Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = free molecular flow theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 844 KiB  
Systematic Review
Unveiling Extramedullary Myeloma Immune Microenvironment: A Systematic Review
by Kassiani Boulogeorgou, Maria Papaioannou, Sofia Chatzileontiadou, Elisavet Georgiou, Amalia Fola, Sofia-Eleni Tzorakoleftheraki, Evdoxia Hatjiharissi and Triantafyllia Koletsa
Cancers 2025, 17(7), 1081; https://doi.org/10.3390/cancers17071081 - 24 Mar 2025
Cited by 1 | Viewed by 900
Abstract
Background/Objectives: In recent years, efforts by the scientific community to elucidate the underlying mechanisms of clonal expansion and selection within tumors have led to the theory of “tumor ecosystems”, implicating, among other factors, the role of the microenvironment in therapy resistance and tumor [...] Read more.
Background/Objectives: In recent years, efforts by the scientific community to elucidate the underlying mechanisms of clonal expansion and selection within tumors have led to the theory of “tumor ecosystems”, implicating, among other factors, the role of the microenvironment in therapy resistance and tumor progression. In this context, the contribution of the microenvironment in the development of multiple myeloma (MM) is being investigated, imparting great emphasis on continuous clonal evolution. This process gives rise to aggressive clones with the potential to spread to extramedullary sites, rendering any treatment strategy practically ineffective. This systematic review aimed to gather knowledge about the immune microenvironment (IME) of extramedullary plasma cell myeloma and the differences in immune synthesis between medullary and extramedullary disease (EMD). Methods: A search strategy according to PRISMA guidelines was conducted in seven databases, and six articles meeting the inclusion criteria were encompassed in the study. Results: Results obtained from molecular analysis as well as flow cytometry and immunofluorescence indicated profound genetic instability at EMD sites along with spatial and temporal heterogeneity of the IME, implying a possible correlation between them. Both genetic and microenvironment variability were notably greater in EMD compared to medullary disease. The establishment of an immunosuppressive microenvironment was the rule, with exhausted CD8+ and natural killer (NK) cells, M2 macrophages, and inactivated dendritic cells found co-localized with neoplastic plasma cells, whereas cytotoxic CD8+ cells, M1 macrophages, and active dendritic cells congregated in tumor-free areas. Post-therapy alterations in the immune milieu were also noted and were concerned mostly the percentages of Tregs and MDSCs. Conclusions: The recognition of the microenvironment-myeloma cell interplay is essential for designing specific therapeutic strategies and ameliorating disease prognosis. Full article
Show Figures

Figure 1

16 pages, 11276 KiB  
Article
A Multiscale Simulation on Aluminum Ion Implantation-Induced Defects in 4H-SiC MOSFETs
by Yawen Wang, Haipeng Lan, Qiwei Shangguan, Yawei Lv and Changzhong Jiang
Electronics 2024, 13(14), 2758; https://doi.org/10.3390/electronics13142758 - 13 Jul 2024
Viewed by 2045
Abstract
Aluminum (Al) ion implantation is one of the most important technologies in SiC device manufacturing processes due to its ability to produce the p-type doping effect, which is essential to building p–n junctions and blocking high voltages. However, besides the doping effect, defects [...] Read more.
Aluminum (Al) ion implantation is one of the most important technologies in SiC device manufacturing processes due to its ability to produce the p-type doping effect, which is essential to building p–n junctions and blocking high voltages. However, besides the doping effect, defects are also probably induced by the implantation. Here, the impacts of Al ion implantation-induced defects on 4H-SiC MOSFET channel transport behaviors are studied using a multiscale simulation flow, including the molecular dynamics (MD) simulation, density functional theory (DFT) calculation, and tight-binding (TB) model-based quantum transport simulation. The simulation results show that an Al ion can not only replace a Si lattice site to realize the p-doping effect, but it can also replace the C lattice site to induce mid-gap trap levels or become an interstitial to induce the n-doping effect. Moreover, the implantation tends to bring additional point defects to the 4H-SiC body region near the Al ions, which will lead to more complicated coupling effects between them, such as degrading the p-type doping effect by trapping free hole carriers and inducing new trap states at the 4H-SiC bandgap. The quantum transport simulations indicate that these coupling effects will impede local electron transports, compensating for the doping effect and increasing the leakage current of the 4H-SiC MOSFET. In this study, the complicated coupling effects between the implanted Al ions and the implantation-induced point defects are revealed, which provides new references for experiments to increase the accepter activation rate and restrain the defect effect in SiC devices. Full article
(This article belongs to the Special Issue Wide-Bandgap Device Application: Devices, Circuits, and Drivers)
Show Figures

