is used to increase the charging speed, and in the voltage stabilization phase, the hysteresis burst control strategy is used to improve voltage accuracy. The simulation results show that the output pulse amplitude is 10 kV, the pulse width can reach 650 μs, and the top-drop is about 12%. Thus, a long pulse width modulator is developed. The output pulse voltage can reach 4 kV, and the output pulse width is 650 μs. The power supply reduces the capacity of the energy storage capacitor, which has industrial application value. Full article
(This article belongs to the Special Issue Pulsed Power Science and High Voltage Discharge)
Show Figures

Figure 1

18 pages, 5977 KiB  
Article
Investigation of the Applicability of Acoustic Emission Signals for Adaptive Control in CNC Wood Milling
by Miroslav Dado, Peter Koleda, František Vlašic and Jozef Salva
Appl. Sci. 2025, 15(12), 6659; https://doi.org/10.3390/app15126659 - 13 Jun 2025
Viewed by 460
Abstract
The integration of acoustic emission (AE) signals into adaptive control systems for CNC wood milling represents a promising advancement in intelligent manufacturing. This study investigated the feasibility of using AE signals for the real-time monitoring and control of CNC milling processes, focusing on [...] Read more.
The integration of acoustic emission (AE) signals into adaptive control systems for CNC wood milling represents a promising advancement in intelligent manufacturing. This study investigated the feasibility of using AE signals for the real-time monitoring and control of CNC milling processes, focusing on medium-density fiberboard (MDF) as the workpiece material. AE signals were captured using dual-channel sensors during side milling on a five-axis CNC machine, and their characteristics were analyzed across varying spindle speeds and feed rates. The results showed that AE signals were sensitive to changes in machining parameters, with higher spindle speeds and feed rates producing increased signal amplitudes and distinct frequency peaks, indicating enhanced cutting efficiency. The statistical analysis confirmed a significant relationship between AE signal magnitude and cutting conditions. However, limitations related to material variability, sensor configuration, and the narrow range of process parameters restrict the broader applicability of the findings. Despite these constraints, the results support the use of AE signals for adaptive control in wood milling, offering potential benefits such as improved machining efficiency, extended tool life, and predictive maintenance capabilities. Future research should address signal variability, tool wear, and sensor integration to enhance the reliability of AE-based control systems in industrial applications. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

15 pages, 2653 KiB  
Article
Fluid–Structure Interaction Analysis of a Bionic Robotic Fish Based on a Macrofiber Composite Material
by Chenghong Zhang
Biomimetics 2025, 10(6), 393; https://doi.org/10.3390/biomimetics10060393 - 11 Jun 2025
Viewed by 442
Abstract
In this study, the power system of a bionic robotic fish has been significantly simplified, resulting in a reduced volume and enhanced flexibility of both the structure and movement. To comprehensively understand the dynamics, a fluid–structure interaction (FSI) analysis was conducted, considering the [...] Read more.
In this study, the power system of a bionic robotic fish has been significantly simplified, resulting in a reduced volume and enhanced flexibility of both the structure and movement. To comprehensively understand the dynamics, a fluid–structure interaction (FSI) analysis was conducted, considering the intricate interplay between the mollusk’s structure and the surrounding fluid. This analysis took into account the dissipation due to fluid viscosity and the influence of the wake performance around the mollusk. The study examined the relationships between the driving frequency of the input signal and various parameters such as fluid pressure, propulsion force, and propulsion displacement of the soft robot fish head. With the robot fish’s head fixed, the amplitude of propulsion motion and propulsion force were measured. The simulation results closely matched the experimental findings, indicating their potential to predict the propulsion characteristics of the soft robot fish in fluid environments and further improve its performance. Full article
(This article belongs to the Special Issue Bionic Robotic Fish: 2nd Edition)
Show Figures

Figure 1

39 pages, 4219 KiB  
Review
Bottom-Simulating Reflectors (BSRs) in Gas Hydrate Systems: A Comprehensive Review
by Shiyuan Shi, Linsen Zhan, Wenjiu Cai, Ran Yang and Hailong Lu
J. Mar. Sci. Eng. 2025, 13(6), 1137; https://doi.org/10.3390/jmse13061137 - 6 Jun 2025
Viewed by 558
Abstract
The bottom-simulating reflector (BSR) serves as an important seismic indicator for identifying gas hydrate-bearing sediments. This review synthesizes global BSR observations and demonstrates that spatial relationships among BSRs, free gas, and gas hydrates frequently deviate from one-to-one correspondence. Moreover, our analysis reveals that [...] Read more.
The bottom-simulating reflector (BSR) serves as an important seismic indicator for identifying gas hydrate-bearing sediments. This review synthesizes global BSR observations and demonstrates that spatial relationships among BSRs, free gas, and gas hydrates frequently deviate from one-to-one correspondence. Moreover, our analysis reveals that more than 35% of global BSRs occur shallower than the bases of gas hydrate stability zones, especially in deepwater regions, suggesting that the BSRs more accurately represent the interface between the gas hydrate occurrence zone and the underlying free gas zone. BSR morphology is influenced by geological settings, sediment properties, and seismic acquisition parameters. We find that ~70–80% of BSRs occur in fine-grained, grain-displacive sediments with hydrate lenses/nodules, while coarse-grained pore-filling sediments host <20%. BSR interpretation remains challenging due to limitations in traditional P-wave seismic profiles and conventional amplitude versus offset (AVO) analysis, which hinder accurate fluid identification. To address these gaps, future research should focus on frequency-dependent AVO inversion based on viscoelastic theory, multicomponent full-waveform inversion, improved anisotropy assessment, and quantitative links between rock microstructure and elastic properties. These innovations will shift BSR research from static feature mapping to dynamic process analysis, enhancing hydrate detection and our understanding of hydrate–environment interactions. Full article
(This article belongs to the Special Issue Advances in Marine Gas Hydrates)
Show Figures

