Bottom-Simulating Reflectors (BSRs) in Gas Hydrate Systems: A Comprehensive Review
Abstract
1. Introduction
2. Seismic Identification and Global Distribution of BSRs
2.1. Seismic Identification of BSR
2.1.1. Seismic Characteristics of BSRs
2.1.2. Seismic Anomalies Associated with BSR
2.1.3. Seismic Attribute Analysis of BSR
2.2. Global Distribution of BSR
2.2.1. Depth Distribution of BSR
2.2.2. Temperature Distribution of BSR
2.2.3. Geothermal Gradient Distribution for BSR Occurrence
- “Shallow BSRs with high geothermal gradients”, typically occurring in venting settings (e.g., gas chimneys or mud diapirs), where rapid fluid migration thins the gas hydrate stability zone and increases subsurface temperatures.
- “Deep BSRs with low geothermal gradients”, commonly found in thick sedimentary basins, where a stable thermal regime allows the BGHSZ to extend below 300–600 mbsf.
2.2.4. Seismic Morphologies of BSR
Code | Location | TGF | Sediment Features | Pore Habit | SMT | GST | ZBSR (mbsf) | WD (m) | Tsf (°C) | GG (°C/km) | ZBGHSZ (mbsf) | ZBGHSZ* (mbsf) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1/ 2 | Continental margin of Brazil (Foz do Amazonas Basin/Rio Grande Cone) | PCM | (Channel-levee turbidite systems and MTDs; 85% silt, 13% clay, 0.15% sand [78])/(fine-grained siliciclastic material [56]) | NA | Disc./ Cont. [56] | Stru./ Vent. [56] | 450 [56]/ (200–300) [56]) | (600–2800 [56])/ (500–3500 [56]) | NA | 30–34 [79] | NA | NA |
3/ 4/ 5/ 6 | Gulf of Mexico (Green Canyon/Perdido Canyon/Terrebonne/Orca Basin) | ACM | 20–50% silt, 50–80% clay, <1% sand [80] | Nodules [81] | Clus./ Clus./ Disc./ Plum. [51,77] | Stru./ Stru./ Stru./ Vent. [51,77] | 450 [77]/ NA/ NA/ NA | 2000 [77]/ NA/ NA/ NA | NA | NA | NA | NA |
7/ 8/ 9 | Blake Ridge (Site 533/Site 995/Site 997) | PCM | (11–28% silt, 70–86% clay, 0.3–3% sand)/(Nannofossil-rich clay and claystone, with sediments exhibiting moderate to intense bioturbation)/(Homogeneous dark green clay and claystone, rich in diatoms) [63,64,65,66,67,68] | Nodules [66] | Cont. [64]/ (Cont.-Plum.) [68]/ Cont. [67] | Stra. [64]/ Stra. [68]/ Stra. [67] | 600 [64]/ 450 [68]/ 464 [67] | 3184 [64]/ 2779.5 [68]/ 2770.1 [67] | 2.15 [64]/ 3.6 [68]/ 3.39 [67] | 36 [64]/ 33.5 [68]/ 36.8 [67] | 584.34/ 553.22/ 505.41 | 627.46/ 600/ 547.7 |
10 | Carolina Trough (Site 991) | PCM | 15% silt, 85% clay, 0% sand [82] | Nodules [83] | Disc. [84] | Stru. [84] | 300 [84] | 1500 [84] | 3.1 [82] | NA | NA | NA |
11 | Continental Rise (Site 107) | PCM | 25% silt, 75% clay, 0% sand [85] | NA | Cont. [86] | Stra. [86] | 400 [86] | 2700–3400 [86] | NA | 36–51 [86] | NA | NA |
12 | Namibe Basin (Site 1080) | PCM | Diatom bearing 5–10% silt, 30–60% clay, 0% sand [87] | Nodules [88] | Diag. [87] | NA | 250 [87] | 1000 [87] | 4.4–4.6 [88] | NA | NA | NA |
13 | Punta del Este Basin | PCM | NA | NA | Cont. [89] | Vent. [89] | 400 [89] | 350–2200 [89] | NA | NA | NA | NA |
14/ 15 | Norwegian Continental Slope (Husmus/Nyegga) | PCM | (Soft clay) [55]/ (45% silt, 54% clay, 1% sand) [90] | Nodules [91] | Disc./ Cont. [55] | Vent./Vent. [55] | 5/ 280 [55] | 330/ 730 [55] | (6–7)/ (−0.7) [55] | NA/ 50 [92] | NA | NA |
16/ 17/ 18/ 19/ 20 | Newfoundland (Makkovik Slope/Hamilton Spur/Haddock Channel/Mohican Channel/Barringto) | PCM | Closely related to the drift deposition area [93] | NA | Disc./ Cont./ Cont./ Cont./ Disc. [93] | Stru./ Stra./ Stra./ Stra./ Stra. [93] | 443/ 335/ 375/ 290/ 378 [93] | (620–2555)/ (1075–2100)/ (1700–2150)/ (1324–2875)/ (2220–2850) [93] | (2.1–4.15) [93] | 32 [93] | NA | NA |
21 | Newfoundland Sackville Spur | PCM | Closely related to the drift deposition area [93] | NA | Disc. & (Doub/Mult.) [94] | Stra. [94] | 350 [94] | 1125 [94] | 3.9 [95] | 35.8 [95] | 314.94 | 360.82 |
22 | Offshore Mauritania | PCM | Fine-grained turbidites and nannofossil-rich muds [58] | NA | Disc. [58] | Stru. [58] | 83 [58] | 711 [58] | 8 [96] | 32 [96] | 39.96 | 105.52 |
23 | Colombia Basin (Site 502) | ACM | Mostly nannofossils and clay; 25–75% clay [97,98] | NA | Cont. [99] | Stru. [99] | 485 [99] | 2640 [99] | 6 [76] | 20 [76] | 823.06 | 905.67 |
24 | Panama | ACM | 28% silt, 70% clay, 2% sand [100] | NA | Cont. [101] | Stru. [101] | 180–300 [101] | 1800–2800 [101] | NA | 59 [101] | NA | NA |
25 | El Arraiche Mud Volcano Field | PCM | Mud breccia & clay [61] | Nodules [102] | Cont. [53] | Vent. [53] | 0 [53] | 380 [53] | 10 [53] | 110 [53] | NA | NA |
26 | Congo Deep Sea Fan (Site 1076) | PCM | 25–75% silt, 25–75% clay, 0% sand [54,103] | Nodules [54] | Disc. [104] | Stru. [104] | 220 [104,105] | 2980 [104,105] | 2.5 [105] | 80 [105] | 241.87 | 260.57 |
27 | Niger Delta Front | PCM | 80% fines, 20% sand [106] | Nodules/ lenses [107] | Disc. [108] | Stra. [108] | 300–380 [108] | 2400–2900 [107,108] | 4.45–4.53 [107] | 72 [107] | NA | NA |
28 | Offshore UK (Faroe-Sheland Basin) | PCM | Coarse-grained sediments, linked to paleochannels | NA | Cont. [109] | Stru. [109] | 300–350 [109] | >750 [109] | NA | 36.5 [109] | 390 [109] | NA |
Code | Location | TGF | Sediment Features | Pore Habit | SMT | GST | ZBSR (mbsf) | WD (m) | Tsf (°C) | GG (°C/km) | ZBGHSZ (mbsf) | ZBGHSZ* (mbsf) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
29 | Acapulco (Site 491) | ACM | 50% silt, 30% clay, 20% sand [110] | Nodules [110] | Cont. [110] | Stru. [110] | 380 [101] | 2000–3800 [101] | NA | 21 [101] | NA | NA |
30 | Hydrate Ridge (Site 1245) | ACM | 50% silt, 50% clay [111] | Layered [111] | Cont. [57] | Stru. [57] | 134 [57] | 870 [57] | 4 [57] | 54 [112] | 150.91 | 180.32 |
31 | Cascadia Margin (Site 889) | ACM | 30–50% silt, 40–70% clay, 0–4% sand [113,114] | Nodules [115] | Disc. [114] | Stru. [114] | 224 [114] | 1313 [114] | 2.7 [114] | 54 [114] | 243.22 | 271.66 |
32 | Lima Basin (Site 685) | ACM | Mainly composed of diatom mud and calcareous mudstone; 45% silt, 55% clay [59,116] | Nodules [59] | Disc. [59] | Stru. [59] | 612 [59] | 5070 [59] | 1.5 [59] | 43 [59] | 590.16 | 625.49 |
33 | Nankai Trough | ACM | 26–36% silt, 1–3% clay, 61–72% sand [117,118] | Pore-filling [119] | Disc. [118] | Stru. [118] | 204 [119] | 945 [119] | 3 [119] | 46 [120] | 225.55 | 260.52 |
34 | Sea of Okhotsk (Site 796) | MCM | 73–79% silt, 20.4–26.3% clay, 0–5% sand [121] | Nodules [122] /lenses [123] | Disc. [124] | Stru. [124] | 450 [125] | 1300 [125,126] | 2.5 [126] | 35 [126] | 402.49 | 448.72 |
35 | Ulleung Basin | ACM | 100% <75 μm, median grain size: 2.3–3.0 μm [127] | Nodules/ Lenses [128] | Disc. [128] | Stru.-Stra. [128] | 150 [128] | 2100 [127,128] | NA | NA | NA | NA |
36/ 37/ 38/ 39 | Shenhu Area (SH1/SH2/SH3/SH7) | PCM | (Clay & Silt)/ (70% silt, 25% clay, 5% sand)/ (Clay & Silt)/ (Silt & Sand) [129,130] | Pore-filling [130]; Nodules [131] | Disc./ Cont./ Cont./ Cont. [130] | Stra./ Vent./ Vent./ Vent. [130] | 219/ 221/ 204/ 181 [130] | 1500 [130] | 5.2/ 4.84/ 5.53/ 6.44 [130] | 47.53/ 46.95/ 49.34/ 43.65 [130] | 222/ 229/ 206/ 184 [130] | 276.4/ 288.72/ 257.78/ 272.06 |
40 | Hikurangi Trough (Site U1517) | ACM | 40% silt, 58% clay, 2% sand [132] | Lenses [133] | (Cont.) & (Doub./Mult.) [134] | Stra. [134] | 165 [134] | 725 [134] | 5.32 [135] | 39.8 [135] | 130.58 | 175.57 |
41/ 42/ 43 | Chile (Site 859/Site 860/Site 861) | ACM | (Silty clay & Clayey silt)/ (44% silt, 49% clay, 7% sand)/ (Coarse-grained clastic sediment) [136,137] | NA | Disc./ Cont./ Disc. [136] | Stru./ Stru./ Stru. [136] | 100/ 200/ 250 [138] | 2741.2/ 2145.9/ 1652 [136] | NA/ 2.5 [137]/ NA | NA/ 103.5 [137]/ NA | NA/ 160.2/ NA | NA/ 174.46/ NA |
Code | Location | TGF | Sediment Features | Pore Habit | SMT | GST | ZBSR (mbsf) | WD (m) | Tsf (°C) | GG (°C/km) | ZBGHSZ (mbsf) | ZBGHSZ* (mbsf) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
44 | Sverdrup Basin | PCM | Sandstone [139,140] | NA | Disc. [141] | Stru. [141] | 900 [141] | NA | NA | 20–40 [139] | NA | NA |
45 | Fram Strait (Site 986) | PCM | 30% silt, 65% clay, 5% sand [142] | NA | Disc. [143] | Stru. [143] | 200 [143] | 2500 [143] | 0 [143] | 75 [143] | 274.71 | 294.68 |
46 | Aleutian Trench (Site 186) | ACM | 25% silt, 45% clay, 5% spicules, 25% diatoms [144] | NA | Disc. [145] | Stru. [145] | 926 [145] | 4500 [145] | 1 [145] | 20 [145] | 1306.05 | 1385.6 |