Figure 1

14 pages, 7738 KiB  
Article
Aerodynamic Analysis of Deorbit Drag Sail for CubeSat Using DSMC Method
by Jiaheng Chen, Song Chen, Yuhang Qin, Zeyu Zhu and Jun Zhang
Aerospace 2024, 11(4), 315; https://doi.org/10.3390/aerospace11040315 - 18 Apr 2024
Cited by 6 | Viewed by 3051
Abstract
Reducing space debris is a critical challenge in current space exploration. This study focuses on designing a drag sail for CubeSat models and examining their aerodynamic properties using the direct simulation Monte Carlo (DSMC) method. The analysis encompasses the aerodynamic performance of intricate [...] Read more.
Reducing space debris is a critical challenge in current space exploration. This study focuses on designing a drag sail for CubeSat models and examining their aerodynamic properties using the direct simulation Monte Carlo (DSMC) method. The analysis encompasses the aerodynamic performance of intricate three-dimensional shapes with varying sail dimensions at orbital altitudes of 125 km, 185 km, 300 km, and 450 km. Additionally, free molecular flow (FMF) theory is applied and compared with the DSMC findings for both a flat-plate model and the CubeSat. The results reveal that FMF accurately predicts the drag coefficient at altitudes of 185 km and above, while significant discrepancies occur at lower altitudes due to increased inter-molecular collisions. This study also suggests that the drag sail substantially enhances the CubeSat’s drag force, which effectively reduces its deorbiting time. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

41 pages, 32720 KiB  
Review
Mesoscopic Kinetic Approach of Nonequilibrium Effects for Shock Waves
by Ruofan Qiu, Xinyuan Yang, Yue Bao, Yancheng You and Hua Jin
Entropy 2024, 26(3), 200; https://doi.org/10.3390/e26030200 - 26 Feb 2024
Cited by 1 | Viewed by 1703
Abstract
A shock wave is a flow phenomenon that needs to be considered in the development of high-speed aircraft and engines. The traditional computational fluid dynamics (CFD) method describes it from the perspective of macroscopic variables, such as the Mach number, pressure, density, and [...] Read more.
A shock wave is a flow phenomenon that needs to be considered in the development of high-speed aircraft and engines. The traditional computational fluid dynamics (CFD) method describes it from the perspective of macroscopic variables, such as the Mach number, pressure, density, and temperature. The thickness of the shock wave is close to the level of the molecular free path, and molecular motion has a strong influence on the shock wave. According to the analysis of the Chapman-Enskog approach, the nonequilibrium effect is the source term that causes the fluid system to deviate from the equilibrium state. The nonequilibrium effect can be used to obtain a description of the physical characteristics of shock waves that are different from the macroscopic variables. The basic idea of the nonequilibrium effect approach is to obtain the nonequilibrium moment of the molecular velocity distribution function by solving the Boltzmann–Bhatnagar–Gross–Krook (Boltzmann BGK) equations or multiple relaxation times Boltzmann (MRT-Boltzmann) equations and to explore the nonequilibrium effect near the shock wave from the molecular motion level. This article introduces the theory and understanding of the nonequilibrium effect approach and reviews the research progress of nonequilibrium behavior in shock-related flow phenomena. The role of nonequilibrium moments played on the macroscopic governing equations of fluids is discussed, the physical meaning of nonequilibrium moments is given from the perspective of molecular motion, and the relationship between nonequilibrium moments and equilibrium moments is analyzed. Studies on the nonequilibrium effects of shock problems, such as the Riemann problem, shock reflection, shock wave/boundary layer interaction, and detonation wave, are introduced. It reveals the nonequilibrium behavior of the shock wave from the mesoscopic level, which is different from the traditional macro perspective and shows the application potential of the mesoscopic kinetic approach of the nonequilibrium effect in the shock problem. Full article
(This article belongs to the Special Issue Mesoscopic Fluid Mechanics)
Show Figures