Figure 1

26 pages, 6588 KiB  
Article
Research on Quantitative Evaluation of Defects in Ferromagnetic Materials Based on Electromagnetic Non-Destructive Testing
by Xiangyi Hu, Ruijie Xie, Ruotian Wang, Jiapeng Wang, Haichao Cai, Xiaoqiang Wang, Xiang Li, Qingzhu Guan and Jianhua Zhang
Sensors 2025, 25(11), 3508; https://doi.org/10.3390/s25113508 - 2 Jun 2025
Viewed by 826
Abstract
Defects are a direct cause of failure in ferromagnetic components, which can be evaluated via electromagnetic non-destructive testing (ENDT) methods. However, the existing studies exhibit several limitations (e.g., inaccurate quantification, over-reliance on algorithms, and non-intuitive result presentation, among others) in quantitative defect evaluation. [...] Read more.
Defects are a direct cause of failure in ferromagnetic components, which can be evaluated via electromagnetic non-destructive testing (ENDT) methods. However, the existing studies exhibit several limitations (e.g., inaccurate quantification, over-reliance on algorithms, and non-intuitive result presentation, among others) in quantitative defect evaluation. To accurately describe the quantitative relationship between ENDT signals and defect dimensional parameters, the electromagnetic model and electromagnetic induction model are introduced in this paper to elucidate the physical mechanism of ENDT, as both models provide a basis for the selection of the constitutive relationship for simulation analysis. Then, a higher precision three-dimensional nonlinear finite element simulation model is established, and the effects of the excitation parameters and detection positions on signal characteristics are investigated. The simulation results indicate that the excitation frequency influences both the detection depth and sensitivity of ENDT, while the voltage amplitude affects the peak strength of the magnetic signal. Consequently, the excitation parameters are determined to be a 10 Hz frequency with a 25 V amplitude. Based on the characterization of signal peaks at positions of 0°, 90°, 180°, and 270°, the characteristic parameter KA of the peak electrical signal curve is proposed as a quantitative index for evaluating defects. The quantitative experimental results show that KA is related to the defect dimension. Specifically, the KA value monotonically decreases from a constant greater than 1 to a constant less than 1 as the defect length increases, KA is positively correlated with the defect width, and KA follows a parabolic trend (first increase and then decrease) as the defect depth increases. Notably, KA values associated with defect width and depth remain below 1. All the above findings provide a basis for evaluating defect dimensions. The results of this paper provide a novel ENDT method for evaluating defects, which is of great significance for improving the accuracy of ENDT and promoting its engineering applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

17 pages, 1934 KiB  
Article
Chaotic Dynamics and Subharmonic Bifurcation of Charged Dilation-AdS Black Hole in Extended Phase Space Subject to Harmonic Excitation
by Qinrui Chen, Liangqiang Zhou and Fengxian An
Physics 2025, 7(2), 18; https://doi.org/10.3390/physics7020018 - 28 May 2025
Viewed by 492
Abstract
In this paper, the chaotic behavior and subharmonic bifurcation in a dynamical model for charged dilation-AdS black holes are investigated in extended phase space using analytical and numerical methods. An analytical expression for the chaotic critical value at the disturbance amplitude is obtained [...] Read more.
In this paper, the chaotic behavior and subharmonic bifurcation in a dynamical model for charged dilation-AdS black holes are investigated in extended phase space using analytical and numerical methods. An analytical expression for the chaotic critical value at the disturbance amplitude is obtained using the Melnikov method, revealing the monotonicity of the threshold values for chaos with charge and frequency, and the coupling parameters between the expansion field and the Maxwell field are studied. It is shown that chaos can be controlled through the system parameters. Meanwhile, an analytical expression for the critical value of the bifurcation of subharmonic orbits at disturbance amplitudes is acquired using the subharmonic Melnikov method. The relationship between the threshold value and the vibration frequency and the order of the subharmonic orbit is studied. This demonstrates that the system undergoes chaotic motion via infinite odd-order subharmonic bifurcations. Finally, numerical simulations are used to verify the analytical results. Full article
(This article belongs to the Section Astrophysics, Astronomy and Planetology)
Show Figures