47 | Shirshov Ridge/Koryak | ACM | 11.3–25.8% silt, 5.6–12.1% clay, 62.1–83.1% sand [146] | NA | Disc. [147] | Stru. [147] | 200–500 [147] | 1500–3000 [147] | NA | 58 [147] | NA | NA |
48 | Barents Sea (Site 7316/03-U-01) | PCM | 20% silt, 60% clay, 20% sand [148] | NA | Clus. [39,149] | Stru. [39,149] | 180 [150] | 345 [150] | 2 [149] | NA | NA | NA |
49 | Offshore NW Greenland (Baffin Bay) | PCM | NA | NA | Disc. [151] | Stru. [151] | 200 [151] | 625–720 [151] | 10–11.6 [151] | 40–59 [151] | NA | NA |
Code | Location | TGF | Sediment Features | Pore Habit | SMT | GST | ZBSR (mbsf) | WD (m) | Tsf (°C) | GG (°C/km) | ZBGHSZ (mbsf) | ZBGHSZ* (mbsf) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
50 | Ross Sea (Site 273) | PCM | 40% silt, 59% clay, 1% sand [152] | NA | Disc.& (Doub./Mult.: BSR1-SI hydrate; BSR2-sII hydrate) [153] | Stru. [153] | 500 [153] | 880 [153] | −1.5 [153] | 36 [153] | 442.96 | 489.1 |
51 | Scan Basin (BSR1/BSR2/BSR3) | ACM | NA | NA | ((Cont.)/(Diag.: Opal-A/CT)/(Diag.: Opal-CT/Quartz)) & (Mult.) [62] | Vent. [62]/ NA/ NA | 145/ 429/ 1360 [62] | 2100 [62] | −0.4 [62]/ NA/ NA | 130/ (60–70)/ NA [62] | 148.25 | 159.51 |
52 | Weddell Sea (Site 695) | PCM | NA | NA | Diag. [154] | NA | 690 [154] | 1300 [154] | NA | 52 [154] | NA | NA |
Code | Location | TGF | Sediment Features | Pore Habit | SMT | GST | ZBSR (mbsf) | WD (m) | Tsf (°C) | GG (°C/km) | ZBGHSZ (mbsf) | ZBGHSZ* (mbsf) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
53 | Gulf of Oman (Site 222) | MCM | 64–76% clay, 24–36% silt, 0% sand [155] | NA | Disc. [156] | Stru. [156] | 680 [156] | 3000 [156] | 2 [156] | 30 [156] | 701.02 | 753.51 |
54/ 55/ 56/ 57/ 58/ 59 | Krishna-Godavari Basin (NGHP-01-01/NGHP-01-07/NGHP-01-09/NGHP-01-17/NGHP-01-21) | PCM | (Carbonate oozes)/ (Clay with silt or sand beds)/ (Clay or silt)/ (Clay or silt)/ (Clay or silt with volcanic ash beds)/ (50–70% clay, 30–50% silt) [157,158] | Nodules/ Lenses [159] | Diag./ Disc./ Disc./ Clus./ Clus./ Disc. [158] | NA/ Stra./ Stru./ Stru./ Stra./ Stra. [158] | 220/ 188/ 290/ 160/ 608/ 160 [158] | 2663/ 1285/ 1935/ 1038/ 1344/ 1049 [158] | 2.4/ 5.21/ 5/ 6.5/ 5.6/ 6 [158] | 52/ 51/ 51/ 45/ 19/ 45 [158] | NA/ 200.6/ 268.81/ 156.82/ 645.98/ 172.2 | NA/ 230.98/ 298.85/ 192.61/ 740.87/ 207.9 |
60 | Sunda Arc | ACM | Interbedded sandstone, argillaceous siltstone, dolomitic limestone, and volcanic deposits form alternating high-low permeability sequences [160] | NA | Disc. [160] | Stru. [160] | 150 [160] | 1500–2200 [160] | NA | NA | NA | NA |
61/ 62 | Western Indian Ocean Offshore Tanzania (BSR1 (Biogenic)/BSR2 (thermogenic)) | ACM | NA/ Hemipelagic units, slope channel deposits & turbidite sands [60] | NA | Disc./ Disc. [60] | Stru./ Stru. [60] | 350/ 450 [60] | 1800/ 2362.5 [60] | 9/ 0.7 [60] | 28.2/ 54 [60] | 335.09/ 366 | 393.24/ 294.2 |
63 | North Carnarvon Bsin | PCM | Carbonate ooze [161] | NA | Disc. [161] | Stru. [161] | NA | > 1000 [161] | NA | 54–63 [161] | 258 [161] | NA |
Code | Location | TGF | Sediment Features | Pore Habit | SMT | GST | ZBSR (mbsf) | WD (m) | Tsf (°C) | GG (°C/km) | ZBGHSZ (mbsf) | ZBGHSZ* (mbsf) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
64 | Black Sea | MCM | Particle size distribution: >0.1 mm (not detected), 0.01–0.1 mm (10–30%), <0.01 mm (70–90%) [162] | Nodules and lenses [163] | (Disc.) & (Doub./Mult.) [164] | Stru. [164] | 320 [164] | 1330 [164] | 9 [165] | 24.5 [165] | 293.45 | 364.95 |
65 | Baikal Lake | TRL | 70% clay, 5% silt, 25% sand [166] | Nodules and lenses [163] | Disc. [163] | Stru. [163] | 160 [163] | 1600 [163] | 3.5 [163] | NA | NA | NA |
66 | Anaximander Mud Volcanoes | ACM | 56–67% clay, 19–30% silt, 14% sand [167] | NA | Diag. [167] | NA | 40–200 [167] | 2025 [167] | 13.75 [167] | 26–38 [167] | NA | NA |
67 | Nile Deep-Sea Fan | PCM | Fine grained turbidite sediments and MTDs [168] | NA | Disc. [168] | Stru. [168] | 190 [168] | 2443 [168] | 12.5 [168] | 40 [168] | 191.9 | 230.81 |
68 | Western Marmara Sea | TPB | 50–70% clay, 30–40% silt, 0–1% sand [169] | Nodules [170] | Cont. [171] | Vent. [171] | 25 [170,171] | 680 [170,171] | 14.5 [170,171] | 39.3 [170] | −324.95 | −232.16 |
Code | Location | TGF | Sediment Features | Pore Habit | SMT | ZBSR (mbsf) | WD (m) | Tsf (°C) | GG (°C/km) | ZBGHSZ (mbsf) | ZBGHSZ* (mbsf) |
---|---|---|---|---|---|---|---|---|---|---|---|
69 | Qilian Mountains Tibet | CC | Sandstones (medium to fine-grained), siltstones, mudstones, and oil-bearing shales [172] | Fracture filling in rock [173,174] | NA | 133–396 [173] | 0 | NA | NA | NA | NA |
70 | West Siberia Basin | ISB | Particle size distribution: 8% at 0.2 mm, 4% at 0.5 mm, 4% at 0.8 mm, and 84% exceeding 1 mm. [175] | NA | NA | 800 [175] | 0 | NA | NA | NA | NA |
71 | Mallik | ISB | Fine/medium sand, mean grain size: 149.9–502.5 μm [117,176] | Pore-filling [176] | NA | 1000 [176] | 0 | NA | NA | NA | NA |
72 | Lena-Tunguska Basin | ISB | NA | NA | NA | 800–2000 [139] | 0 | NA | NA | NA | NA |
73 | Mt Elbert | CC | 56–61% <75 μm, mean grain size: 0.07–0.074 mm [177,178] | Pore-filling [117,176] | NA | 850 [177] | 0 | NA | NA | NA | NA |
3. BSR as Indicators for the Presence of BGHSZ and Gas Hydrate/Free Gas
3.1. Comparison of BSR Depth and Predicted Depth of BGHSZ
- Capillary pressure effects in fine-grained sediments can inhibit hydrate formation, allowing methane to persist in gaseous form [188].
3.2. BSR as an Indicator of Gas Hydrate and Free Gas Presence
3.2.1. Gas Hydrate Presence Without Observable BSR
3.2.2. False “BSR” Without Gas Hydrates Presence
4. Controls on BSR Morphology in Gas Hydrate Systems
4.1. Influence of Geological Settings
4.1.1. BSRs in Structural Settings
4.1.2. BSRs in Stratigraphic Settings
4.1.3. BSRs in Venting Settings
4.2. Influence of Sediment Types
4.3. Influence of Seismic Data Acquisition Methods
5. Formation Mechanisms of Double and Multiple BSRs
5.1. Rapid Sedimentation
5.2. Tectonic Uplift and Subsidence
5.3. Upwelling of Thermal Fluids
5.4. Fluid Overpressure Induced by Slope Failure
5.5. Canyon Erosion and Subsequent Sedimentation
5.6. Different Types of Gas Hydrate Structure
6. Challenges
7. Conclusions
- BSRs, free gas zones, and GHBS exhibit complex, non-unique correlations. Reliable BSR identification requires integrating multiple seismic attributes rather than relying on a single diagnostic feature.
- Over 35% of global BSRs occur significantly shallower than theoretical BGHSZ predictions, particularly in deepwater basins. This confirms that the BSR primarily marks the base of the gas hydrate occurrence zone (BGHOZ) and the top of the free gas zone (TFGZ), not necessarily the thermodynamic GHSZ boundary.
- BSR morphology exhibits systematic variability controlled by three interlinked factors: ① geological setting, ② sediment properties, and ③ seismic acquisition constraints. Continuous BSRs typically develop in venting settings and in stratigraphic contexts where homogeneous strata are parallel to the BGHSZ. Discontinuous BSRs are often found in structural settings or where heterogeneous strata dip relative to the BGHSZ. Clustered BSR is predominantly associated with coarse-grained sediments in structural settings while pluming BSR is confined to venting settings linked to surface mud volcanoes or salt diapirs. The majority (~70–80%) of BSRs occur in fine-grained, grain-displacive sediments, where gas hydrates typically form as isolated lenses or nodules. In contrast, coarse-grained, pore-filling sediments account for a smaller proportion of BSR occurrences, typically less than 20%. Additionally, seismic data quality parameters—notably lateral resolution and survey-line orientation relative to geological structures—fundamentally govern the apparent continuity and sharpness of BSR reflections in seismic imagery.
- Double and multiple BSRs result from dynamic adjustments in gas hydrate systems, driven by sedimentation, tectonics, fluid migration, or differing hydrate phase stability. While these mechanisms provide regional explanations, their complexity demands further interdisciplinary research to predict hydrate system evolution.
- By integrating these four frontiers—frequency-dependent AVO, viscoelastic full waveform inversion (FWI), multicomponent anisotropy, and microstructural modeling—the next generation of BSR research will achieve quantitative, physics-constrained reservoir evaluation.
