GKS and UGKS for High-Speed Flows
Abstract
:1. Introduction
2. Gas-Kinetic Scheme for High-Speed Flows
2.1. Gas-Kinetic Scheme and Kinetic Boundary Condition
2.2. Multiple Temperature Model
2.3. Multi-Component and Reactive Flow
2.4. Implicit Scheme and Multigrid Acceleration
3. Unified Gas-Kinetic Scheme for High-Speed Flows
3.1. Basic Algorithm
3.2. Physical Modeling for High-Speed Flow
3.2.1. Diatomic Gas with Molecular Rotation and Vibration
3.2.2. Multi-Component Gas Mixture and Plasma
3.3. Computational Techniques
3.3.1. Implicit UGKS and Multigrid Acceleration
3.3.2. Parallel Strategy
3.3.3. Adaptive Mesh
3.3.4. Memory Reduction
3.3.5. Wave–Particle Adaptation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, K.; Prendergast, K.H. Numerical Navier-Stokes solutions from gas kinetic theory. J. Comput. Phys. 1994, 114, 9–17. [Google Scholar] [CrossRef]
- Xu, K. A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys. 2001, 171, 289–335. [Google Scholar] [CrossRef]
- Xu, K.; Mao, M.; Tang, L. A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow. J. Comput. Phys. 2005, 203, 405–421. [Google Scholar] [CrossRef]
- Xu, K.; Huang, J.C. A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys. 2010, 229, 7747–7764. [Google Scholar] [CrossRef]
- Xu, K. Direct Modeling for Computational Fluid Dynamics: Construction and Application of Unified Gas-Kinetic Schemes; World Scientific: Singapore, 2015. [Google Scholar]
- Zhu, Y.; Xu, K. The first decade of unified gas kinetic scheme. arXiv 2021, arXiv:2102.01261. [Google Scholar]
- Chapman, S.; Cowling, T.G.; Burnett, D. The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Li, Q.; Fu, S. On the multidimensional gas-kinetic BGK scheme. J. Comput. Phys. 2006, 220, 532–548. [Google Scholar] [CrossRef]
- Li, Q.; Fu, S.; Xu, K. Application of gas-kinetic scheme with kinetic boundary conditions in hypersonic flow. AIAA J. 2005, 43, 2170–2176. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.; Luo, L.S.; Xu, K. Gas-kinetic scheme for continuum and near-continuum hypersonic flows. J. Spacecr. Rocket. 2007, 44, 1232–1240. [Google Scholar] [CrossRef]
- Xu, K.; Josyula, E. Multiple translational temperature model and its shock structure solution. Phys. Rev. E 2005, 71, 056308. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Liu, H.; Jiang, J. Multiple-temperature kinetic model for continuum and near continuum flows. Phys. Fluids 2007, 19, 016101. [Google Scholar] [CrossRef]
- Xu, K.; Tang, L. Nonequilibrium Bhatnagar–Gross–Krook model for nitrogen shock structure. Phys. Fluids 2004, 16, 3824–3827. [Google Scholar] [CrossRef]
- Xu, K.; Josyula, E. Continuum formulation for non-equilibrium shock structure calculation. Commun. Comput. Phys. 2006, 1, 425–448. [Google Scholar]
- Xu, K. A generalized Bhatnagar–Gross–Krook model for nonequilibrium flows. Phys. Fluids 2008, 20, 26101. [Google Scholar] [CrossRef]
- Xu, K.; He, X.; Cai, C. Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations. J. Comput. Phys. 2008, 227, 6779–6794. [Google Scholar] [CrossRef]
- Cai, C.; Liu, D.D.; Xu, K. One-dimensional multiple-temperature gas-kinetic Bhatnagar-Gross-Krook scheme for shock wave computation. AIAA J. 2008, 46, 1054–1062. [Google Scholar] [CrossRef]
- Xu, K.; Guo, Z. Generalized gas dynamic equations with multiple translational temperatures. Mod. Phys. Lett. B 2009, 23, 237–240. [Google Scholar] [CrossRef]
- Cao, G.; Liu, H.; Xu, K. Physical modeling and numerical studies of three-dimensional non-equilibrium multi-temperature flows. Phys. Fluids 2018, 30, 126104. [Google Scholar]
- Liu, H.; Cao, G.; Chen, W. Multiple-temperature gas-kinetic scheme for type IV shock/shock interaction. Commun. Comput. Phys. 2021, 29, 853–904. [Google Scholar] [CrossRef]