Figure 1

12 pages, 282 KiB  
Article
Average Turbulence Dynamics from a One-Parameter Kinetic Theory
by Hudong Chen, Ilya Staroselsky, Katepalli R. Sreenivasan and Victor Yakhot
Atmosphere 2023, 14(7), 1109; https://doi.org/10.3390/atmos14071109 - 4 Jul 2023
Cited by 4 | Viewed by 1732
Abstract
We show theoretically that the mean turbulent dynamics can be described by a kinetic theory representation with a single free relaxation time that depends on space and time. A proper kinetic equation is constructed from the Klimontovich-type kinetic equation for fluid elements, which [...] Read more.
We show theoretically that the mean turbulent dynamics can be described by a kinetic theory representation with a single free relaxation time that depends on space and time. A proper kinetic equation is constructed from the Klimontovich-type kinetic equation for fluid elements, which satisfies the Navier–Stokes hydrodynamics exactly. In a suitably averaged form, the turbulent kinetic energy plays the role of temperature in standard molecular thermodynamics. We show that the dynamics of turbulent fluctuations resembles a collision process that asymptotically drives the mean distribution towards a Gaussian (Maxwell–Boltzmann) equilibrium form. Non-Gaussianity arises directly from non-equilibrium shear effects. The present framework overcomes the bane of most conventional turbulence models and theoretical frameworks arising from the lack of scale separation between the mean and fluctuating scales of the Navier-Stokes equation with an eddy viscous term. An averaged turbulent flow in the present framework behaves more like a flow of finite Knudsen number with finite relaxation time, and is thus more suitably described in a kinetic theory representation. Full article
19 pages, 6490 KiB  
Article
Gas Diffusion and Flow in Shale Nanopores with Bound Water Films
by Tianyi Zhao and Yuan Ji
Atmosphere 2022, 13(6), 940; https://doi.org/10.3390/atmos13060940 - 9 Jun 2022
Cited by 3 | Viewed by 2403
Abstract
Shale reservoirs are rich in nanoscale pore-microfractures, and generally contain water (especially inorganic pores) under reservoir conditions. Therefore, evaluating gas flow capacity under water-bearing conditions is of great significance for analyzing reservoir capacity and forecasting production. Based on the single-phase gas transfer theory [...] Read more.
Shale reservoirs are rich in nanoscale pore-microfractures, and generally contain water (especially inorganic pores) under reservoir conditions. Therefore, evaluating gas flow capacity under water-bearing conditions is of great significance for analyzing reservoir capacity and forecasting production. Based on the single-phase gas transfer theory in nanopores, we established a gas transport model in both circular pores and slit pores by considering pore-fracture patterns of actual samples. As will be shown, inorganic pore fractures are mostly slit-type, while organic pores are mostly circular. This gas transport model also uses weighting coefficients superimposed on slip flow and molecular free flow. Further, the effect of water saturation on gas flow is quantified by considering the distribution characteristics of inorganic and organic pores in shale and also by combining the pore distribution characteristics of actual samples. The flow characteristics of gas in organic and inorganic pores under water-bearing conditions in the reservoir are further compared. The study lays a theoretical foundation for the reasonable evaluation and prediction of shale gas well capacity under reservoir water conditions. Full article
(This article belongs to the Special Issue Recent Advances in Adsorption and Diffusion of Shale Gases)
Show Figures

Figure 1

18 pages, 7467 KiB  
Article
Allosteric Binding of MDMA to the Human Serotonin Transporter (hSERT) via Ensemble Binding Space Analysis with ΔG Calculations, Induced Fit Docking and Monte Carlo Simulations
by Ángel A. Islas and Thomas Scior
Molecules 2022, 27(9), 2977; https://doi.org/10.3390/molecules27092977 - 6 May 2022
Cited by 2 | Viewed by 5275
Abstract
Despite the recent promising results of MDMA (3,4-methylenedioxy-methamphetamine) as a psychotherapeutic agent and its history of misuse, little is known about its molecular mode of action. MDMA enhances monoaminergic neurotransmission in the brain and its valuable psychoactive effects are associated to a dual [...] Read more.
Despite the recent promising results of MDMA (3,4-methylenedioxy-methamphetamine) as a psychotherapeutic agent and its history of misuse, little is known about its molecular mode of action. MDMA enhances monoaminergic neurotransmission in the brain and its valuable psychoactive effects are associated to a dual action on the 5-HT transporter (SERT). This drug inhibits the reuptake of 5-HT (serotonin) and reverses its flow, acting as a substrate for the SERT, which possesses a central binding site (S1) for antidepressants as well as an allosteric (S2) one. Previously, we characterized the spatial binding requirements for MDMA at S1. Here, we propose a structure-based mechanistic model of MDMA occupation and translocation across both binding sites, applying ensemble binding space analyses, electrostatic complementarity, and Monte Carlo energy perturbation theory. Computed results were correlated with experimental data (r = 0.93 and 0.86 for S1 and S2, respectively). Simulations on all hSERT available structures with Gibbs free energy estimations (ΔG) revealed a favourable and pervasive dual binding mode for MDMA at S2, i.e., adopting either a 5-HT or an escitalopram-like orientation. Intermediate ligand conformations were identified within the allosteric site and between the two sites, outlining an internalization pathway for MDMA. Among the strongest and more frequent interactions were salt bridges with Glu494 and Asp328, a H-bond with Thr497, a π-π with Phe556, and a cation-π with Arg104. Similitudes and differences with the allosteric binding of 5-HT and antidepressants suggest that MDMA may have a distinctive chemotype. Thus, our models may provide a framework for future virtual screening studies and pharmaceutical design and to develop hSERT allosteric compounds with a unique psychoactive MDMA-like profile. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

32 pages, 1214 KiB  
Article
Nonequilibrium Thermodynamics of Polymeric Liquids via Atomistic Simulation
by Brian Joseph Edwards, Mohammad Hadi Nafar Sefiddashti and Bamin Khomami
Entropy 2022, 24(2), 175; https://doi.org/10.3390/e24020175 - 25 Jan 2022
Cited by 3 | Viewed by 3583
Abstract
The challenge of calculating nonequilibrium entropy in polymeric liquids undergoing flow was addressed from the perspective of extending equilibrium thermodynamics to include internal variables that quantify the internal microstructure of chain-like macromolecules and then applying these principles to nonequilibrium conditions under the presumption [...] Read more.
The challenge of calculating nonequilibrium entropy in polymeric liquids undergoing flow was addressed from the perspective of extending equilibrium thermodynamics to include internal variables that quantify the internal microstructure of chain-like macromolecules and then applying these principles to nonequilibrium conditions under the presumption of an evolution of quasie equilibrium states in which the requisite internal variables relax on different time scales. The nonequilibrium entropy can be determined at various levels of coarse-graining of the polymer chains by statistical expressions involving nonequilibrium distribution functions that depend on the type of flow and the flow strength. Using nonequilibrium molecular dynamics simulations of a linear, monodisperse, entangled C1000H2002 polyethylene melt, nonequilibrium entropy was calculated directly from the nonequilibrium distribution functions, as well as from their second moments, and also using the radial distribution function at various levels of coarse-graining of the constituent macromolecular chains. Surprisingly, all these different methods of calculating the nonequilibrium entropy provide consistent values under both planar Couette and planar elongational flows. Combining the nonequilibrium entropy with the internal energy allows determination of the Helmholtz free energy, which is used as a generating function of flow dynamics in nonequilibrium thermodynamic theory. Full article
(This article belongs to the Special Issue Modeling and Simulation of Complex Fluid Flows)
Show Figures

Figure 1

9 pages, 430 KiB  
Article
A Simple Gas-Kinetic Model for Dilute and Weakly Charged Plasma Micro-Jet Flows
by Shiying Cai and Chunpei Cai
Fluids 2021, 6(7), 250; https://doi.org/10.3390/fluids6070250 - 7 Jul 2021
Viewed by 2484
Abstract
This paper presents a simple model for slightly charged gas expanding into a vacuum from a planar exit. The number density, bulk velocity, temperature, and potential at the exit are given. The electric field force is assumed weaker than the convection term and [...] Read more.
This paper presents a simple model for slightly charged gas expanding into a vacuum from a planar exit. The number density, bulk velocity, temperature, and potential at the exit are given. The electric field force is assumed weaker than the convection term and is neglected in the analysis. As such, the quasi-neutral condition is naturally adopted and the potential field is computed with the Boltzmann relation. At far field, the exit degenerates as a point source, and simplified analytical formulas for flow and electric fields are obtained. The results are generic and offer insights on many existing models in the literature. They can be used to quickly approximate the flowfield and potential distributions without numerical simulations. They can also be used to initialize a simulation. Based on these results, more advanced models may be further developed. Full article
(This article belongs to the Special Issue Recent Advances in Impinging Jets)
Show Figures

Figure 1

24 pages, 3246 KiB  
Review
Some Examples of the Use of Molecular Markers for Needs of Basic Biology and Modern Society
by Yuri Phedorovich Kartavtsev
Animals 2021, 11(5), 1473; https://doi.org/10.3390/ani11051473 - 20 May 2021
Cited by 7 | Viewed by 4406
Abstract
Application of molecular genetic markers appeared to be very fruitful in achieving many goals, including (i) proving the theoretic basements of general biology and (ii) assessment of worldwide biodiversity. Both are provided in the present meta-analysis and a review as the main signal. [...] Read more.
Application of molecular genetic markers appeared to be very fruitful in achieving many goals, including (i) proving the theoretic basements of general biology and (ii) assessment of worldwide biodiversity. Both are provided in the present meta-analysis and a review as the main signal. One of the basic current challenges in modern biology in the face of new demands in the 21st century is the validation of its paradigms such as the synthetic theory of evolution (STE) and biological species concept (BSC). Another of most valuable goals is the biodiversity assessment for a variety of social needs including free web-based information resources about any living being, renovation of museum collections, nature conservation that recognized as a global project, iBOL, as well as resolving global trading problems such as false labeling of species specimens used as food, drug components, entertainment, etc. The main issues of the review are focused on animals and combine four items. (1) A combination of nDNA and mtDNA markers best suits the identification of hybrids and estimation of genetic introgression. (2) The available facts on nDNA and mtDNA diversity seemingly make introgression among many taxa obvious, although it is evident, that introgression may be quite restricted or asymmetric, thus, leaving at least the “source” taxon (taxa) intact. (3) If we consider sexually reproducing species in marine and terrestrial realms introgressed, as it is still evident in many cases, then we should recognize that the BSC, in view of the complete lack of gene flow among species, is inadequate because many zoological species are not biological ones yet. However, vast modern molecular data have proven that sooner or later they definitely become biological species. (4) An investigation into the fish taxa divergence using the BOLD database shows that most gene trees are basically monophyletic and interspecies reticulations are quite rare. Full article
(This article belongs to the Special Issue Marine Animal Population Genetics and Conservation)
Show Figures

Figure 1

26 pages, 355 KiB  
Review
GKS and UGKS for High-Speed Flows
by Yajun Zhu, Chengwen Zhong and Kun Xu
Aerospace 2021, 8(5), 141; https://doi.org/10.3390/aerospace8050141 - 19 May 2021
Cited by 10 | Viewed by 4550
Abstract
The gas-kinetic scheme (GKS) and the unified gas-kinetic scheme (UGKS) are numerical methods based on the gas-kinetic theory, which have been widely used in the numerical simulations of high-speed and non-equilibrium flows. Both methods employ a multiscale flux function constructed from the integral [...] Read more.
The gas-kinetic scheme (GKS) and the unified gas-kinetic scheme (UGKS) are numerical methods based on the gas-kinetic theory, which have been widely used in the numerical simulations of high-speed and non-equilibrium flows. Both methods employ a multiscale flux function constructed from the integral solutions of kinetic equations to describe the local evolution process of particles’ free transport and collision. The accumulating effect of particles’ collision during transport process within a time step is used in the construction of the schemes, and the intrinsic simulating flow physics in the schemes depends on the ratio of the particle collision time and the time step, i.e., the so-called cell’s Knudsen number. With the initial distribution function reconstructed from the Chapman–Enskog expansion, the GKS can recover the Navier–Stokes solutions in the continuum regime at a small Knudsen number, and gain multi-dimensional properties by taking into account both normal and tangential flow variations in the flux function. By employing a discrete velocity distribution function, the UGKS can capture highly non-equilibrium physics, and is capable of simulating continuum and rarefied flow in all Knudsen number regimes. For high-speed non-equilibrium flow simulation, the real gas effects should be considered, and the computational efficiency and robustness of the schemes are the great challenges. Therefore, many efforts have been made to improve the validity and reliability of the GKS and UGKS in both the physical modeling and numerical techniques. In this paper, we give a review of the development of the GKS and UGKS in the past decades, such as physical modeling of a diatomic gas with molecular rotation and vibration at high temperature, plasma physics, computational techniques including implicit and multigrid acceleration, memory reduction methods, and wave–particle adaptation. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics on High-Speed and Non-Equilibrium Flows)
12 pages, 1920 KiB  
Article
Understanding the Detection Mechanisms and Ability of Molecular Hydrogen on Three-Dimensional Bicontinuous Nanoporous Reduced Graphene Oxide
by Yoshikazu Ito, Megumi Kayanuma, Yasuteru Shigeta, Jun-ichi Fujita and Yoichi Tanabe
Materials 2020, 13(10), 2259; https://doi.org/10.3390/ma13102259 - 14 May 2020
Viewed by 2868
Abstract
Environmental safety has become increasingly important with respect to hydrogen use in society. Monitoring techniques for explosive gaseous hydrogen are essential to ensure safety in sustainable hydrogen utilization. Here, we reveal molecular hydrogen detection mechanisms with monolithic three-dimensional nanoporous reduced graphene oxide under [...] Read more.
Environmental safety has become increasingly important with respect to hydrogen use in society. Monitoring techniques for explosive gaseous hydrogen are essential to ensure safety in sustainable hydrogen utilization. Here, we reveal molecular hydrogen detection mechanisms with monolithic three-dimensional nanoporous reduced graphene oxide under gaseous hydrogen flow and at room temperature. Nanoporous reduced graphene oxide significantly increased molecular hydrogen physisorption without the need to employ catalytic metals or heating. This can be explained by the significantly increased surface area in comparison to two-dimensional graphene sheets and conventional reduced graphene oxide flakes. Using this large surface area, molecular hydrogen adsorption behaviors were accurately observed. In particular, we found that the electrical resistance firstly decreased and then gradually increased with higher gaseous hydrogen concentrations. The resistance decrease was due to charge transfer from the molecular hydrogen to the reduced graphene oxide at adsorbed molecular hydrogen concentrations lower than 2.8 ppm; conversely, the resistance increase was a result of Coulomb scattering effects at adsorbed molecular hydrogen concentrations exceeding 5.0 ppm, as supported by density functional theory. These findings not only provide the detailed adsorption mechanisms of molecular hydrogen, but also advance the development of catalyst-free non-heated physisorption-type molecular detection devices. Full article
(This article belongs to the Special Issue Design and Applications of Nanoporous Materials)
Show Figures

Figure 1

20 pages, 1050 KiB  
Article
Density, Viscosity, and Excess Properties of Ternary Aqueous Mixtures of MDEA + MEA, DMEA + MEA, and DEEA + MEA
by Sumudu S. Karunarathne, Dag A. Eimer, Klaus J. Jens and Lars E. Øi
Fluids 2020, 5(1), 27; https://doi.org/10.3390/fluids5010027 - 19 Feb 2020
Cited by 18 | Viewed by 3792
Abstract
This study presents the measured densities and viscosities of three ternary aqueous mixtures of tertiary and primary amines. The tertiary amines of n-methyldiethanolamine (MDEA), dimethylethanolamine (DMEA), diethylethanolamine (DEEA), and the primary amine monoethanolamine (MEA) at different concentrations (mass%) were mixed to prepare the [...] Read more.
This study presents the measured densities and viscosities of three ternary aqueous mixtures of tertiary and primary amines. The tertiary amines of n-methyldiethanolamine (MDEA), dimethylethanolamine (DMEA), diethylethanolamine (DEEA), and the primary amine monoethanolamine (MEA) at different concentrations (mass%) were mixed to prepare the liquid mixtures. The excess molar volume VE of the mixtures was analyzed using measured densities to acquire a better understanding of the molecular packing and intermolecular interactions in the mixtures. The excess free energy of activation ∆GE* and excess entropy of activation ∆SE* for viscous flow were determined from the measured viscosities by implementing the theory of rate processes of Eyring. Correlations based on the Redlich–Kister type polynomial were adopted to correlate the excess properties VE and ∆GE* as a function of the amine mole fraction and temperature. The results showed that the correlations were able to represent the measured data with satisfactory accuracies for engineering calculations. Full article
Show Figures

Figure 1

12 pages, 3383 KiB  
Article
Coupled Model of Heat and Mass Balance for Droplet Growth in Wet Steam Non-Equilibrium Homogeneous Condensation Flow
by Xu Han, Zhonghe Han, Wei Zeng, Jiangbo Qian and Zhi Wang
Energies 2017, 10(12), 2033; https://doi.org/10.3390/en10122033 - 2 Dec 2017
Cited by 17 | Viewed by 5040
Abstract
Because of the complexity of wet steam two-phase condensation flow, many problems remain to be solved. The important part of condensation theory—the calculation of the water droplet growth model in the transition zone—is not ideal; thus, it is necessary to develop a water [...] Read more.
Because of the complexity of wet steam two-phase condensation flow, many problems remain to be solved. The important part of condensation theory—the calculation of the water droplet growth model in the transition zone—is not ideal; thus, it is necessary to develop a water droplet growth model with full-scale range. On the basis of the heat and mass transfer equilibrium in droplet growth, a coupled model of heat and mass balance for droplet growth is proposed. To verify the accuracy of this model, the differences and applicable ranges of various models were analysed using the experimental data of Peters and Meyer and two widely used models. In the free molecular flow region, the heat and mass balance model coincides with the Young low-pressure correction model. In the transition region, the heat and mass balance model agrees well with the experimental values of Peters and Meyer. In the continuous flow region, the heat and mass balance model coincides with the Gyarmathy model. Therefore, the heat and mass balance model can be used to accurately describe the growth process of water droplets in the arbitrary range of Knudsen numbers. Full article
Show Figures

Figure 1

22 pages, 1004 KiB  
Article
A New Gaskinetic Model to Analyze Background Flow Effects on Weak Gaseous Jet Flows from Electric Propulsion Devices
by Chunpei Cai
Aerospace 2017, 4(1), 5; https://doi.org/10.3390/aerospace4010005 - 27 Jan 2017
Cited by 1 | Viewed by 7127
Abstract
Recent work on studying rarefied background and jet flow interactions is reported. A new gaskinetic method is developed to investigate two closely related problems. The first problem is how a collisionless background flow can affect a highly rarefied jet flow. The rarefied jet [...] Read more.
Recent work on studying rarefied background and jet flow interactions is reported. A new gaskinetic method is developed to investigate two closely related problems. The first problem is how a collisionless background flow can affect a highly rarefied jet flow. The rarefied jet and background flow conditions are assumed available and described with seven parameters. Gaskinetic theories are applied and formulas are obtained for the mixture properties. Simulations are performed to validate these expressions, and excellent agreement is obtained. The second problem is to recover the collisionless background and jet flow parameters with limited measurements. A group of linearized equations are derived for the flowfield properties. The solving process includes initial estimations on the seven parameters, followed with iterations. Numerical tests are performed and the results indicate the procedure is accurate and efficient. The new method and expressions can reduce the amount of experimental work and numerical simulations to analyze facility effects. Parameter studies with particle simulations may require several months; however, the new methods may require minutes. These methods can be used to quantify and predict jet performance, vacuum chamber designs and optimization. Applications may be for many societies using vacuum conditions. Full article
(This article belongs to the Special Issue Fluid-Structure Interactions)
Show Figures

Figure 1

Back to TopTop