- The integration of high-resolution exploration technologies and intelligent algorithms is anticipated to shift BSR research from “static feature identification” to “dynamic process analysis”, potentially optimizing gas hydrate exploration efficiency while providing critical scientific insights into the interaction mechanisms between hydrate systems and marine environments.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
A | Amplitude |
ACM | Active Continental Margin |
AVO | Amplitude Versus Offset |
BGHOZ | Base of the Hydrate Occurrence Zone |
BGHSZ | Base of the Hydrate Stability Zone |
BSR | Bottom-Simulating Reflector |
CC | Continental Collision |
Clus. | Clustered BSR |
Cont. | Continuous BSR |
CSMHYD | Colorado School of Mines Hydrate |
Diag. | Diagenetic BSR |
Disc. | Discontinuous BSR |
f | Dominant Seismic Frequency |
FWI | Full Waveform Inversion |
GG | Geothermal Gradient |
GHBS | Gas Hydrate-bearing Sediment |
GHSZ | Gas Hydrate Stability Zone |
GST | Geological Setting Types of BSRs |
h | Vertical Resolution |
ISB | Inland Sedimentary Basin |
MCM | Mixed Continental Margin |
NA | Not Available |
PCM | Passive Continental Margin |
Plum. | Pluming BSR |
R | Reflection Coefficient |
r | Horizontal Resolution |
sI | Structure I |
sII | Structure II |
SMT | Seismic Morphology Types of BSRs |
Stra. | Stratigraphic Setting |
Stru. | Structural Setting |
TFGZ | Top of the Free Gas Zone |
TGF | Tectonic Geological Features |
TPB | Transition Plate Boundary |
TRL | Tectonic Rift Lake |
Tsf | Seafloor Temperature |
v | Seismic Wave Velocity |
Vent. | Venting Setting |
WD | Water Depth |
Z | Acoustic Impedance |
z | Target Depth |
ZBGHSZ | Depth of BGHSZ in Salt Water (3.5 wt.% NaCl) |
ZBGHSZ* | Depth of BGHSZ in Pure Water |
ZBSR | BSR Depth |
ρ | Density |
ΔZ | Depth Deviation between BGHSZ and BSR |
References
- Trofimuk, A.A.; Cherskiy, N.V.; Makagon, Y.F.; Tsarev, V.P. Possible Mechanism of the Accumulation of Natural Gas. Int. Geol. Rev. 1973, 15, 1042–1046. [Google Scholar] [CrossRef]
- Stoll, R.D.; Ewing, J.; Bryan, G.M. Anomalous Wave Velocities in Sediments Containing Gas Hydrates. J. Geophys. Res. 1971, 76, 2090–2094. [Google Scholar] [CrossRef]
- Markl, R.G.; Bryan, G.M.; Ewing, J.I. Structure of the Blake-Bahama Outer Ridge. J. Geophys. Res. 1970, 75, 4539–4555. [Google Scholar] [CrossRef]
- Bangs, N.L.B.; Sawyer, D.S.; Golovchenko, X. Free Gas at the Base of the Gas Hydrate Zone in the Vicinity of the Chile Triple Junction. Geology 1993, 21, 905. [Google Scholar] [CrossRef]
- Langan, R.T.; Lerche, I.; Cutler, R.T. The Tracing of Rays Through Heterogeneous Media. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 8 April 1985. [Google Scholar]
- Singh, S.C.; Minshull, T.A.; Spence, G.D. Velocity Structure of a Gas Hydrate Reflector. Science 1993, 260, 204–207. [Google Scholar] [CrossRef]
- Singh, S.C.; Minshull, T.A. Velocity Structure of a Gas Hydrate Reflector at Ocean Drilling Program Site 889 from a Global Seismic Waveform Inversion. J. Geophys. Res. Solid Earth 1994, 99, 24221–24233. [Google Scholar] [CrossRef]
- Tarantola, A. A Strategy for Nonlinear Elastic Inversion of Seismic Reflection Data. Geophysics 1986, 51, 1893–1903. [Google Scholar] [CrossRef]
- Tarantola, A. Inversion of Seismic Reflection Data in the Acoustic Approximation. Geophysics 1984, 49, 1259–1266. [Google Scholar] [CrossRef]
- Hyndman, R.D.; Spence, G.D. A Seismic Study of Methane Hydrate Marine Bottom Simulating Reflectors. J. Geophys. Res. Solid Earth 1992, 97, 6683–6698. [Google Scholar] [CrossRef]
- Murphy, W.; Reischer, A.; Hsu, K. Modulus Decomposition of Compressional and Shear Velocities in Sand Bodies. Geophysics 1993, 58, 227–239. [Google Scholar] [CrossRef]
- Chand, S.; Minshull, T.A. Seismic Constraints on the Effects of Gas Hydrate on Sediment Physical Properties and Fluid Flow: A Review. Geofluids 2003, 3, 275–289. [Google Scholar] [CrossRef]
- Katzman, R.; Holbrook, W.S.; Paull, C.K. Combined Vertical-incidence and Wide-angle Seismic Study of a Gas Hydrate Zone, Blake Ridge. J. Geophys. Res. Solid Earth 1994, 99, 17975–17995. [Google Scholar] [CrossRef]
- Petersen, C.J.; Bünz, S.; Hustoft, S.; Mienert, J.; Klaeschen, D. High-Resolution P-Cable 3D Seismic Imaging of Gas Chimney Structures in Gas Hydrated Sediments of an Arctic Sediment Drift. Mar. Pet. Geol. 2010, 27, 1981–1994. [Google Scholar] [CrossRef]
- Lu, S.; McMechan, G.A. Elastic Impedance Inversion of Multichannel Seismic Data from Unconsolidated Sediments Containing Gas Hydrate and Free Gas. Geophysics 2004, 69, 164–179. [Google Scholar] [CrossRef]
- Lu, S.; McMechan, G.A. Estimation of Gas Hydrate and Free Gas Saturation, Concentration, and Distribution from Seismic Data. Geophysics 2002, 67, 582–593. [Google Scholar] [CrossRef]
- Bünz, S.; Mienert, J.; Vanneste, M.; Andreassen, K. Gas Hydrates at the Storegga Slide: Constraints from an Analysis of Multicomponent, Wide-Angle Seismic Data. Geophysics 2005, 70, B19–B34. [Google Scholar] [CrossRef]
- Ecker, C. Seismic Characterization of Methane Hydrate Structures. Ph.D. Thesis, Stanford University, San Francisco, CA, USA, 2001. [Google Scholar]
- Li, C.; Gou, L.; You, J.; Liu, X.; Ou, C. Further Studies on the Numerical Simulation of Bubble Plumes in the Cold Seepage Active Region. Acta Oceanol. Sin. 2016, 35, 118–124. [Google Scholar] [CrossRef]
- Westbrook, G.K.; Thatcher, K.E.; Rohling, E.J.; Piotrowski, A.M.; Pälike, H.; Osborne, A.H.; Nisbet, E.G.; Minshull, T.A.; Lanoisellé, M.; James, R.H.; et al. Escape of Methane Gas from the Seabed along the West Spitsbergen Continental Margin. Geophys. Res. Lett. 2009, 36, L15608. [Google Scholar] [CrossRef]
- Guerin, G.; Goldberg, D. Sonic Waveform Attenuation in Gas Hydrate-bearing Sediments from the Mallik 2L-38 Research Well, Mackenzie Delta, Canada. J. Geophys. Res. Solid Earth 2002, 107, EPM 1-1–EPM 1-11. [Google Scholar] [CrossRef]
- Matsushima, J. Seismic Attenuation from VSP Data in Methane Hydrate-Bearing Sediments. Explor. Geophys. 2007, 38, 29–36. [Google Scholar] [CrossRef]
- Li, C.; Feng, K.; Liu, X. Study on P-Wave Attenuation in Hydrate-Bearing Sediments Based on BISQ Model. J. Geol. Res. 2013, 2013, 176579. [Google Scholar] [CrossRef]
- Dewangan, P.; Mandal, R.; Jaiswal, P.; Ramprasad, T.; Sriram, G. Estimation of Seismic Attenuation of Gas Hydrate Bearing Sediments from Multi-Channel Seismic Data: A Case Study from Krishna–Godavari Offshore Basin. Mar. Pet. Geol. 2014, 58, 356–367. [Google Scholar] [CrossRef]
- Shipley, T.H.; Houston, H.M.; Buffler, R.T.; Shaub, F.J.; McMillen, K.J.; Ladd, J.W.; Worzel, J.L. Seismic Evidence for Widespread Possible Gas Hydrate Horizons on Continental Slopes and Rises. Am. Assoc. Pet. Geol. Bull. 1979, 63, 2204–2213. [Google Scholar] [CrossRef]
- Hyndman, R.D.; Davis, E.E. A Mechanism for the Formation of Methane Hydrate and Seafloor Bottom-simulating Reflectors by Vertical Fluid Expulsion. J. Geophys. Res. Solid Earth 1992, 97, 7025–7041. [Google Scholar] [CrossRef]
- Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C. Compressional and Shear Wave Velocities in Uncemented Sediment Containing Gas Hydrate. Geophys. Res. Lett. 2005, 32, L10609. [Google Scholar] [CrossRef]
- Rajan, A.; Mienert, J.; Bünz, S. Acoustic Evidence for a Gas Migration and Release System in Arctic Glaciated Continental Margins Offshore NW-Svalbard. Mar. Pet. Geol. 2012, 32, 36–49. [Google Scholar] [CrossRef]
- Bünz, S.; Polyanov, S.; Vadakkepuliyambatta, S.; Consolaro, C.; Mienert, J. Active Gas Venting through Hydrate-Bearing Sediments on the Vestnesa Ridge, Offshore W-Svalbard. Mar. Geol. 2012, 332–334, 189–197. [Google Scholar] [CrossRef]
- Bangs, N.L.B.; Musgrave, R.J.; Tréhu, A.M. Upward Shifts in the Southern Hydrate Ridge Gas Hydrate Stability Zone Following Postglacial Warming, Offshore Oregon. J. Geophys. Res. Solid Earth 2005, 110, B03102. [Google Scholar] [CrossRef]
- Berndt, C.; Bünz, S.; Clayton, T.; Mienert, J.; Saunders, M. Seismic Character of Bottom Simulating Reflectors: Examples from the Mid-Norwegian Margin. Mar. Pet. Geol. 2004, 21, 723–733. [Google Scholar] [CrossRef]
- Liang, J.-q.; Deng, W.; Lu, J.-a.; Kuang, Z.-g.; He, Y.-l.; Zhang, W.; Gong, Y.-h.; Liang, J.; Meng, M.-m. A Fast Identification Method Based on the Typical Geophysical Differences between Submarine Shallow Carbonates and Hydrate Bearing Sediments in the Northern South China Sea. China Geol. 2020, 3, 16–27. [Google Scholar] [CrossRef]
- Qian, J.; Kang, D.; Jin, J.; Lin, L.; Guo, Y.; Meng, M.; Wang, Z.; Wang, X. Quantitative Seismic Characterization for Gas Hydrate- and Free Gas-Bearing Sediments in the Shenhu Area, South China Sea. Mar. Pet. Geol. 2022, 139, 105606. [Google Scholar] [CrossRef]
- Spence, G.D.; Haacke, R.R.; Hyndman, R.D. 4. Seismic Indicators of Natural Gas Hydrate and Underlying Free Gas. In Geophysical Characterization of Gas Hydrates; Society of Exploration Geophysicists: Houston, TX, USA, 2010; pp. 39–71. [Google Scholar]
- Chopra, S.; Marfurt, K.J. Seismic Attributes—A Historical Perspective. Geophysics 2005, 70, 3SO–28SO. [Google Scholar] [CrossRef]
- Satyavani, N.; Sain, K.; Lall, M.; Kumar, B.J.P. Seismic Attribute Study for Gas Hydrates in the Andaman Offshore India. Mar. Geophys. Res. 2008, 29, 167–175. [Google Scholar] [CrossRef]
- Hornbach, M.J. Bottom Simulating Reflections Below the Blake Ridge, Western North Atlantic Margin. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 131–138. [Google Scholar]