- Xu, K. BGK-based scheme for multicomponent flow calculations. J. Comput. Phys. 1997, 134, 122–133. [Google Scholar] [CrossRef]
- Lian, Y.; Xu, K. A gas-kinetic scheme for multimaterial flows and its application in chemical reactions. J. Comput. Phys. 2000, 163, 349–375. [Google Scholar] [CrossRef] [Green Version]
- Lian, Y.; Xu, K. A gas-kinetic scheme for reactive flows. Comput. Fluids 2000, 29, 725–748. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Zhao, G.; Tian, B.; Wang, S. A gas kinetic scheme for the simulation of compressible multicomponent flows. Commun. Comput. Phys. 2013, 14, 1347–1371. [Google Scholar] [CrossRef]
- Pan, L.; Cheng, J.; Wang, S.; Xu, K. A two-stage fourth-order gas-kinetic scheme for compressible multicomponent flows. Commun. Comput. Phys. 2017, 22, 1123–1149. [Google Scholar] [CrossRef]
- Chae, D.; Kim, C.; Rho, O.H. Development of an improved gas-kinetic BGK scheme for inviscid and viscous flows. J. Comput. Phys. 2000, 158, 1–27. [Google Scholar] [CrossRef]
- Li, Q.; Fu, S. Applications of implicit BGK scheme in near-continuum flow. Int. J. Comput. Fluid Dyn. 2006, 20, 453–461. [Google Scholar] [CrossRef]
- Jiang, J.; Qian, Y. Implicit gas-kinetic BGK scheme with multigrid for 3D stationary transonic high-Reynolds number flows. Comput. Fluids 2012, 66, 21–28. [Google Scholar] [CrossRef]
- Li, W.; Kaneda, M.; Suga, K. An implicit gas kinetic BGK scheme for high temperature equilibrium gas flows on unstructured meshes. Comput. Fluids 2014, 93, 100–106. [Google Scholar] [CrossRef]
- Tan, S.; Li, Q. Time-implicit gas-kinetic scheme. Comput. Fluids 2017, 144, 44–59. [Google Scholar] [CrossRef]
- Li, J.; Zhong, C.; Wang, Y.; Zhuo, C. Implementation of dual time-stepping strategy of the gas-kinetic scheme for unsteady flow simulations. Phys. Rev. E 2017, 95, 053307. [Google Scholar] [CrossRef] [Green Version]
- Pan, D.; Zhong, C.; Zhuo, C. An implicit gas-kinetic scheme for turbulent flow on unstructured hybrid mesh. Comput. Math. Appl. 2018, 75, 3825–3848. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.; Su, H.; Xu, J.; Xu, K. Implicit high-order gas kinetic scheme for turbulence simulation. Aerosp. Sci. Technol. 2019, 92, 958–971. [Google Scholar] [CrossRef] [Green Version]
- Xu, K. Regularization of the Chapman–Enskog expansion and its description of shock structure. Phys. Fluids 2002, 14, L17–L20. [Google Scholar] [CrossRef]
- Broadwell, J.E. Study of rarefied shear flow by the discrete velocity method. J. Fluid Mech. 1964, 19, 401–414. [Google Scholar] [CrossRef]
- Bobylev, A.; Palczewski, A.; Schneider, J. Discretization of the Boltzmann equation and discrete velocity models. In Proceedings of the 19th International Symposium on Rarefied Gas Dynamics, Oxford, UK, 25–29 July 1995; pp. 857–863. [Google Scholar]
- Yang, J.; Huang, J. Rarefied flow computations using nonlinear model Boltzmann equations. J. Comput. Phys. 1995, 120, 323–339. [Google Scholar] [CrossRef]
- Aristov, V. Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 60. [Google Scholar]
- Liu, S.; Yu, P.; Xu, K.; Zhong, C. Unified gas-kinetic scheme for diatomic molecular simulations in all flow regimes. J. Comput. Phys. 2014, 259, 96–113. [Google Scholar] [CrossRef]
- Zhang, H. Study of Unified Gas Kinetic Scheme with Vibrational Degrees of Freedom. Master’s Thesis, Northwestern Polytechnical University, Xi’an, China, 2015. (In Chinese). [Google Scholar]
- Wang, Z.; Yan, H.; Li, Q.; Xu, K. Unified gas-kinetic scheme for diatomic molecular flow with translational, rotational, and vibrational modes. J. Comput. Phys. 2017, 350, 237–259. [Google Scholar] [CrossRef]
- Liu, C.; Xu, K. A unified gas kinetic scheme for continuum and rarefied flows V: Multiscale and multi-component plasma transport. Commun. Comput. Phys. 2017, 22, 1175–1223. [Google Scholar] [CrossRef]