Figure 1

33 pages, 5667 KiB  
Article
Modal Analyses of Flow and Aerodynamic Characteristics of an Idealized Ground Vehicle Using Dynamic Mode Decomposition
by Hamed Ahani and Mesbah Uddin
Vehicles 2025, 7(2), 47; https://doi.org/10.3390/vehicles7020047 - 19 May 2025
Viewed by 541
Abstract
This study investigates the connection between coherent structures in the flow around a vehicle and the aerodynamic forces acting on its body. Dynamic Mode Decomposition (DMD) was applied to analyze the flow field of a squareback Ahmed body at [...] Read more.
This study investigates the connection between coherent structures in the flow around a vehicle and the aerodynamic forces acting on its body. Dynamic Mode Decomposition (DMD) was applied to analyze the flow field of a squareback Ahmed body at ReH=7.7×105. DMD enabled the identification of coherent structures in the near and far wake by isolating their individual oscillation frequencies and spatial energy distributions. These structures were classified into three regimes based on their underlying mechanisms: symmetry breaking, bubble pumping, and large-scale vortex shedding in range of St0.2. The energy contributions of these flow regimes were quantified across different regions of the flow field and compared to the aerodynamic forces on the body. Additionally, the linear correlation between pressure and velocity components was examined using Pearson correlation coefficients of DMD spectral amplitudes. The locations of maximum and minimum correlation values, as well as their relationship to energy contributions, were identified and analyzed in detail. Full article
Show Figures

Figure 1

25 pages, 5020 KiB  
Article
Geometrically Nonlinear Dynamic Analysis of an Imperfect, Stiffened, Functionally Graded, Doubly Curved Shell
by Boutros Azizi, Habib Eslami and Kais Jribi
Dynamics 2025, 5(2), 18; https://doi.org/10.3390/dynamics5020018 - 16 May 2025
Viewed by 716
Abstract
An analytical study of the nonlinear response of imperfect stiffened doubly curved shells made of functionally graded material (FGM) is presented. The formulation of the problem is based on the first-order shear deformation shell theory in conjunction with the von Kármán geometrical nonlinear [...] Read more.
An analytical study of the nonlinear response of imperfect stiffened doubly curved shells made of functionally graded material (FGM) is presented. The formulation of the problem is based on the first-order shear deformation shell theory in conjunction with the von Kármán geometrical nonlinear strain–displacement relationships. The nonlinear equations of the motion of stiffened double-curved shells based on the extended Sanders’s theory were derived using Galerkin’s method. The material properties vary in the direction of thickness according to the linear rule of mixture. The effect of both longitudinal and transverse stiffeners was considered using Lekhnitsky’s technique. The fundamental frequencies of the stiffened shell are compared with the FE solutions obtained by using the ABAQUS 6.14 software. A stepwise approximation technique is applied to model the functionally graded shell. The resulting nonlinear ordinary differential equations were solved numerically by using the fourth-order Runge–Kutta method. Closed-form solutions for nonlinear frequency–amplitude responses were obtained using He’s energy method. The effect of power index, functionally graded stiffeners, geometrical parameters, and initial imperfection on the nonlinear response of the stiffened shell are considered and discussed. Full article
Show Figures

Figure 1

21 pages, 3119 KiB  
Article
Long-Term Neonatal EEG Modeling with DSP and ML for Grading Hypoxic–Ischemic Encephalopathy Injury
by Leah Twomey, Sergi Gomez, Emanuel Popovici and Andriy Temko
Sensors 2025, 25(10), 3007; https://doi.org/10.3390/s25103007 - 10 May 2025
Viewed by 686
Abstract
Hypoxic–Ischemic Encephalopathy (HIE) occurs in patients who experience a decreased flow of blood and oxygen to the brain, with the optimal window for effective treatment being within the first six hours of life. This puts a significant demand on medical professionals to accurately [...] Read more.
Hypoxic–Ischemic Encephalopathy (HIE) occurs in patients who experience a decreased flow of blood and oxygen to the brain, with the optimal window for effective treatment being within the first six hours of life. This puts a significant demand on medical professionals to accurately and effectively grade the severity of the HIE present, which is a time-consuming and challenging task. This paper proposes a novel workflow for background EEG grading, implementing a blend of Digital Signal Processing (DSP) and Machine-Learning (ML) techniques. First, the EEG signal is transformed into an amplitude and frequency modulated audio spectrogram, which enhances its relevant signal properties. The difference between EEG Grades 1 and 2 is enhanced. A convolutional neural network is then designed as a regressor to map the input image into an EEG grade, by utilizing an optimized rounding module to leverage the monotonic relationship among the grades. Using a nested cross-validation approach, an accuracy of 89.97% was achieved, in particular improving the AUC of the most challenging grades, Grade 1 and Grade 2, to 0.98 and 0.96. The results of this study show that the proposed representation and workflow increase the potential for background grading of EEG signals, increasing the accuracy of grading background patterns that are most relevant for therapeutic intervention, across large windows of time. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop