Aerodynamic Analysis of Deorbit Drag Sail for CubeSat Using DSMC Method
Abstract
:1. Introduction
2. The Design of the Drag Sail
3. Methodology and Code Validation
4. Aerodynamic Analysis of MOVE-III
4.1. Numerical Setup
4.2. Simulation Results and Aerodynamic Coefficients
4.3. Comparison to FMF Theory
5. Deorbiting Time Forecast
5.1. Atmospheric Model
5.2. Orbital Decay Model
5.3. The Assessment of the Drag Sail
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poghosyan, A.; Golkar, A. CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions. Prog. Aerosp. Sci. 2017, 88, 59–83. [Google Scholar] [CrossRef]
- Woellert, K.; Ehrenfreund, P.; Ricco, A.J.; Hertzfeld, H. Cubesats: Cost-effective science and technology platforms for emerging and developing nations. Adv. Space Res. 2011, 47, 663–684. [Google Scholar] [CrossRef]
- McCreary, L. A satellite mission concept for high drag environments. Aerosp. Sci. Technol. 2019, 92, 972–989. [Google Scholar] [CrossRef]
- Liou, J.C.; Johnson, N. Risks in space from orbiting debris. Science 2006, 311, 340–341. [Google Scholar] [CrossRef]
- Vallado, D.A.; Finkleman, D. A critical assessment of satellite drag and atmospheric density modeling. Acta Astronaut. 2014, 95, 141–165. [Google Scholar] [CrossRef]
- Serfontein, Z.; Kingston, J.; Hobbs, S.; Holbrough, I.E.; Beck, J.C. Drag augmentation systems for space debris mitigation. Acta Astronaut. 2021, 188, 278–288. [Google Scholar] [CrossRef]
- Gaglio, E.; Bevilacqua, R. Time Optimal Drag-Based Targeted De-Orbiting for Low Earth Orbit. Acta Astronaut. 2023, 207, 316–330. [Google Scholar] [CrossRef]
- Stohlman, O.R.; Lappas, V. Deorbitsail: A deployable sail for de-orbiting. In Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, MA, USA, 8–11 April 2013. [Google Scholar] [CrossRef]
- Visagie, L.; Lappas, V.; Erb, S. Drag sails for space debris mitigation. Acta Astronaut. 2015, 109, 65–75. [Google Scholar] [CrossRef]
- Netzer, E.; Kane, T.R. Electrodynamic forces in tethered satellite systems part I: System control. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 1031–1038. [Google Scholar] [CrossRef]
- Holste, K.; Dietz, P.; Scharmann, S.; Keil, K.; Henning, T.; Zschätzsch, D.; Reitemeyer, M.; Nauschütt, B.; Kiefer, F.; Kunze, F.; et al. Ion thrusters for electric propulsion: Scientific issues developing a niche technology into a game changer. Rev. Sci. Instrum. 2020, 91, 061101. [Google Scholar] [CrossRef]
- Lappas, V.; Adeli, N.; Visagie, L.; Fernandez, J.; Theodorou, T.; Steyn, W.; Perren, M. CubeSail: A low cost CubeSat based solar sail demonstration mission. Adv. Space Res. 2011, 48, 1890–1901. [Google Scholar] [CrossRef]
- Long, A.C.; Spencer, D.A. Stability of a deployable drag device for small satellite deorbit. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Long Beach, CA, USA, 13–16 September 2016. [Google Scholar]
- Fernandez, J.M.; Visagie, L.; Schenk, M.; Stohlman, O.R.; Aglietti, G.S.; Lappas, V.J.; Erb, S. Design and development of a gossamer sail system for deorbiting in low earth orbit. Acta Astronaut. 2014, 103, 204–225. [Google Scholar] [CrossRef]
- Serfontein, Z.; Kingston, J.; Hobbs, S.; Impey, S.A.; Aria, A.I.; Holbrough, I.E.; Beck, J.C. Effects of long-term exposure to the low-earth orbit environment on drag augmentation systems. Acta Astronaut. 2022, 195, 540–546. [Google Scholar] [CrossRef]
- Qu, Q.; Xu, M.; Luo, T. Design concept for In-Drag Sail with individually controllable elements. Aerosp. Sci. Technol. 2019, 89, 382–391. [Google Scholar] [CrossRef]
- Li, Y.; Fan, X. Development of PW-Sat2 CubeSat’s deorbiting sail and the on-orbit verification. Spacecr. Environ. Eng. 2020, 37, 414–420. [Google Scholar] [CrossRef]
- Harkness, P.; McRobb, M.; Lützkendorf, P.; Milligan, R.; Feeney, A.; Clark, C. Development status of AEOLDOS-A deorbit module for small satellites. Adv. Space Res. 2014, 54, 82–91. [Google Scholar] [CrossRef]
- Shmuel, B.; Hiemstra, J.; Tarantini, V.; Singarayar, F.; Bonin, G.; Zee, R. The Canadian Advanced Nanospace eXperiment 7 (CanX-7) Demonstration Mission: De-Orbiting Nano- and Microspacecraft. In Proceedings of the 26th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 13–16 August 2012. [Google Scholar]
- Nikolajsen, J.A.; Kristensen, A.S. Self-deployable drag sail folded nine times. Adv. Space Res. 2021, 68, 4242–4251. [Google Scholar] [CrossRef]
- Mostaza Prieto, D.; Graziano, B.P.; Roberts, P.C. Spacecraft drag modelling. Prog. Aerosp. Sci. 2014, 64, 56–65. [Google Scholar] [CrossRef]
- Moe, K.; Moe, M.M. Gas-surface interactions and satellite drag coefficients. Planet. Space Sci. 2005, 53, 793–801. [Google Scholar] [CrossRef]
- Bird, G. Molecular Gas Dynamics and the Direct Simulation of Gas Flows, 2nd ed.; Oxford Science Publications: Oxford, UK, 1994. [Google Scholar]
- Oikonomidou, X.; Karagiannis, E.; Still, D.; Strasser, F.; Firmbach, F.S.; Hettwer, J.; Schweinfurth, A.G.; Pucknus, P.; Menekay, D.; You, T.; et al. MOVE-III: A CubeSat for the detection of sub-millimetre space debris and meteoroids in Low Earth Orbit. Front. Space Technol. 2022, 3, 933988. [Google Scholar] [CrossRef]
- Horstmann, A.; Wiedemann, C.; Braun, V.; Matney, M.; Vavrin, A.; Gates, D.; Seago, J.; Anz-Meador, P.; Wiedemann, C.; Lemmens, S. Flux comparison of MASTER-8 and ORDEM 3.1 modelled space debris population. In Proceedings of the 8th European Conference on Space Debris, Virtual, 20–23 April 2021. [Google Scholar]
- Igenbergs, E.; Hüdepohl, A.; Uesugi, K.; Hayashi, T.; Svedhem, H.; Iglseder, H.; Koller, G.; Glasmachers, A.; Grün, E.; Schwehm, G.; et al. The Munich dust counter—A cosmic dust experiment on board of the Muses-A mission of Japan. In Origin and Evolution of Interplanetary Dust: Proceedings of the 126th Colloquium of the International Astronomical Union, Held in Kyoto, Japan, 27–30 August 1990; Springer: Dordrecht, The Netherlands, 1991; pp. 45–48. [Google Scholar]
- Marín, A.; Sebastiaõ, I.B.; Tamrazian, S.; Spencer, D.; Alexeenko, A. DSMC-SPARTA aerodynamic characterization of a deorbiting CubeSat. In Proceedings of the 31ST International Symposium on Rarefied Gas Dynamics: Rgd31, Glasgow, UK, 23–27 July 2018; AIP Publishing: Melville, NY, USA, 2019; Volume 2132. [Google Scholar] [CrossRef]
- Sentman, L.H. Free Molecule Flow Theory and Its Application to the Determination of Aerodynamic Forces; Technical Report AD0265409; Lockheed Missiles and Space Co., Inc.: Sunnyvale, CA, USA, 1961. [Google Scholar]
- Mungiguerra, S.; Zuppardi, G.; Savino, R. Rarefied aerodynamics of a deployable re-entry capsule. Aerosp. Sci. Technol. 2017, 69, 395–403. [Google Scholar] [CrossRef]
- Liang, J.; Li, Z.; Li, X.; Shi, W. Monte carlo simulation of spacecraft reentry aerothermodynamics and analysis for ablating disintegration. Commun. Comput. Phys. 2018, 23, 1037–1051. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, J.; Tian, P.; Liang, T.; Li, Z.; Wen, D. Aerodynamic drag analysis and reduction strategy for satellites in Very Low Earth Orbit. Aerosp. Sci. Technol. 2023, 132, 108077. [Google Scholar] [CrossRef]
- Chen, S.; Stemmer, C. Modeling of Thermochemical Nonequilibrium Flows Using Open-Source Direct Simulation Monte Carlo Kernel SPARTA. J. Spacecr. Rocket. 2022, 59, 1634–1646. [Google Scholar] [CrossRef]
- Mehta, P.M.; Paul, S.N.; Crisp, N.H.; Sheridan, P.L.; Siemes, C.; March, G.; Bruinsma, S. Satellite drag coefficient modeling for thermosphere science and mission operations. Adv. Space Res. 2023, 72, 5443–5459. [Google Scholar] [CrossRef]
- NOAA. U.S. Standard Atmosphere 1976; National Oceanic and Atmospheric Administration: Washington DC, USA, 1976. [Google Scholar]
- Markelov, G.; Kashkovsky, A.; Ivanov, M. Space station Mir aerodynamics along the descent trajectory. J. Spacecr. Rocket. 2001, 38, 43–50. [Google Scholar] [CrossRef]
- Tian, L.; Wang, S.; Gao, J.; Meng, W.; Tian, K.; Wu, C. Development and Application of Micro-electric Propulsion System. Vacuum 2021, 58, 66–75. [Google Scholar] [CrossRef]
- Falchi, A.; Minisci, E.; Vasile, M.; Rastelli, D.; Bellini, N. DSMC-based Correction Factor for Low-fidelity Hypersonic Aerodynamics of Re-entering Objects and Space Debris. In Proceedings of the 7th European Conference for Aeronautics and Space Sciences, Milan, Italy, 3–6 July 2017. [Google Scholar]
- Guo, J.; Gu, S.; Chen, D. Analysis of the Effect of Space Environment on Shenzhou Spaceship Orbit Attenuation. Spacecr. Eng. 2008, 17, 59–63. [Google Scholar]
- Jursa, A.S. Handbook of Geophysics and Space Environment; Hanscom Air Force Base: Hanscom AFB, MA, USA, 1985. [Google Scholar]
- Kumar, M.; Tewari, A. Trajectory and attitude simulation for aerocapture and aerobraking. J. Spacecr. Rocket. 2005, 42, 684–693. [Google Scholar] [CrossRef]
- Black, A.; Spencer, D.A. DragSail systems for satellite deorbit and targeted reentry. J. Space Saf. Eng. 2020, 7, 397–403. [Google Scholar] [CrossRef]
- Tan, B.; Yuan, Y.; Zhang, B.; Hsu, H.Z.; Ou, J. A new analytical solar radiation pressure model for current BeiDou satellites: IGGBSPM. Sci. Rep. 2016, 6, 32967. [Google Scholar] [CrossRef]
- Johnson, L.; Alhorn, D.; Boudreaux, M.; Casas, J.; Stetson, D.; Young, R. Solar and Drag Sail Propulsion: From Theory to Mission Implementation; Technical Report; National Aeronautics and Space Administration: Washington DC, USA, 2014. [Google Scholar]
Parameter | Without Drag Sail | With Deployed Sail | ||
---|---|---|---|---|
Launch | Orbit | 4 m2 Case | 6.25 m2 Case | |
[mm] | 227 | 426.65 | 463.52 | 463.52 |
[mm] | 109 | 520.74 | 2863.39 | 3570.50 |
[mm] | 366 | 366 | 2863.39 | 3570.50 |
- | 1052 | 1148 | 1556 | |
- | 2112 | 2324 | 3140 |
Parameter | Value | |||
---|---|---|---|---|
Altitude [km] | 125 | 185 | 300 | 450 |
Mean free path [m] | 5.35 | 173 | 2595 | 3.46 × 104 |
Free-stream velocity [m/s] | 7833 | 7797 | 7730 | 7644 |
Static temperature [K] | 413 | 680 | 976 | 996 |
Density [kg/m3] | 1.23 × 10−8 | 3.86 × 10−10 | 1.92 × 10−11 | 1.59 × 10−12 |
Number density [m−3] | 2.86 × 1017 | 1.06 × 1016 | 6.51 × 1014 | 6.14 × 1013 |
Molar fraction of | 0.712 | 0.464 | 0.149 | 0.017 |
Molar fraction of | 0.085 | 0.031 | 0.006 | 0 |
Molar fraction of O | 0.203 | 0.505 | 0.845 | 0.983 |
Angle [deg] | |||
---|---|---|---|
Case 00 | Case 03 | Case 06 | |
Case 30 | Case 33 | Case 36 | |
Case 60 | Case 63 | Case 66 |
Altitude [km] | No Sail | 4 m2 Sail | 6.25 m2 Sail |
---|---|---|---|
125 | 26.75 | 2.563 | - |
185 | 865 | 82.89 | 66.31 |
300 | 1.30 × 104 | 1243 | 994.6 |
450 | 1.73 × 105 | 1.66 × 104 | - |
Parameter | Value | |||
---|---|---|---|---|
Sail size [m2] | 0 (No sail) | 4 | 6.25 | |
Characteristic length [m] | 0.2 | 2.087 | 2.609 | |
Drag force [mN] | 185 km | 1.8 | 102.5 | 159.2 |
300 km | 0.06 | 5.1 | 7.9 | |
Drag coefficient | 185 km | 2.372 | 2.006 | 1.993 |
300 km | 2.603 | 2.031 | 2.020 |
Attitude Case | H = 125 km | H = 185 km | H = 300 km | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No. | [°] | [°] | FMF | DSMC | [%] | FMF | DSMC | [%] | FMF | DSMC | [%] |
00 | 0 | 0 | 1.989 | 1.889 | 5.3 | 2.005 | 2.006 | 0.1 | 2.025 | 2.031 | 0.3 |
03 | 0 | 30 | 1.488 | 1.460 | 1.9 | 1.502 | 1.523 | 1.4 | 1.519 | 1.543 | 1.5 |
06 | 0 | 60 | 0.525 | 0.569 | 7.7 | 0.534 | 0.543 | 1.6 | 0.546 | 0.555 | 1.7 |
30 | 30 | 0 | 1.473 | 1.339 | 10.0 | 1.486 | 1.398 | 6.3 | 1.503 | 1.417 | 6.1 |
33 | 30 | 30 | 1.108 | 1.195 | 7.3 | 1.119 | 1.230 | 9.0 | 1.134 | 1.247 | 9.1 |
36 | 30 | 60 | 0.393 | 0.530 | 25.9 | 0.401 | 0.504 | 20.4 | 0.410 | 0.515 | 20.4 |
60 | 60 | 0 | 0.513 | 0.520 | 1.3 | 0.521 | 0.498 | 4.7 | 0.532 | 0.509 | 4.5 |
63 | 60 | 30 | 0.388 | 0.485 | 20.1 | 0.395 | 0.462 | 14.5 | 0.405 | 0.473 | 14.4 |
66 | 60 | 60 | 0.147 | 0.357 | 58.8 | 0.153 | 0.327 | 53.3 | 0.159 | 0.337 | 52.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Chen, S.; Qin, Y.; Zhu, Z.; Zhang, J. Aerodynamic Analysis of Deorbit Drag Sail for CubeSat Using DSMC Method. Aerospace 2024, 11, 315. https://doi.org/10.3390/aerospace11040315
Chen J, Chen S, Qin Y, Zhu Z, Zhang J. Aerodynamic Analysis of Deorbit Drag Sail for CubeSat Using DSMC Method. Aerospace. 2024; 11(4):315. https://doi.org/10.3390/aerospace11040315
Chicago/Turabian StyleChen, Jiaheng, Song Chen, Yuhang Qin, Zeyu Zhu, and Jun Zhang. 2024. "Aerodynamic Analysis of Deorbit Drag Sail for CubeSat Using DSMC Method" Aerospace 11, no. 4: 315. https://doi.org/10.3390/aerospace11040315
APA StyleChen, J., Chen, S., Qin, Y., Zhu, Z., & Zhang, J. (2024). Aerodynamic Analysis of Deorbit Drag Sail for CubeSat Using DSMC Method. Aerospace, 11(4), 315. https://doi.org/10.3390/aerospace11040315