- Pan, D.; Zhong, C.; Zhuo, C.; Tan, W. A unified gas kinetic scheme for transport and collision effects in plasma. Appl. Sci. 2018, 8, 746. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Guo, Z.; Xu, K. Discrete unified gas kinetic scheme on unstructured meshes. Comput. Fluids 2016, 127, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Jiang, S.; Xu, K. A multidimensional unified gas-kinetic scheme for radiative transfer equations on unstructured mesh. J. Comput. Phys. 2017, 351, 455–472. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, C.; Liu, S. Arbitrary Lagrangian-Eulerian-type discrete unified gas kinetic scheme for low-speed continuum and rarefied flow simulations with moving boundaries. Phys. Rev. E 2019, 100, 063310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Xu, K.; Lee, C.; Cai, Q. A unified gas kinetic scheme with moving mesh and velocity space adaptation. J. Comput. Phys. 2012, 231, 6643–6664. [Google Scholar] [CrossRef]
- Chen, J.; Liu, S.; Wang, Y.; Zhong, C. Conserved discrete unified gas-kinetic scheme with unstructured discrete velocity space. Phys. Rev. E 2019, 100, 043305. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, C.; Zhu, L.; Guo, Z. A unified implicit scheme for kinetic model equations. Part I. Memory reduction technique. Sci. Bull. 2017, 62, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Shu, C.; Yang, W.; Wu, J. An implicit scheme with memory reduction technique for steady state solutions of DVBE in all flow regimes. Phys. Fluids 2018, 30, 040901. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, C.; Zhong, C.; Xu, K. Unified gas-kinetic wave-particle methods. II. Multiscale simulation on unstructured mesh. Phys. Fluids 2019, 31, 67105. [Google Scholar]
- Liu, C.; Zhu, Y.; Xu, K. Unified gas-kinetic wave-particle methods I: Continuum and rarefied gas flow. J. Comput. Phys. 2020, 401, 108977. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Zhong, C.; Xu, K. Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes. J. Comput. Phys. 2016, 315, 16–38. [Google Scholar] [CrossRef]
- Yuan, R.; Zhong, C. A conservative implicit scheme for steady state solutions of diatomic gas flow in all flow regimes. Comput. Phys. Commun. 2020, 247, 106972. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Jiang, S.; Xu, K. An implicit unified gas kinetic scheme for radiative transfer with equilibrium and non-equilibrium diffusive limits. Commun. Comput. Phys. 2017, 22, 889–912. [Google Scholar] [CrossRef]
- Sun, W.; Jiang, S.; Xu, K. An asymptotic preserving implicit unified gas kinetic scheme for frequency-dependent radiative transfer equations. Int. J. Numer. Anal. Model. 2018, 15, 134–153. [Google Scholar]
- Chen, S.; Guo, Z.; Xu, K. Simplification of the unified gas kinetic scheme. Phys. Rev. E 2016, 94, 023313. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhong, C. Modified unified kinetic scheme for all flow regimes. Phys. Rev. E 2012, 85, 066705. [Google Scholar] [CrossRef] [PubMed]
- Bird, G.A.; Brady, J. Molecular Gas Dynamics and the Direct Simulation of Gas Flows; Clarendon Press: Oxford, UK, 1994. [Google Scholar]
- Shen, C. Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Cercignani, C. Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations; Cambridge University Press: Cambridge, UK, 2000; Volume 21. [Google Scholar]
- Sharipov, F. Rarefied Gas Dynamics: Fundamentals for Research and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Bhatnagar, P.L.; Gross, E.P.; Krook, M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 1954, 94, 511. [Google Scholar] [CrossRef]
- Shakhov, E. Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 1968, 3, 95–96. [Google Scholar] [CrossRef]