- Hjelstuen, B.O.; Haflidason, H.; Sejrup, H.P.; Nygård, A. Sedimentary and Structural Control on Pockmark Development—Evidence from the Nyegga Pockmark Field, NW European Margin. Geo-Mar. Lett. 2010, 30, 221–230. [Google Scholar] [CrossRef]
- Vadakkepuliyambatta, S.; Chand, S.; Waage, M.; Bünz, S. Occurrence and Distribution of Bottom Simulating Reflections in the Barents Sea. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 237–245. [Google Scholar]
- Jin, J.; Wang, X.; Guo, Y.; Li, J.; Li, Y.; Zhang, X.; Qian, J.; Sun, L. Geological Controls on the Occurrence of Recently Formed Highly Concentrated Gas Hydrate Accumulations in the Shenhu Area, South China Sea. Mar. Pet. Geol. 2020, 116, 104294. [Google Scholar] [CrossRef]
- Portnov, A.; Cook, A.E.; Sawyer, D.E.; Yang, C.; Hillman, J.I.T.; Waite, W.F. Clustered BSRs: Evidence for Gas Hydrate-Bearing Turbidite Complexes in Folded Regions, Example from the Perdido Fold Belt, Northern Gulf of Mexico. Earth Planet. Sci. Lett. 2019, 528, 115843. [Google Scholar] [CrossRef]
- Liu, B.; Syed, W.H.; Chen, J.; Deng, X.; Yang, L.; Azevedo, L.; Duan, M.; Wu, T.; Ma, J.; Li, K. Distinct BSRs and Their Implications for Natural Gas Hydrate Formation and Distribution at the Submarine Makran Accretionary Zone. J. Oceanol. Limnol. 2021, 39, 1871–1886. [Google Scholar] [CrossRef]
- Shedd, W.; Boswell, R.; Frye, M.; Godfriaux, P.; Kramer, K. Occurrence and Nature of “Bottom Simulating Reflectors” in the Northern Gulf of Mexico. Mar. Pet. Geol. 2012, 34, 31–40. [Google Scholar] [CrossRef]
- Taner, M.T.; Koehler, F.; Sheriff, R.E. Complex Seismic Trace Analysis. Geophysics 1979, 44, 1041–1063. [Google Scholar] [CrossRef]
- Kim, K.J.; Yi, B.Y.; Kang, N.K.; Yoo, D.G. Seismic Attribute Analysis of the Indicator for Gas Hydrate Occurrence in the Northwest Ulleung Basin, East Sea. In Proceedings of the Energy Procedia; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 76, pp. 463–469. [Google Scholar]
- Shankar, U.; Sain, K. Seismic Attributes for Characterization of Gas Hydrate and Free Gas in the Mahanadi Basin. In Proceedings of the 2015 Biennial International Conference & Exposition, Jaipur, India, 4–7 December 2015. [Google Scholar]
- Yang, R.; Yan, P.; Wu, N.; Sha, Z.; Liang, J. Application of AVO Analysis to Gas Hydrates Identification in the Northern Slope of the South China Sea. Acta Geophys. 2014, 62, 802–817. [Google Scholar] [CrossRef]
- Minshull, T.; White, R. Sediment Compaction and Fluid Migration in the Makran Accretionary Prism. J. Geophys. Res. Solid Earth 1989, 94, 7387–7402. [Google Scholar] [CrossRef]
- Lee, M.W.; Hutchinson, D.R.; Agena, W.F.; Dillon, W.P.; Miller, J.J.; Swift, B.A. Seismic Character of Gas Hydrates on the Southeastern U.S. Continental Margin. Mar. Geophys. Res. 1994, 16, 163–184. [Google Scholar] [CrossRef]
- Carcione, J.M.; Tinivella, U. Bottom-simulating Reflectors: Seismic Velocities and AVO Effects. Geophysics 2000, 65, 54–67. [Google Scholar] [CrossRef]
- Andreassen, K.; Hart, P.E.; MacKay, M. Amplitude versus Offset Modeling of the Bottom Simulating Reflection Associated with Submarine Gas Hydrates. Mar. Geol. 1997, 137, 25–40. [Google Scholar] [CrossRef]
- Treude, T.; Boetius, A.; Knittel, K.; Wallmann, K.; Barker Jørgensen, B. Anaerobic Oxidation of Methane above Gas Hydrates at Hydrate Ridge, NE Pacific Ocean. Mar. Ecol. Prog. Ser. 2003, 264, 1–14. [Google Scholar] [CrossRef]
- Depreiter, D.; Poort, J.; Van Rensbergen, P.; Henriet, J.P. Geophysical Evidence of Gas Hydrates in Shallow Submarine Mud Volcanoes on the Moroccan Margin. J. Geophys. Res. Solid Earth 2005, 110, B10103. [Google Scholar] [CrossRef]
- Charlou, J.L.; Donval, J.P.; Fouquet, Y.; Ondreas, H.; Knoery, J.; Cochonat, P.; Levaché, D.; Poirier, Y.; Jean-Baptiste, P.; Fourré, E.; et al. Physical and Chemical Characterization of Gas Hydrates and Associated Methane Plumes in the Congo–Angola Basin. Chem. Geol. 2004, 205, 405–425. [Google Scholar] [CrossRef]
- Hovland, M.T.; Roy, S. Shallow Gas Hydrates Near 64° N, Off Mid-Norway: Concerns Regarding Drilling and Production Technologies. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 15–32. [Google Scholar]
- Ketzer, M.; Viana, A.; Miller, D.; Augustin, A.; Rodrigues, F.; Praeg, D.; Cupertino, J.; Freire, F.; Kowsmann, R.; Dickens, G.R.; et al. Gas Hydrate Systems on the Brazilian Continental Margin. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 343–352. [Google Scholar]
- Bangs, N.L.; Johnson, J.E.; Tréhu, A.M.; Arsenault, M.A. Hydrate Ridge—A Gas Hydrate System in a Subduction Zone Setting. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 89–107. [Google Scholar]
- Berndt, C.; Davies, R.; Li, A.; Yang, J. Insights into Gas Hydrate Dynamics from 3D Seismic Data, Offshore Mauritania. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 323–329. [Google Scholar]
- Kvenvolden, K.A.; Kaster, M. Gas Hydrates of the Peruvian Outer Continental Margin. In Proceedings of the Ocean Drilling Program, 112 Scientific Reports; Ocean Drilling Program: College Station, TX, USA, 1990. [Google Scholar]
- Maselli, V.; Iacopini, D.; Ahaneku, C.V.; Micallef, A.; Green, A. First Evidence of Bottom Simulation Reflectors in the Western Indian Ocean Offshore Tanzania. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 427–433. [Google Scholar]
- Kenyon, N.H.; Ivanov, M.K.; Akhmetzhanov, A.M.; Akhmanov, G.G. Multidisciplinary Study of Geological Processes on the North East Atlantic and Western Mediterranean Margins: Preliminary Results of Geological and Geophysical Investigations during the TTR-9 Cruise of R/V Professor Logachev June-July, 1999; IOC. Technical Series; UNESCO: London, UK, 2000; Volume 56. [Google Scholar]
- Somoza, L.; Medialdea, T.; Gonzalez, F.J. Bottom Simulating Reflectors Along the Scan Basin, a Deep-Sea Gateway Between the Weddell Sea (Antarctica) and Scotia Sea. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 483–492. [Google Scholar]
- Boyce, R.E. Leg XI Grain Size Analysis. In Initial Reports of the Deep Sea Drilling Project, 11; U.S. Government Printing Office: Washington, DC, USA, 1972. [Google Scholar]
- Sheridan, R.E. Site 533: Blake Outer Ridge. In Initial Reports of the Deep Sea Drilling Project, 76; U.S. Government Printing Office: Washington, DC, USA, 1983; Volume 76, pp. 35–140. [Google Scholar]
- Collett, T.S.; Wendlandt, R.F. Formation Evaluation of Gas Hydrate-Bearing Marine Sediments on the Blake Ridge with Downhole Geochemical Log Measurements. In Proceedings of the Ocean Drilling Program, 164 Scientific Results; Ocean Drilling Program: College Station, TX, USA, 2000. [Google Scholar]
- Matsumoto, R.; Uchida, T.; Waseda, A.; Uchida, T.; Takeya, S.; Hirano, T.; Yamada, K.; Maeda, Y.; Okui, T. Occurrence, Structure, and Composition of Natural Gas Hydrate Recovered from the Blake Ridge, Northwest Atlantic. In Proceedings of the Ocean Drilling Program, 164 Scientific Results; Ocean Drilling Program: College Station, TX, USA, 2000. [Google Scholar]
- Paull, C.K.; Matsumoto, R.; Wallace, P.J. Site 997. In Proceedings of the Ocean Drilling Program, 164 Initial Reports; Ocean Drilling Program: College Station, TX, USA, 1996; Volume 164, pp. 277–334. [Google Scholar]
- Paull, C.K.; Matsumoto, R.; Wallace, P.J. Site 995. In Proceedings of the Ocean Drilling Program, 164 Initial Reports; Ocean Drilling Program: College Station, TX, USA, 1996; Volume 164, pp. 175–240. [Google Scholar]
- Hillman, J.I.T.; Cook, A.E.; Sawyer, D.E.; Küçük, H.M.; Goldberg, D.S. The Character and Amplitude of ‘Discontinuous’ Bottom-Simulating Reflections in Marine Seismic Data. Earth Planet. Sci. Lett. 2017, 459, 157–169. [Google Scholar] [CrossRef]
- Vanneste, M.; De Batist, M.; Golmshtok, A.; Kremlev, A.; Versteeg, W. Multi-Frequency Seismic Study of Gas Hydrate-Bearing Sediments in Lake Baikal, Siberia. Mar. Geol. 2001, 172, 1–21. [Google Scholar] [CrossRef]
- Fohrmann, M.; Pecher, I.A. Analysing Sand-Dominated Channel Systems for Potential Gas-Hydrate-Reservoirs Using an AVO Seismic Inversion Technique on the Southern Hikurangi Margin, New Zealand. Mar. Pet. Geol. 2012, 38, 19–34. [Google Scholar] [CrossRef]
- Waghorn, K.A.; Bünz, S.; Plaza-Faverola, A.; Johnson, J.E. 3-D Seismic Investigation of a Gas Hydrate and Fluid Flow System on an Active Mid-Ocean Ridge; Svyatogor Ridge, Fram Strait. Geochem. Geophys. Geosyst. 2018, 19, 2325–2341. [Google Scholar] [CrossRef]
- Johnson, J.E.; Mienert, J.; Plaza-Faverola, A.; Vadakkepuliyambatta, S.; Knies, J.; Bünz, S.; Andreassen, K.; Ferré, B. Abiotic Methane from Ultraslow-Spreading Ridges Can Charge Arctic Gas Hydrates. Geology 2015, 43, 371–374. [Google Scholar] [CrossRef]
- Lin, C.-C.; Lin, A.T.-S.; Liu, C.-S.; Horng, C.-S.; Chen, G.-Y.; Wang, Y. Canyon-Infilling and Gas Hydrate Occurrences in the Frontal Fold of the Offshore Accretionary Wedge off Southern Taiwan. Mar. Geophys. Res. 2014, 35, 21–35. [Google Scholar] [CrossRef]
- Berndt, C.; Chi, W.-C.; Jegen, M.; Lebas, E.; Crutchley, G.; Muff, S.; Hölz, S.; Sommer, M.; Lin, S.; Liu, C.-S.; et al. Tectonic Controls on Gas Hydrate Distribution Off SW Taiwan. J. Geophys. Res. Solid Earth 2019, 124, 1164–1184. [Google Scholar] [CrossRef]
- Leslie, S.C.; Mann, P. Distribution and Character of Bottom Simulating Reflections in the Western Caribbean Offshore Guajira Peninsula, Colombia. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 333–341. [Google Scholar]
- Portnov, A.; Cook, A.E.; Sawyer, D.E. Bottom Simulating Reflections and Seismic Phase Reversals in the Gulf of Mexico. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 315–322. [Google Scholar]
- Manley, P.L.; Pirmez, C.; Busch, W.; Cramp, A. Grain-Size Characterization of Amazon Fan Deposits and Comparison to Seismic Facies Units. In Proceedings of the Ocean Drilling Program, 155 Scientific Results; Ocean Drilling Program: College Station, TX, USA, 1997. [Google Scholar]
- Manley, P.L.; Flood, R.D. Cyclic Sediment Deposition within Amazon Deep-Sea Fan. Am. Assoc. Pet. Geol. Bull. 1988, 72, 912–925. [Google Scholar] [CrossRef]
- Yun, T.S.; Narsilio, G.A.; Carlos Santamarina, J. Physical Characterization of Core Samples Recovered from Gulf of Mexico. Mar. Pet. Geol. 2006, 23, 893–900. [Google Scholar] [CrossRef]
- Pflaum, R.C.; Brooks, J.M.; Cox, H.B.; Kennicutt, M.C.; II, S. Molecular and Isotopic Analysis of Core Gases and Gas Hydrates, Deep Sea Drilling Project Leg 96. In Initial Reports of the Deep Sea Drilling Project, 96; U.S. Government Printing Office: Washington, DC, USA, 1986. [Google Scholar]
- Paull, C.K.; Shipboard Scientific Party. Sites 991/992/993. In Proceedings of the Ocean Drilling Program, 164 Initial Reports; Ocean Drilling Program: College Station, TX, USA, 1996; Volume 164, pp. 65–97. [Google Scholar]
- Uchida, T.; Yamamoto, J.; Okada, S.; Waseda, A.; Baba, K.; Okatsu, K.; Matsumoto, R. Shipbord Scientific Party of ODP Leg 164. In Methane Hydrates in Deep Marine Sediments—X-Ray CT and NMR Studies of ODP Leg 164 Hydrates; Jitsugyo Kohosha, 1997; pp. 36–42. [Google Scholar]
- Dillon, W.P.; Popenoe, P.; Grow, J.A.; Klitgord, K.D.; Swift, B.A.; Paull, C.K.; Cashman, K.V. Growth Faulting and Salt Diapirism: Their Relationship and Control in the Carolina Trough, Eastern North America/Subtitle. In Studies in Continental Margin Geology; American Association of Petroleum Geologists: Tulsa, OK, USA, 1982. [Google Scholar]
- Hollister, C.D.; Ewing, J.I.; Habib, D.; Hathaway, J.C.; Lancelot, Y.; Luterbacher, H.; Paulus, F.J.; Poag, C.W.; Wilcoxon, J.A.; Worstell, P. Site 107: Upper Continental Rise. In Initial Reports of the Deep Sea Drilling Project, 11; U.S. Government Printing Office: Washington, DC, USA, 1972. [Google Scholar]
- Brian, E.T.; Bryan, G.B.; Ewing, J.I. Gas-Hydrate Horizons Detected in Seismic-Profiler Data from the Western North Atlantic. Am. Assoc. Pet. Geol. Bull. 1977, 61, 698–707. [Google Scholar] [CrossRef]
- Wefer, G.; Berger, W.H.; Richter, C. Site 1080. In Proceedings of the Ocean Drilling Program 175 Initial Reports; Ocean Drilling Program: College Station, TX, USA, 1998; Volume 175, pp. 201–221. [Google Scholar]
- Swart, R. Hydrate Occurrences in the Namibe Basin, Offshore Namibia. In Sediment-Hosted Gas Hydrates: New Insights on Natural and Synthetic Systems; The Geological Society of London: London, UK, 2009; Volume 319, pp. 73–80. [Google Scholar] [CrossRef]
- de Santa Ana, H.; Latrónica, L.; Tomasini, J.; Morales, E.; Ferro, S.; Gristo, P.; Machado, L.; Veroslavsky, G.; Ucha, N. Economic and Exploratory Review of Gas Hydrates and Other Gas Manifestations of the Uruguayan Continental Shelf; University of British Columbia Library: Vancouver, BC, Canada, 2008. [Google Scholar]
- Pittenger, A.; Taylor, E.; Bryant, W.R. The Influence of Biogenic Silica on the Geotechnical Stratigraphy of the Vøring Plateau, Norwegian Sea. In Proceedings of the Ocean Drilling Program, 104 Scientific Results; Ocean Drilling Program: College Station, TX, USA, 1989. [Google Scholar]
- Ginsburg, G.D.; Milkov, A.V.; Soloviev, V.A.; Egorov, A.V.; Cherkashev, G.A.; Vogt, P.R.; Crane, K.; Lorenson, T.D.; Khutorskoy, M.D. Gas Hydrate Accumulation at the Håkon Mosby Mud Volcano. Geo-Mar. Lett. 1999, 19, 57–67. [Google Scholar] [CrossRef]
- Senger, K.; Bünz, S.; Mienert, J. First-Order Estimation of In-Place Gas Resources at the Nyegga Gas Hydrate Prospect, Norwegian Sea. Energies 2010, 3, 2001–2026. [Google Scholar] [CrossRef]
- Mosher, D.C. A Margin-Wide BSR Gas Hydrate Assessment: Canada’s Atlantic Margin. Mar. Pet. Geol. 2011, 28, 1540–1553. [Google Scholar] [CrossRef]
- Mosher, D.C.; Hawken, J.E.; Campbell, D.C. Gas Hydrates and Submarine Sediment Mass Failure: A Case Study from Sackville Spur, Offshore Newfoundland. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 303–314. [Google Scholar]
- Hawken, J. Origin and Stratigraphic Setting of the Sackville Spur Bottom Simulating Reflector, Offshore Newfoundland. 2017. Available online: https://dalspace.library.dal.ca/items/ef6d5d69-fd2f-4a1a-8fa5-cdb6c8246b14 (accessed on 1 January 2020).
- Davies, R.J.; Yang, J.; Li, A.; Mathias, S.; Hobbs, R. An Irregular Feather-Edge and Potential Outcrop of Marine Gas Hydrate along the Mauritanian Margin. Earth Planet. Sci. Lett. 2015, 423, 202–209. [Google Scholar] [CrossRef]
- Warren, L.P. Site 502: Colombia Basin, Western Caribbean Sea. In Initial Reports of the Deep Sea Drilling Project, 68; U.S. Government Printing Office: Washington, DC, USA, 1982; Volume 68, pp. 15–162. [Google Scholar]
- Mayer, L.A. Physical Properties of Sediment Recovered on Deep Sea Drilling Project Leg 68 with the Hydraulic Piston Corer. In Initial Reports of the Deep Sea Drilling Project, 68; U.S. Government Printing Office: Washington, DC, USA, 1982; Volume 68, pp. 365–382. [Google Scholar]
- Reed, D.L.; Silver, E.A.; Tagudin, J.E.; Shipley, T.H.; Vrolijk, P. Relations between Mud Volcanoes, Thrust Deformation, Slope Sedimentation, and Gas Hydrate, Offshore North Panama. Mar. Pet. Geol. 1990, 7, 44–54. [Google Scholar] [CrossRef]
- Boyce, R.E. Grain Size Analysis, Leg 9. In Initial Reports of the Deep Sea Drilling Project, 9; U.S. Government Printing Office: Washington, DC, USA, 1972; Volume 9, pp. 779–796. [Google Scholar]
- Shipley, T.H.; Houston, H.H.; Buffler, R.T. Widespread Occurrence of Possible Gas-Hydrate Horizons from Continental Slopes as Identified on Seismic Reflection Profiles. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 8 April 1979. [Google Scholar]
- Mazurenko, L.L.; Soloviev, V.A.; Belenkaya, I.; Ivanov, M.K.; Pinheiro, L.M. Mud Volcano Gas Hydrates in the Gulf of Cadiz. Terra Nova 2002, 14, 321–329. [Google Scholar] [CrossRef]
- Wefer, G. Site 1076. In Proceedings of the Ocean Drilling Program 175 Initial Reports; Ocean Drilling Program: College Station, TX, USA, 1998; Volume 175, pp. 87–113. [Google Scholar]
- Pape, T.; Bohrmann, G. Shallow Gas Hydrates Associated to Pockmarks in the Northern Congo Deep-Sea Fan, SW Africa. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 359–371. [Google Scholar]
- Wenau, S.; Spieß, V.; Pape, T.; Fekete, N. Controlling Mechanisms of Giant Deep Water Pockmarks in the Lower Congo Basin. Mar. Pet. Geol. 2017, 83, 140–157. [Google Scholar] [CrossRef]
- Sultan, N.; Garziglia, S.; Ruffine, L. New Insights into the Transport Processes Controlling the Sulfate-Methane-Transition-Zone near Methane Vents. Sci. Rep. 2016, 6, 26701. [Google Scholar] [CrossRef]
- Wei, J.; Pape, T.; Sultan, N.; Colliat, J.-L.; Himmler, T.; Ruffine, L.; de Prunelé, A.; Dennielou, B.; Garziglia, S.; Marsset, T.; et al. Gas Hydrate Distributions in Sediments of Pockmarks from the Nigerian Margin—Results and Interpretation from Shallow Drilling. Mar. Pet. Geol. 2015, 59, 359–370. [Google Scholar] [CrossRef]
- Hovland, M.; Gallagher, J.W.; Clennell, M.B.; Lekvam, K. Gas Hydrate and Free Gas Volumes in Marine Sediments: Example from the Niger Delta Front. Mar. Pet. Geol. 1997, 14, 245–255. [Google Scholar] [CrossRef]
- Naim, F.; Cook, A.E. Gas Hydrate in the Faroe-Shetland Basin, Offshore United Kingdom. Mar. Pet. Geol. 2025, 176, 107347. [Google Scholar] [CrossRef]
- Moore, J.C.; Watkins, J.S.; Bachman, S.B.; Beghtel, F.W.; Didyk, B.M.; Leggett, J.K. Site 491. In Initial Reports of the Deep Sea Drilling Project, 66; U.S. Government Printing Office: Washington, DC, USA, 1982; Volume 66, pp. 219–287. [Google Scholar] [CrossRef]
- Tan, B.; Germaine, J.T.; Flemings, P.B. Data Report: Consolidation and Strength Characteristics of Sediments from ODP Site 1244, Hydrate Ridge, Cascadia Continental Margin. In Proceedings of the Ocean Drilling Program, 199 Scientific Results; Ocean Drilling Program: College Station, TX, USA, 2006. [Google Scholar]
- Tréhu, A.M.; Bohrmann, G.; Rack, F.R.; Torres, M.E.; Shipboard Scientific Party. Site 1245. In Proceedings of the Ocean Drilling Program, 204 Initial Reports; Ocean Drilling Program: College Station, TX, USA, 2003; Volume 204, pp. 1–31. [Google Scholar]
- Camerlenghi, A.; Lucchi, R.G.; Rothwell, R.G. Grain-Size Analysis and Distribution in Cascadia Margin Sediments, Northeastern Pacific. In Proceedings of the Ocean Drilling Program, 146 Part 1 Scientific Results; Ocean Drilling Program: College Station, TX, USA, 1995. [Google Scholar]
- Westbrook, G.K. Sites 889 and 890. In Proceedings of the Ocean Drilling Program, 146 Part 1 Initial Reports; Ocean Drilling Program: College Station, TX, USA, 1994; Volume 146, pp. 127–239. [Google Scholar]
- Mazumdar, A.; João, H.M.; Peketi, A.; Dewangan, P.; Kocherla, M.; Joshi, R.K.; Ramprasad, T. Geochemical and Geological Constraints on the Composition of Marine Sediment Pore Fluid: Possible Link to Gas Hydrate Deposits. Mar. Pet. Geol. 2012, 38, 35–52. [Google Scholar] [CrossRef]
- Suess, E. Site 688. In Proceedings of the Ocean Drilling Program, 112 Initial Reports; Ocean Drilling Program: College Station, TX, USA, 1988; Volume 112, pp. 873–1004. [Google Scholar]
- Dai, S.; Santamarina, J.C.; Waite, W.F.; Kneafsey, T.J. Hydrate Morphology: Physical Properties of Sands with Patchy Hydrate Saturation. J. Geophys. Res. Solid Earth 2012, 117, B11205. [Google Scholar] [CrossRef]
- Tsuboi, S.; Kagami, H.; Tokuyama, H. Stratigraphy and Tectonic Interpretations of Multichannel Seismic Reflection Records across the Japan Trench off Sanriku, Northeastern Japan. In Initial Reports of the Deep Sea Drilling Project, 87; U.S. Government Printing Office: Washington, DC, USA, 1986; pp. 745–750. [Google Scholar]
- Uchida, T.; Lu, H.; Tomaru, H.; Matsumoto, R.; Senoh, O.; Oda, H.; Okada, S.; Delwiche, M.; Dallimore, S.R. Subsurface Occurrence of Natural Gas Hydrate in the Nankai Trough Area: Implication for Gas Hydrate Concentration. Resour. Geol. 2004, 54, 35–44. [Google Scholar] [CrossRef]
- Kinoshita, H.; Yamano, M. The Heat Flow Anomaly in the Nankai Trough Area. In Initial Reports of the Deep Sea Drilling Project, 87; U.S. Government Printing Office: Washington, DC, USA, 1986. [Google Scholar]
- Dang, H.; Luan, X.-W.; Chen, R.; Zhang, X.; Guo, L.; Klotz, M.G. Diversity, Abundance and Distribution of AmoA-Encoding Archaea in Deep-Sea Methane Seep Sediments of the Okhotsk Sea. FEMS Microbiol. Ecol. 2010, 72, 370–385. [Google Scholar] [CrossRef] [PubMed]
- Shoji, H.; Minami, H.; Hachikubo, A.; Sakagami, H.; Hyakutake, K.; Soloviev, V.; Matveeva, T.; Mazurenko, L.; Kaulio, V.; Gladysch, V.; et al. Hydrate-bearing Structures in the Sea of Okhotsk. Eos Trans. Am. Geophys. Union 2005, 86, 13–18. [Google Scholar] [CrossRef]
- Luan, X.; Jin, Y.; Obzhirov, A.; Yue, B. Characteristics of Shallow Gas Hydrate in Okhotsk Sea. Sci. China Ser. D Earth Sci. 2008, 51, 415–421. [Google Scholar] [CrossRef]
- Lüdmann, T.; Wong, H.K. Characteristics of Gas Hydrate Occurrences Associated with Mud Diapirism and Gas Escape Structures in the Northwestern Sea of Okhotsk. Mar. Geol. 2003, 201, 269–286. [Google Scholar] [CrossRef]
- Matveeva, T.; Logvina, E.; Nazarova, O.; Gladysh, V. Gas Hydrate-Bearing Province off Eastern Sakhalin Slope (Sea of Okhotsk): Geological Setting and Factors of Control. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 375–389. [Google Scholar]
- Kim, Y.-G.; Lee, S.-M.; Jin, Y.K.; Baranov, B.; Obzhirov, A.; Salomatin, A.; Shoji, H. The Stability of Gas Hydrate Field in the Northeastern Continental Slope of Sakhalin Island, Sea of Okhotsk, as Inferred from Analysis of Heat Flow Data and Its Implications for Slope Failures. Mar. Pet. Geol. 2013, 45, 198–207. [Google Scholar] [CrossRef]
- Lee, C.; Yun, T.S.; Lee, J.-S.; Bahk, J.J.; Santamarina, J.C. Geotechnical Characterization of Marine Sediments in the Ulleung Basin, East Sea. Eng. Geol. 2011, 117, 151–158. [Google Scholar] [CrossRef]
- Kim, G.Y.; Yi, B.Y.; Yoo, D.G.; Ryu, B.J.; Riedel, M. Evidence of Gas Hydrate from Downhole Logging Data in the Ulleung Basin, East Sea. Mar. Pet. Geol. 2011, 28, 1979–1985. [Google Scholar] [CrossRef]
- Wang, X.; Hutchinson, D.R.; Wu, S.; Yang, S.; Guo, Y. Elevated Gas Hydrate Saturation within Silt and Silty Clay Sediments in the Shenhu Area, South China Sea. J. Geophys. Res. 2011, 116, B05102. [Google Scholar] [CrossRef]
- Wang, X.; Collett, T.S.; Lee, M.W.; Yang, S.; Guo, Y.; Wu, S. Geological Controls on the Occurrence of Gas Hydrate from Core, Downhole Log, and Seismic Data in the Shenhu Area, South China Sea. Mar. Geol. 2014, 357, 272–292. [Google Scholar] [CrossRef]
- Liu, C.; Meng, Q.; He, X.; Li, C.; Ye, Y.; Zhang, G.; Liang, J. Characterization of Natural Gas Hydrate Recovered from Pearl River Mouth Basin in South China Sea. Mar. Pet. Geol. 2015, 61, 14–21. [Google Scholar] [CrossRef]
- Carter, R.; Mccave, I.N. Ocean Drilling Program Leg 181 Preliminary Report Southwest Pacific Gateways. In Proceedings of the Ocean Drilling Program; Ocean Drilling Program: College Station, TX, USA, 1998; Volume 181, ISBN 1223333450. [Google Scholar]
- Schwalenberg, K.; Haeckel, M.; Poort, J.; Jegen, M. Evaluation of Gas Hydrate Deposits in an Active Seep Area Using Marine Controlled Source Electromagnetics: Results from Opouawe Bank, Hikurangi Margin, New Zealand. Mar. Geol. 2010, 272, 79–88. [Google Scholar] [CrossRef]
- Pecher, I.; Crutchley, G.; Kröger, K.F.; Hillman, J.; Mountjoy, J.; Coffin, R.; Gorman, A. New Zealand’s Gas Hydrate Systems. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 415–424. [Google Scholar]
- Barnes, P.M.; Pecher, I.A.; LeVay, L.J.; Bourlange, S.M.; Brunet, M.M.Y.; Cardona, S.; Clennell, M.B.; Cook, A.E.; Crundwell, M.P.; Dugan, B.; et al. Site U1517; Texas A&M University: Houston, TX, USA, 2019. [Google Scholar]
- Brown, K.M.; Bangs, N.L.; Froelich, P.N.; Kvenvolden, K.A. The Nature, Distribution, and Origin of Gas Hydrate in the Chile Triple Junction Region. Earth Planet. Sci. Lett. 1996, 139, 471–483. [Google Scholar] [CrossRef]
- Behrmann, J.H.; Lewis, S.D.; Musgrave, R.J. Site 860. In Proceedings of the Ocean Drilling Program, 141 Initial Reports; Ocean Drilling Program: College Station, TX, USA, 1992; Volume 141, pp. 159–238. [Google Scholar]
- Bangs, N.L.B.; Sawyer, D.S.; Golovchenko, X. The Cause of the Bottom-Simulating Reflection in the Vicinity of the Chile Triple Junction. In Proceedings of the Ocean Drilling Program, 141 Scientific Results; Ocean Drilling Program: College Station, TX, USA, 1995. [Google Scholar]
- Collett, T.S.; Dallimore, S.R. Permafrost-Associated Gas Hydrate; Springer: Dordrecht, The Netherlands, 2003; pp. 43–60. [Google Scholar] [CrossRef]
- Chung, J.S.; Nativig, B.J.; Das, B.M. The Current Distribution and Thermal Stability of Natural Gas Hydrates in the Canadian Polar Regions; International Society of Offshore and Polar Engineers: Mountain View, CA, USA, 1994; ISBN 1880653109. [Google Scholar]
- Majorowicz, J.A.; Hannigan, P.K.; Osadetz, K.G. Study of the Natural Gas Hydrate “Trap Zone” and TheMethane Hydrate Potential in the Sverdrup Basin, Canada. Nat. Resour. Res. 2002, 11, 79–96. [Google Scholar] [CrossRef]
- Jansen, E. Site 986. In Proceedings of the Ocean Drilling Program, 162 Initial Reports; Ocean Drilling Program: College Station, TX, USA, 1996; Volume 162, pp. 287–343. [Google Scholar]
- Hustoft, S.; Bünz, S.; Mienert, J.; Chand, S. Gas Hydrate Reservoir and Active Methane-Venting Province in Sediments on <20 Ma Young Oceanic Crust in the Fram Strait, Offshore NW-Svalbard. Earth Planet. Sci. Lett. 2009, 284, 12–24. [Google Scholar] [CrossRef]
- Scholl, D.W.; Creager, J.S.; Boyce, R.E.; Echols, R.J.; The Shipboard Scientific Party. Site 185. In Initial Reports of the Deep Sea Drilling Project, 19; U.S. Government Printing Office: Washington, DC, USA, 1973; Volume 19, pp. 169–216. [Google Scholar]
- Ruppel, C.D.; Hart, P.E. Gas Hydrates on Alaskan Marine Margins. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 209–223. [Google Scholar]
- Bode, G.W. Grain Size. In Initial Reports of the Deep Sea Drilling Project, 19; U.S. Government Printing Office: Washington, DC, USA, 1973. [Google Scholar]
- Cooper, A.K.; Scholl, D.W.; Marlow, M.S.; Childs, J.R.; Redden, G.D.; Kvenvolden, K.A.; Stevenson, A.J. Hydrocarbon Potential of Aleutian Basin, Bering Sea. Am. Assoc. Pet. Geol. Bull. 1979, 63, 2070–2087. [Google Scholar] [CrossRef]
- Sættem, J.; Poole, D.A.R.; Ellingsen, L.; Sejrup, H.P. Glacial Geology of Outer Bjørnøyrenna, Southwestern Barents Sea. Mar. Geol. 1992, 103, 15–51. [Google Scholar] [CrossRef]
- Waage, M.; Portnov, A.; Serov, P.; Bünz, S.; Waghorn, K.A.; Vadakkepuliyambatta, S.; Mienert, J.; Andreassen, K. Geological Controls on Fluid Flow and Gas Hydrate Pingo Development on the Barents Sea Margin. Geochem. Geophys. Geosyst. 2019, 20, 630–650. [Google Scholar] [CrossRef]
- Andreassen, K.; Hogstad, K.; Berteussen, K.A. Gas Hydrate in the Southern Barents Sea, Indicated by a Shallow Seismic Anomaly. First Break 1990, 8, 235–245. [Google Scholar] [CrossRef]
- Cox, D.R.; Huuse, M.; Newton, A.M.W.; Sarkar, A.D.; Knutz, P.C. Shallow Gas and Gas Hydrate Occurrences on the Northwest Greenland Shelf Margin. Mar. Geol. 2021, 432, 106382. [Google Scholar] [CrossRef]
- Hayes, D.E. Site 273. In Initial Reports of the Deep Sea Drilling Project, 28; U.S. Government Printing Office: Washington, DC, USA, 1975; Volume 28, pp. 335–367. [Google Scholar]
- Geletti, R.; Busetti, M. A Double Bottom Simulating Reflector in the Western Ross Sea, Antarctica. J. Geophys. Res. Solid Earth 2011, 116, B04101. [Google Scholar] [CrossRef]
- Lonsdale, M.J. The Relationship between Silica Diagenesis|Methane|Seismic Reflections on the South Orkney Microcontinent. In Proceedings of the Ocean Drilling Program, 113 Scientific Reports; Ocean Drilling Program: College Station, TX, USA, 1990. [Google Scholar]
- The Shipboard Scientific Party. Site 222. In Initial Reports of the Deep Sea Drilling Project, 23; U.S. Government Printing Office: Washington, DC, USA, 1974. [Google Scholar]
- White, R.S. Gas Hydrate Layers Trapping Free Gas in the Gulf of Oman. Earth Planet. Sci. Lett. 1979, 42, 114–120. [Google Scholar] [CrossRef]
- Yun, T.S.; Fratta, D.; Santamarina, J.C. Hydrate-Bearing Sediments from the Krishna−Godavari Basin: Physical Characterization, Pressure Core Testing, and Scaled Production Monitoring. Energy Fuels 2010, 24, 5972–5983. [Google Scholar] [CrossRef]
- Collett, T.S.; Riedel, M.; Boswell, R.; Presley, J.; Kumar, P.; Sathe, A.; Sethi, A.; Lall, M.V. Indian National Gas Hydrate Program Expedition 01 Report; U.S. Geological Survey: Reston, VA, USA, 2015.
- Winters, W.J.; Waite, W.F.; Mason, D.H.; Kumar, P. Physical Properties of Repressurized Samples Recovered during the 2006 National Gas Hydrate Program Expedition Offshore India; University of British Columbia: Vancouver, BC, Canada, 2008. [Google Scholar]
- Kopp, H. BSR Occurrence along the Sunda Margin: Evidence from Seismic Data. Earth Planet. Sci. Lett. 2002, 197, 225–235. [Google Scholar] [CrossRef]
- Naim, F.; Cook, A.E. Gas Hydrate in the North Carnarvon Basin, Offshore Western Australia. Mar. Pet. Geol. 2024, 164, 106807. [Google Scholar] [CrossRef]
- Trimonis, E.S.; Shimkus, K.M. Grain-Size of the Black Sea Sediments, DSDP Leg 42B. In Initial Reports of the Deep Sea Drilling Project, 42 Pt. 2; U.S. Government Printing Office: Washington, DC, USA, 1978. [Google Scholar]
- Khlystov, O.; De Batist, M.; Shoji, H.; Hachikubo, A.; Nishio, S.; Naudts, L.; Poort, J.; Khabuev, A.; Belousov, O.; Manakov, A.; et al. Gas Hydrate of Lake Baikal: Discovery and Varieties. J. Asian Earth Sci. 2013, 62, 162–166. [Google Scholar] [CrossRef]
- Bialas, J.; Haeckel, M. Gas Hydrate Accumulations in the Black Sea. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 451–461. [Google Scholar]
- Zander, T.; Haeckel, M.; Berndt, C.; Chi, W.C.; Klaucke, I.; Bialas, J.; Klaeschen, D.; Koch, S.; Atgın, O. On the Origin of Multiple BSRs in the Danube Deep-Sea Fan, Black Sea. Earth Planet. Sci. Lett. 2017, 462, 15–25. [Google Scholar] [CrossRef]
- Kataoka, S.; Yamashita, S.; Kawaguchi, T.; Suzuki, T. The Soil Properties of Lake-Bottom Sediments in the Lake Baikal Gas Hydrate Province. Soils Found. 2009, 49, 757–775. [Google Scholar] [CrossRef]
- Lykousis, V.; Alexandri, S.; Woodside, J.; de Lange, G.; Dählmann, A.; Perissoratis, C.; Heeschen, K.; Ioakim, C.; Sakellariou, D.; Nomikou, P.; et al. Mud Volcanoes and Gas Hydrates in the Anaximander Mountains (Eastern Mediterranean Sea). Mar. Pet. Geol. 2009, 26, 854–872. [Google Scholar] [CrossRef]
- Praeg, D.; Migeon, S.; Mascle, J.; Unnithan, V.; Ketzer, M. A Gas Hydrate System of Heterogeneous Character in the Nile Deep-Sea Fan. In World Atlas of Submarine Gas Hydrates in Continental Margins; Springer International Publishing: Cham, Switzerland, 2022; pp. 437–447. [Google Scholar]
- Bodur, M.N.; Ergin, M. Geochemical Characteristics of the Recent Sediments from the Sea of Marmara. Chem. Geol. 1994, 115, 73–101. [Google Scholar] [CrossRef]
- Bourry, C.; Chazallon, B.; Charlou, J.L.; Pierre Donval, J.; Ruffine, L.; Henry, P.; Geli, L.; Çagatay, M.N.; İnan, S.; Moreau, M. Free Gas and Gas Hydrates from the Sea of Marmara, Turkey. Chem. Geol. 2009, 264, 197–206. [Google Scholar] [CrossRef]
- Sarıtaş, H.; Çifçi, G.; Géli, L.; Thomas, Y.; Marsset, B.; Henry, P.; Grall, C.; Rochat, A. Gas Occurrence and Shallow Conduit Systems in the Western Sea of Marmara: A Review and New Acoustic Evidence. Geo-Mar. Lett. 2018, 38, 385–402. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, Y.; Zhang, Y.; Wen, H.; Li, Y.; Liu, C. Gas Hydrate Occurrences in the Qilian Mountain Permafrost, Qinghai Province, China. Cold Reg. Sci. Technol. 2011, 66, 93–104. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, T.; Song, Y.; Liu, D.; Liu, W.; Liu, Y.; Yang, M.; Ruan, X.; Li, Y. Numerical Simulation of Gas Production from Hydrate Deposits Using a Single Vertical Well by Depressurization in the Qilian Mountain Permafrost, Qinghai-Tibet Plateau, China. Energy 2013, 52, 308–319. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, Y.; Lu, Z.; Huang, X.; Pang, S.; Zhang, S. Gas Hydrate Stability Zone Migration Occurred in the Qilian Mountain Permafrost, Qinghai, Northwest China: Evidences from Pyrite Morphology and Pyrite Sulfur Isotope. Cold Reg. Sci. Technol. 2014, 98, 8–17. [Google Scholar] [CrossRef]
- Collett, T.S.; Ginsburg, G.D. Gas Hydrates in the Messoyakha Gas Field of the West Siberian Basin—A Re-Examination of the Geologic Evidence. Int. J. Offshore Polar Eng. 1998, 8, ISOPE-98-08-1-022. [Google Scholar]
- Uchida, T.; Dallimore, S.; Mikami, J. Occurrences of Natural Gas Hydrates beneath the Permafrost Zone in Mackenzie Delta: Visual and X-ray CT Imagery. Ann. N. Y. Acad. Sci. 2000, 912, 1021–1033. [Google Scholar] [CrossRef]
- Dai, S.; Lee, C.; Carlos Santamarina, J. Formation History and Physical Properties of Sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Mar. Pet. Geol. 2011, 28, 427–438. [Google Scholar] [CrossRef]
- Winters, W.; Walker, M.; Hunter, R.; Collett, T.; Boswell, R.; Rose, K.; Waite, W.; Torres, M.; Patil, S.; Dandekar, A. Physical Properties of Sediment from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Mar. Pet. Geol. 2011, 28, 361–380. [Google Scholar] [CrossRef]
- Onwukwe, S.I.; Duru, U.I. Prospect of Harnessing Associated Gas through Natural Gas Hydrate (NGH) Technology in Nigeria. J. Pet. Gas Eng. 2015, 6, 38–44. [Google Scholar] [CrossRef]
- Ganguly, N.; Spence, G.D.; Chapman, N.R.; Hyndman, R.D. Heat Flow Variations from Bottom Simulating Reflectors on the Cascadia Margin. Mar. Geol. 2000, 164, 53–68. [Google Scholar] [CrossRef]
- Haacke, R.R.; Westbrook, G.K.; Hyndman, R.D. Gas Hydrate, Fluid Flow and Free Gas: Formation of the Bottom-Simulating Reflector. Earth Planet. Sci. Lett. 2007, 261, 407–420. [Google Scholar] [CrossRef]
- Klitzke, P.; Luzi-Helbing, M.; Schicks, J.M.; Cacace, M.; Jacquey, A.B.; Sippel, J.; Scheck-Wenderoth, M.; Faleide, J.I. Gas Hydrate Stability Zone of the Barents Sea and Kara Sea Region. Energy Procedia 2016, 97, 302–309. [Google Scholar] [CrossRef]
- Villinger, H.W.; Tréhu, A.M.; Grevemeyer, I. 18. Seafloor Marine Heat Flux Measurements and Estimation of Heat Flux from Seismic Observations of Bottom Simulating Reflectors. In Geophysical Characterization of Gas Hydrates; Society of Exploration Geophysicists: Houston, TX, USA, 2010; pp. 279–300. [Google Scholar]
- Kumar, A.; Cook, A.E.; Portnov, A.; Skopec, S.; Frye, M.; Palmes, S. Bottom Simulating Reflections across the Northern Gulf of Mexico Slope. Mar. Pet. Geol. 2024, 165, 106870. [Google Scholar] [CrossRef]
- Xu, W.; Ruppel, C. Predicting the Occurrence, Distribution, and Evolution of Methane Gas Hydrate in Porous Marine Sediments. J. Geophys. Res. Solid Earth 1999, 104, 5081–5095. [Google Scholar] [CrossRef]
- Holder, G.D. Clathrate Hydrates of Natural Gases, 2nd Ed. J. Am. Chem. Soc. 1998, 120, 11212. [Google Scholar] [CrossRef]
- Song, Y.; Lei, Y.; Zhang, L.; Cheng, M.; Miao, L.; Li, C.; Liu, N. Spatial-Temporal Variations of the Gas Hydrate Stability Zone and Hydrate Accumulation Models in the Dongsha Region, China. Front. Mar. Sci. 2022, 9, 982814. [Google Scholar] [CrossRef]
- Cai, W.; Guan, W.; Zhan, L.; Lu, H.; Xu, C. Coexistence of Methane Hydrate and Gas Associated with the Difference in Thermodynamic Stabilities of Hydrate in the Pores of Sediments from Shenhu, South China Sea. Energy Fuels 2024, 38, 8612–8619. [Google Scholar] [CrossRef]
- Holbrook, W.S.; Hoskins, H.; Wood, W.T.; Stephen, R.A.; Lizarralde, D. Methane Hydrate and Free Gas on the Blake Ridge from Vertical Seismic Profiling. Science 1996, 273, 1840–1843. [Google Scholar] [CrossRef]
- Kumar, S. Internal Structure of Hydrated Sediments and BSR as Seismic Evidence of Free Gas Trapping by Hydrate Zone. In Proceedings of the All Days; OTC: Springfield, MO, USA, 1998. [Google Scholar]
- Yuan, H.; Wang, Y.; Wang, X. Seismic Methods for Exploration and Exploitation of Gas Hydrate. J. Earth Sci. 2021, 32, 839–849. [Google Scholar] [CrossRef]
- Davies, R.J.; Cartwright, J. A Fossilized Opal A to Opal C/T Transformation on the Northeast Atlantic Margin: Support for a Significantly Elevated Palaeogeothermal Gradient during the Neogene? Basin Res. 2002, 14, 467–486. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, S.; Liang, J.; Tian, D.; Lu, J.; Deng, W.; Meng, M. Identification of Mass Transport Deposits and Insights into Gas Hydrate Accumulation in the Qiongdongnan Sea Area, Northern South China Sea. J. Mar. Sci. Eng. 2024, 12, 855. [Google Scholar] [CrossRef]
- Portnov, A.; Santra, M.; Cook, A.E.; Sawyer, D.E. The Jackalope Gas Hydrate System in the Northeastern Gulf of Mexico. Mar. Pet. Geol. 2020, 111, 261–278. [Google Scholar] [CrossRef]
- Baba, K.; Yamada, Y. BSRs and Associated Reflections as an Indicator of Gas Hydrate and Free Gas Accumulation: An Example of Accretionary Prism and Forearc Basin System along the Nankai Trough, off Central Japan. Resour. Geol. 2004, 54, 11–24. [Google Scholar] [CrossRef]
- Hart, P.E.; Pohlman, J.W.; Lorenson, T.D.; Edwards, B.D. Beaufort Sea Deep-Water Gas Hydrate Recovery from a Seafloor Mound in a Region of Widespread BSR Occurrence. In Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, 17–21 July 2011. [Google Scholar]
- Dirgantara, F.; Susilohadi, S.; Iskandar, M.A.S.; Sintuwardhana, Y.A. Methane Hydrate Systems off South Makassar Basin, Indonesia. Geosci. Lett. 2025, 12, 5. [Google Scholar] [CrossRef]
- Wei, L.; Cook, A.; You, K. Methane Migration Mechanisms for the Green Canyon Block 955 Gas Hydrate Reservoir, Northern Gulf of Mexico. Am. Assoc. Pet. Geol. Bull. 2022, 106, 1005–1023. [Google Scholar] [CrossRef]
- Flemings, P.B.; Phillips, S.C.; Boswell, R.; Collett, T.S.; Cook, A.E.; Dong, T.; Frye, M.; Goldberg, D.S.; Guerin, G.; Holland, M.E.; et al. Pressure Coring a Gulf of Mexico Deep-Water Turbidite Gas Hydrate Reservoir: Initial Results from The University of Texas–Gulf of Mexico 2-1 (UT-GOM2-1) Hydrate Pressure Coring Expedition. Am. Assoc. Pet. Geol. Bull. 2020, 104, 1847–1876. [Google Scholar] [CrossRef]
- Riedel, M.; Collett, T.S.; Kumar, P.; Sathe, A.V.; Cook, A. Seismic Imaging of a Fractured Gas Hydrate System in the Krishna–Godavari Basin Offshore India. Mar. Pet. Geol. 2010, 27, 1476–1493. [Google Scholar] [CrossRef]
- Pecher, I.A.; Henrys, S.A.; Wood, W.T.; Kukowski, N.; Crutchley, G.J.; Fohrmann, M.; Kilner, J.; Senger, K.; Gorman, A.R.; Coffin, R.B.; et al. Focussed Fluid Flow on the Hikurangi Margin, New Zealand—Evidence from Possible Local Upwarping of the Base of Gas Hydrate Stability. Mar. Geol. 2010, 272, 99–113. [Google Scholar] [CrossRef]
- Malinverno, A.; Goldberg, D.S. Testing Short-Range Migration of Microbial Methane as a Hydrate Formation Mechanism: Results from Andaman Sea and Kumano Basin Drill Sites and Global Implications. Earth Planet. Sci. Lett. 2015, 422, 105–114. [Google Scholar] [CrossRef]
- Boswell, R.; Collett, T.S.; Frye, M.; Shedd, W.; McConnell, D.R.; Shelander, D. Subsurface Gas Hydrates in the Northern Gulf of Mexico. Mar. Pet. Geol. 2012, 34, 4–30. [Google Scholar] [CrossRef]
- Navalpakam, R.S.; Pecher, I.A.; Stern, T. Weak and Segmented Bottom Simulating Reflections on the Hikurangi Margin, New Zealand—Implications for Gas Hydrate Reservoir Rocks. J. Pet. Sci. Eng. 2012, 88–89, 29–40. [Google Scholar] [CrossRef]
- Neurauter, T.W.; Bryant, W.R. Seismic Expression of Sedimentary Volcanism on the Continental Slope, Northern Gulf of Mexico. Geo-Mar. Lett. 1990, 10, 225–231. [Google Scholar] [CrossRef]
- Terzariol, M.; Park, J.; Castro, G.M.; Santamarina, J.C. Methane Hydrate-Bearing Sediments: Pore Habit and Implications. Mar. Pet. Geol. 2020, 116, 104302. [Google Scholar] [CrossRef]
- Crutchley, G.J.; Hillman, J.I.T.; Kroeger, K.F.; Watson, S.J.; Turco, F.; Mountjoy, J.J.; Davy, B.; Woelz, S. Both Longitudinal and Transverse Extension Controlling Gas Migration Through Submarine Anticlinal Ridges, New Zealand’s Southern Hikurangi Margin. J. Geophys. Res. Solid Earth 2023, 128, e2022JB026279. [Google Scholar] [CrossRef]
- Posewang, J.; Mienert, J. High-Resolution Seismic Studies of Gas Hydrates West of Svalbard. Geo-Mar. Lett. 1999, 19, 150–156. [Google Scholar] [CrossRef]
- Andressen, K.; Mienert, J.; Bryn, P.; Singh, S.C. A Double Gas-Hydrate Related Bottom Simulating Reflector at the Norwegian Continental Margin. Ann. N. Y. Acad. Sci. 2000, 912, 126–135. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, G.; Huang, Y.; Liang, J.; Wong, H.K. Gas Hydrate Occurrence on the Continental Slope of the Northern South China Sea. Mar. Pet. Geol. 2005, 22, 403–412. [Google Scholar] [CrossRef]
- Auguy, C.; Calvès, G.; Calderon, Y.; Brusset, S. Seismic Evidence of Gas Hydrates, Multiple BSRs and Fluid Flow Offshore Tumbes Basin, Peru. Mar. Geophys. Res. 2017, 38, 409–423. [Google Scholar] [CrossRef]
- Han, S.; Bangs, N.L.; Hornbach, M.J.; Pecher, I.A.; Tobin, H.J.; Silver, E.A. The Many Double BSRs across the Northern Hikurangi Margin and Their Implications for Subduction Processes. Earth Planet. Sci. Lett. 2021, 558, 116743. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Zhang, X.; Lei, X.; Sha, Z. BSRs, Estimated Heat Flow, Hydrate-Related Gas Volume and Their Implications for Methane Seepage and Gas Hydrate in the Dongsha Region, Northern South China Sea. Mar. Pet. Geol. 2015, 67, 785–794. [Google Scholar] [CrossRef]
- Qian, J.; Wang, X.; Collett, T.S.; Guo, Y.; Kang, D.; Jin, J. Downhole Log Evidence for the Coexistence of Structure II Gas Hydrate and Free Gas below the Bottom Simulating Reflector in the South China Sea. Mar. Pet. Geol. 2018, 98, 662–674. [Google Scholar] [CrossRef]
- Jin, J.; Wang, X.; He, M.; Li, J.; Yan, C.; Li, Y.; Zhou, J.; Qian, J. Downward Shift of Gas Hydrate Stability Zone Due to Seafloor Erosion in the Eastern Dongsha Island, South China Sea. J. Oceanol. Limnol. 2020, 38, 1188–1200. [Google Scholar] [CrossRef]
- Davies, R.J.; Morales Maqueda, M.Á.; Li, A.; Ganopolski, A. Millennial-Scale Shifts in the Methane Hydrate Stability Zone Due to Quaternary Climate Change. Geology 2017, 45, 1027–1030. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, W.; Tong, S.; Azevedo, L.; Wu, N.; Liu, B.; Xu, H.; Gong, J.; Liao, J.; Liang, J.; et al. Study on the Occurrence of Double Bottom Simulating Reflectors in the Makran Accretionary Zone. J. Mar. Sci. Eng. 2025, 13, 68. [Google Scholar] [CrossRef]
- Tinivella, U.; Giustiniani, M. Variations in BSR Depth Due to Gas Hydrate Stability versus Pore Pressure. Glob. Planet. Change 2013, 100, 119–128. [Google Scholar] [CrossRef]
- Riedel, M.; Collett, T.S. Observed Correlation between the Depth to Base and Top of Gas Hydrate Occurrence from Review of Global Drilling Data. Geochem. Geophys. Geosyst. 2017, 18, 2543–2561. [Google Scholar] [CrossRef]
- Foucher, J.-P.; Nouzé, H.; Henry, P. Observation and Tentative Interpretation of a Double BSR on the Nankai Slope. Mar. Geol. 2002, 187, 161–175. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, J.; Qiu, H.; Deng, W.; Meng, M.; He, Y.; Huang, W.; Liang, J.; Lin, L.; Wang, L.; et al. Double Bottom Simulating Reflectors and Tentative Interpretation with Implications for the Dynamic Accumulation of Gas Hydrates in the Northern Slope of the Qiongdongnan Basin, South China Sea. J. Asian Earth Sci. 2022, 229, 105151. [Google Scholar] [CrossRef]
- Gupta, S.; Deusner, C.; Burwicz-Galerne, E.; Haeckel, M. Numerical Analysis of the Dynamic Gas Hydrate System and Multiple BSRs in the Danube Paleo-Delta, Black Sea. Mar. Geol. 2024, 469, 107221. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Jin, J.; Zhou, J.; Kuang, Z.; Hu, G.; Zhang, Z.; Li, S. Features and Controlling Factors on the Dynamic Adjustment of Marine Gas Hydrate System. Acta Geol. Sin. 2024, 98, 2541–2556. [Google Scholar] [CrossRef]
- Paganoni, M.; Cartwright, J.A.; Foschi, M.; Shipp, R.C.; Van Rensbergen, P. Structure II Gas Hydrates Found below the Bottom-simulating Reflector. Geophys. Res. Lett. 2016, 43, 5696–5706. [Google Scholar] [CrossRef]
- Goto, S.; Matsubayashi, O.; Nagakubo, S. Simulation of Gas Hydrate Dissociation Caused by Repeated Tectonic Uplift Events. J. Geophys. Res. Solid Earth 2016, 121, 3200–3219. [Google Scholar] [CrossRef]
- Popescu, I.; De Batist, M.; Lericolais, G.; Nouzé, H.; Poort, J.; Panin, N.; Versteeg, W.; Gillet, H. Multiple Bottom-Simulating Reflections in the Black Sea: Potential Proxies of Past Climate Conditions. Mar. Geol. 2006, 227, 163–176. [Google Scholar] [CrossRef]
- Shaddox, H.R.; Schwartz, S.Y. Subducted Seamount Diverts Shallow Slow Slip to the Forearc of the Northern Hikurangi Subduction Zone, New Zealand. Geology 2019, 47, 415–418. [Google Scholar] [CrossRef]
- Nakajima, J.; Uchida, N. Repeated Drainage from Megathrusts during Episodic Slow Slip. Nat. Geosci. 2018, 11, 351–356. [Google Scholar] [CrossRef]
- Li, C.; Zhan, L.; Lu, H. Mechanisms for Overpressure Development in Marine Sediments. J. Mar. Sci. Eng. 2022, 10, 490. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, J.; Wan, Z.; Su, P.; Huang, W.; Wang, L.; Lin, L. Dynamic Accumulation of Gas Hydrates Associated with the Channel-Levee System in the Shenhu Area, Northern South China Sea. Mar. Pet. Geol. 2020, 117, 104354. [Google Scholar] [CrossRef]
- Musgrave, R.J.; Bangs, N.L.; Larrasoaña, J.C.; Gràcia, E.; Hollamby, J.A.; Vega, M.E. Rise of the Base of the Gas Hydrate Zone since the Last Glacial Recorded by Rock Magnetism. Geology 2006, 34, 117. [Google Scholar] [CrossRef]
Category | Key Features/Parameters | Description | Strengths | Limitations | Refs. |
---|---|---|---|---|---|
Conventional seismic-section analysis | Morphological Features | - Thermal conduction control: BSR is sub-parallel to the seafloor/isotherms. - Thermal convection control: BSR appears as an upward-convex structure and often develops in fluid migration zones. - Usually a cross-cutting, high-amplitude reflector (>30% of seafloor-reflection amplitude). | Visually straightforward; enables rapid delineation of hydrate-bearing provinces over large areas. | - Highly dependent on data quality; low signal-to-noise ratios or low dominant frequencies can render the BSR hard to recognize - In structurally complex settings the BSR may be masked or confused with other stratigraphic boundaries. - Where free gas is limited, the reflector weakens or disappears, leading to missed detections. | [25,51] |
Polarity Features | A hydrate-related BSR typically shows negative polarity (central negative lobe flanked by positive side lobes), distinguishing it from diagenetic BSRs with positive polarity. | Directly reflects the impedance reversal at the hydrate/gas interface; a useful auxiliary discriminator. | - May be confused with negative-polarity reflections generated solely by underlying high-saturation gas layers or overlaying carbonates. | ||
Associated reflection phenomena | Positive-polarity reflection below the BSR | Resulting from significant impedance contrasts between free gas zones and underlying sediments. | To enhance the reliability of hydrate-free gas system identification by incorporating multiple lines of evidence. | - Characterized by weak amplitudes and simple geometries, these features are observable only in high-resolution, low-noise profiles. - They can be easily mistaken for other bright spots or stratigraphic boundaries; therefore, meticulous validation is imperative during interpretation. | [33,34] |
Positive-polarity reflection at the hydrate top boundary | Associated with impedance contrasts between hydrate-bearing sediments and overlying normal sediments. | ||||
Acoustic blanking zone below the BSR | Attributed to seismic attenuation linked to high gas concentrations within gas chimneys or mud diapirs. | ||||
Acoustic blanking zone within the hydrate-bearing layer | Due to the homogeneous nature of hydrate-bearing sediments, leading to reduced seismic reflection amplitudes. | ||||
Seismic-attribute analysis | Instantaneous Amplitude | - Highlights prominent BSR reflections and amplitude anomalies within hydrate-bearing sediments. - Independent of seismic phase and thus polarity-insensitive. | To overcome the shortcomings of traditional methods and facilitate the detection of the weak or discontinuous BSR. | - High data quality requirements; noise or multiples can introduce artifacts. - Subjectivity in the selection of attribute parameters. - AVO analysis requires well-sampled multi-offset data and is unsuitable for datasets with limited offset coverage or conventional single-offset data. | [43] |
Instantaneous Phase | - Improves BSR visibility when cross-cutting strata. - Limited sensitivity to parallel bedding. | [44,45] | |||
Instantaneous Frequency | - Free gas absorption leads to low-frequency shadowing, aiding in free gas identification. | [36] | |||
AVO Attributes | - Intercept parameter facilitates BSR identification. - Fluid factor is highly sensitive to free gas detection. | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, S.; Zhan, L.; Cai, W.; Yang, R.; Lu, H. Bottom-Simulating Reflectors (BSRs) in Gas Hydrate Systems: A Comprehensive Review. J. Mar. Sci. Eng. 2025, 13, 1137. https://doi.org/10.3390/jmse13061137
Shi S, Zhan L, Cai W, Yang R, Lu H. Bottom-Simulating Reflectors (BSRs) in Gas Hydrate Systems: A Comprehensive Review. Journal of Marine Science and Engineering. 2025; 13(6):1137. https://doi.org/10.3390/jmse13061137
Chicago/Turabian StyleShi, Shiyuan, Linsen Zhan, Wenjiu Cai, Ran Yang, and Hailong Lu. 2025. "Bottom-Simulating Reflectors (BSRs) in Gas Hydrate Systems: A Comprehensive Review" Journal of Marine Science and Engineering 13, no. 6: 1137. https://doi.org/10.3390/jmse13061137
APA StyleShi, S., Zhan, L., Cai, W., Yang, R., & Lu, H. (2025). Bottom-Simulating Reflectors (BSRs) in Gas Hydrate Systems: A Comprehensive Review. Journal of Marine Science and Engineering, 13(6), 1137. https://doi.org/10.3390/jmse13061137