- Holway, L.H. New statistical models for kinetic theory: Methods of construction. Phys. Fluids 1966, 9, 1658–1673. [Google Scholar] [CrossRef]
- Li, Q.; Fu, S. Application of gas-kinetic BGK scheme in three-dimensional flow. In Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011. [Google Scholar]
- Yuan, R.; Zhong, C. An immersed-boundary method for compressible viscous flows and its application in the gas-kinetic BGK scheme. Appl. Math. Model. 2018, 55, 417–446. [Google Scholar] [CrossRef]
- Chit, O.J.; Omar, A.A.; Asrar, W.; Zaludin, Z.A. Hypersonic flow simulation by the gas-kinetic Bhatnagar–Gross–Krook scheme. AIAA J. 2005, 43, 1427–1433. [Google Scholar] [CrossRef] [Green Version]
- Chit, O.J.; Omar, A.; Asrar, W.; Zaludin, Z. Gas-kinetic BGK scheme for hypersonic flow simulation. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
- Chit, O.J.; Omar, A.A.; Asrar, W.; Hamdan, M.M. Implicit gas-kinetic Bhatnagar–Gross–Krook scheme for compressible flows. AIAA J. 2004, 42, 1293–1301. [Google Scholar] [CrossRef]
- May, G.; Srinivasan, B.; Jameson, A. An improved gas-kinetic BGK finite-volume method for three-dimensional transonic flow. J. Comput. Phys. 2007, 220, 856–878. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.; Tan, S.; Li, Q.; Fu, S. Gas-kinetic scheme and its applications in re-entry flows. Acta Aerodyn. Sin. 2018, 36, 885–890. (In Chinese) [Google Scholar]
- Zhou, G.; Xu, K.; Liu, F. Simplification of the flux function for a high-order gas-kinetic evolution model. J. Comput. Phys. 2017, 339, 146–162. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Xu, K.; Liu, F. Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube. Phys. Fluids 2018, 30, 016102. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Liu, H. A multiple temperature kinetic model and its application to near continuum flows. Commun. Comput. Phys. 2008, 4, 1069–1085. [Google Scholar]
- Xu, K.; Guo, Z. Multiple temperature gas dynamic equations for non-equilibrium flows. J. Comput. Math. 2011, 29, 639–660. [Google Scholar]
- Rykov, V. A model kinetic equation for a gas with rotational degrees of freedom. Fluid Dyn. 1975, 10, 959–966. [Google Scholar] [CrossRef]
- Luo, H.; Baum, J.D.; Löhner, R. A fast, matrix-free implicit method for compressible flows on unstructured grids. J. Comput. Phys. 1998, 146, 664–690. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Baum, J.D.; Löhner, R. An accurate, fast, matrix-free implicit method for computing unsteady flows on unstructured grids. Comput. Fluids 2001, 30, 137–159. [Google Scholar] [CrossRef]
- Yoon, S.; Jameson, A. A Multigrid LU-SSOR Scheme for Approximate Newton Iteration Applied to the Euler Equations; Technical Report, NASA Contractor Report 179524; NASA: Washington, DC, USA, 1986. [Google Scholar]
- Jameson, A.; Yoon, S. Lower-upper implicit schemes with multiple grids for the Euler equations. AIAA J. 1987, 25, 929–935. [Google Scholar] [CrossRef]
- Yoon, S.; Jameson, A. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations. AIAA J. 1988, 26, 1025–1026. [Google Scholar] [CrossRef] [Green Version]
- Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef] [Green Version]
- Fedorenko, R.P. A relaxation method for solving elliptic difference equations. USSR Comput. Math. Math. Phys. 1962, 1, 1092–1096. [Google Scholar] [CrossRef]
- Fedorenko, R.P. The speed of convergence of one iterative process. USSR Comput. Math. Math. Phys. 1964, 4, 227–235. [Google Scholar] [CrossRef]
- Mavriplis, D.J. Multigrid Techniques for Unstructured Meshes; Technical Report, ICASE Report No. 95-27; ICASE: Hampton, VA, USA, 1995. [Google Scholar]
- Brandt, A. Multi-level adaptive solutions to boundary-value problems. Math. Comput. 1977, 31, 333–390. [Google Scholar] [CrossRef]
- Brandt, A.; Livne, O.E. Multigrid techniques: 1984 guide with applications to fluid dynamics. In Proceedings of the SIAM, Mesa, AZ, USA, 28–30 April 2011. [Google Scholar]
- Trottenberg, U.; Oosterlee, C.W.; Schuller, A. Multigrid; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Stüben, K. A review of algebraic multigrid. J. Comput. Appl. Math. 2001, 128, 281–309. [Google Scholar] [CrossRef]
- Wesseling, P. An Introduction to Multigrid Methods; Willey: New York, NY, USA, 1992. [Google Scholar]
- Blazek, J. Computational Fluid Dynamics: Principles and Applications; Butterworth-Heinemann: Oxford, UK, 2015. [Google Scholar]
- Jameson, A. Solution of the Euler equations for two dimensional transonic flow by a multigrid method. Appl. Math. Comput. 1983, 13, 327–355. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Martinelli, L.; Jameson, A. Gas-kinetic finite volume methods, flux-vector splitting, and artificial diffusion. J. Comput. Phys. 1995, 120, 48–65. [Google Scholar] [CrossRef]
- Guo, Z.; Xu, K.; Wang, R. Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case. Phys. Rev. E 2013, 88, 033305. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Wang, R.; Xu, K. Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case. Phys. Rev. E 2015, 91, 033313. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Jiang, S.; Xu, K. An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations. J. Comput. Phys. 2015, 285, 265–279. [Google Scholar] [CrossRef]
- Sun, W.; Jiang, S.; Xu, K.; Li, S. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations. J. Comput. Phys. 2015, 302, 222–238. [Google Scholar] [CrossRef]
- Luo, X.P.; Wang, C.H.; Zhang, Y.; Yi, H.L.; Tan, H.P. Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme. Phys. Rev. E 2018, 97, 063302. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhang, C.; Zhou, X.; Guo, Z. Discrete unified gas kinetic scheme for multiscale anisotropic radiative heat transfer. Adv. Aerodyn. 2020, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Xu, K. Discrete unified gas kinetic scheme for multiscale heat transfer based on the phonon Boltzmann transport equation. Int. J. Heat Mass Transf. 2016, 102, 944–958. [Google Scholar] [CrossRef]
- Luo, X.P.; Yi, H.L. A discrete unified gas kinetic scheme for phonon Boltzmann transport equation accounting for phonon dispersion and polarization. Int. J. Heat Mass Transf. 2017, 114, 970–980. [Google Scholar] [CrossRef]
- Liu, H.; Quan, L.; Chen, Q.; Zhou, S.; Cao, Y. Discrete unified gas kinetic scheme for electrostatic plasma and its comparison with the particle-in-cell method. Phys. Rev. E 2020, 101, 043307. [Google Scholar] [CrossRef]
- Liu, H.; Shi, F.; Wan, J.; He, X.; Cao, Y. Discrete unified gas kinetic scheme for a reformulated BGK–Vlasov–Poisson system in all electrostatic plasma regimes. Comput. Phys. Commun. 2020, 255, 107400. [Google Scholar] [CrossRef]
- Tan, S.; Sun, W.; Wei, J.; Ni, G. A parallel unified gas kinetic scheme for three-dimensional multi-group neutron transport. J. Comput. Phys. 2019, 391, 37–58. [Google Scholar]
- Tan, S.; Sun, W.; Xu, K.; Wei, J.; Ni, G. Time implicit unified gas kinetic scheme for 3D multi-group neutron transport Simulation. Commun. Comput. Phys. 2020, 28, 1189–1218. [Google Scholar] [CrossRef]
- Xiao, T.; Xu, K.; Cai, Q. A unified gas-kinetic scheme for multiscale and multicomponent flow transport. Appl. Math. Mech. 2019, 40, 355–372. [Google Scholar] [CrossRef]
- Huo, Y.; Rao, Z. The discrete unified gas kinetic scheme for solid-liquid phase change problem. Int. Commun. Heat Mass Transf. 2018, 91, 187–195. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, L.; Wang, R.; Guo, Z. Discrete unified gas kinetic scheme for all Knudsen number flows. III. Binary gas mixtures of Maxwell molecules. Phys. Rev. E 2018, 97, 053306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Zhong, C.; Zhuo, C. Phase-field method based on discrete unified gas-kinetic scheme for large-density-ratio two-phase flows. Phys. Rev. E 2019, 99, 043302. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Yang, K.; Guo, Z. A discrete unified gas-kinetic scheme for immiscible two-phase flows. Int. J. Heat Mass Transf. 2018, 126, 1326–1336. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wang, Z.; Xu, K. A unified gas-kinetic scheme for continuum and rarefied flows VI: Dilute disperse gas-particle multiphase system. J. Comput. Phys. 2019, 386, 264–295. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yan, H. Unified gas-kinetic scheme for gas-particle flow in shock-induced fluidization of particles bed. Int. J. Mech. Mechatronics Eng. 2018, 12, 828–833. [Google Scholar]
- Wang, Z.; Yan, H. Unified gas-kinetic scheme for the monodisperse gas-particle flow and its application in the shock-driven multiphase instability. Int. J. Multiph. Flow 2019, 119, 95–107. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.P.; Guo, Z. Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic scheme methods for direct numerical simulation of decaying turbulent flows. Phys. Rev. E 2016, 94, 043304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.Y.; Li, Q.B. Thermal non-equilibrium effect of small-scale structures in compressible turbulence. Mod. Phys. Lett. B 2018, 32, 1840013. [Google Scholar] [CrossRef]
- Zhang, R.; Zhong, C.; Liu, S.; Zhuo, C. Large-eddy simulation of wall-bounded turbulent flow with high-order discrete unified gas-kinetic scheme. Adv. Aerodyn. 2020, 2, 1–27. [Google Scholar] [CrossRef]
- Mieussens, L. Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries. J. Comput. Phys. 2000, 162, 429–466. [Google Scholar] [CrossRef] [Green Version]
- Titarev, V.A. Conservative numerical methods for model kinetic equations. Comput. Fluids 2007, 36, 1446–1459. [Google Scholar] [CrossRef] [Green Version]
- Dubroca, B.; Mieussens, L. A conservative and entropic discrete-velocity model for rarefied polyatomic gases. In ESAIM: Proceedings; EDP Sciences: Les Ulis, France, 2001; Volume 10, pp. 127–139. [Google Scholar]
- Huang, J.C. A conservative discrete ordinate method for model Boltzmann equations. Comput. Fluids 2011, 45, 261–267. [Google Scholar] [CrossRef]
- Jiang, D.; Mao, M.; Jin, L.; Deng, X. Study on the numerical error introduced by dissatisfying the conservation constraint in UGKS and its effects. Chin. J. Theor. Appl. Mech. 2015, 47, 163. [Google Scholar]
- Liu, S.; Yuan, R.; Javid, U.; Zhong, C. Conservative discrete-velocity method for the ellipsoidal Fokker-Planck equation in gas-kinetic theory. Phys. Rev. E 2019, 100, 033310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Cao, Y.; Chen, Q.; Kong, M.; Zheng, L. A conserved discrete unified gas kinetic scheme for microchannel gas flows in all flow regimes. Comput. Fluids 2018, 167, 313–323. [Google Scholar] [CrossRef]
- Chen, J.; Liu, S.; Wang, Y.; Zhong, C. A Compressible Conserved Discrete Unified Gas-Kinetic Scheme with Unstructured Discrete Velocity Space for Multi-Scale Jet Flow Expanding into Vacuum Environment. Commun. Comput. Phys. 2020, 28, 1502–1535. [Google Scholar] [CrossRef]
- Andries, P.; Aoki, K.; Perthame, B. A consistent BGK-type model for gas mixtures. J. Stat. Phys. 2002, 106, 993–1018. [Google Scholar] [CrossRef]
- Morse, T.F. Energy and momentum exchange between nonequipartition gases. Phys. Fluids 1963, 6, 1420–1427. [Google Scholar] [CrossRef]
- Munz, C.D.; Omnes, P.; Schneider, R.; Sonnendrücker, E.; Voß, U. Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys. 2000, 161, 484–511. [Google Scholar] [CrossRef]
- Zhen, Y.; Xiao, M.; Ni, G. Multi-scale kinetic scheme for the collisional Vlasov-Poisson system. Comput. Fluids 2016, 140, 289–296. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhong, C.; Xu, K. An implicit unified gas-kinetic scheme for unsteady flow in all Knudsen regimes. J. Comput. Phys. 2019, 386, 190–217. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y. Construction and Application of the Implicit Unified Gas Kinetic Scheme. Master’s Thesis, Northewestern Polytechnical University, Xi’an, China, 2016. (In Chinese). [Google Scholar]
- Yuan, R.; Liu, S.; Zhong, C. A multi-prediction implicit scheme for steady state solutions of gas flow in all flow regimes. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105470. [Google Scholar] [CrossRef]
- Su, W.; Zhu, L.; Wang, P.; Zhang, Y.; Wu, L. Can we find steady-state solutions to multiscale rarefied gas flows within dozens of iterations? J. Comput. Phys. 2020, 407, 109245. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Zhu, L.; Wu, L. Fast convergence and asymptotic preserving of the general synthetic iterative scheme. SIAM J. Sci. Comput. 2020, 42, B1517–B1540. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhong, C.; Xu, K. Unified gas-kinetic scheme with multigrid convergence for rarefied flow study. Phys. Fluids 2017, 29, 096102. [Google Scholar] [CrossRef] [Green Version]
- Ragta, L.K.; Srinivasan, B.; Sinha, S.S. Efficient simulation of multidimensional continuum and non-continuum flows by a parallelised unified gas kinetic scheme solver. Int. J. Comput. Fluid Dyn. 2017, 31, 292–309. [Google Scholar] [CrossRef]
- Li, S.; Li, Q.; Fu, S.; Xu, J. The high performance parallel algorithm for unified gas-kinetic scheme. In Proceedings of the AIP Conference Proceedings, Rhodes, Greece, 19–25 September 2016; Volume 1786, p. 180007. [Google Scholar]
- Jiang, D.; Mao, M.; Li, J.; Deng, X. An implicit parallel UGKS solver for flows covering various regimes. Adv. Aerodyn. 2019, 1, 8. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Hu, F.Q. Performance comparison on parallel CPU and GPU algorithms for two dimensional unified gas-kinetic scheme. Adv. Appl. Math. Mech. 2020, 12, 1247–1260. [Google Scholar]
- Arslanbekov, R.R.; Kolobov, V.I.; Frolova, A.A. Kinetic solvers with adaptive mesh in phase space. Phys. Rev. E 2013, 88, 063301. [Google Scholar] [CrossRef] [Green Version]
- Baranger, C.; Claudel, J.; Hérouard, N.; Mieussens, L. Locally refined discrete velocity grids for stationary rarefied flow simulations. J. Comput. Phys. 2014, 257, 572–593. [Google Scholar] [CrossRef] [Green Version]
- Brull, S.; Mieussens, L. Local discrete velocity grids for deterministic rarefied flow simulations. J. Comput. Phys. 2014, 266, 22–46. [Google Scholar] [CrossRef] [Green Version]
- Qin, h.; Song, Y.; Li, K. A simple local discrete velocity unified gas-kinetic scheme. Chin. J. Comput. Mech. 2017, 34, 800–806. [Google Scholar]
- Xiao, T.; Liu, C.; Xu, K.; Cai, Q. A velocity-space adaptive unified gas kinetic scheme for continuum and rarefied flows. J. Comput. Phys. 2020, 415, 109535. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, C.; Chen, Z.; Yang, L.; Shu, C. Reduced order modeling-based discrete unified gas kinetic scheme for rarefied gas flows. Phys. Fluids 2020, 32, 067108. [Google Scholar] [CrossRef]
- Sun, Q.; Boyd, I.D.; Candler, G.V. A hybrid continuum/particle approach for modeling subsonic, rarefied gas flows. J. Comput. Phys. 2004, 194, 256–277. [Google Scholar] [CrossRef] [Green Version]
- Hash, D.; Hassan, H. Assessment of schemes for coupling Monte Carlo and Navier-Stokes solution methods. J. Thermophys. Heat Transf. 1996, 10, 242–249. [Google Scholar] [CrossRef]
- Carlson, H.; Roveda, R.; Boyd, I.; Candler, G. A hybrid CFD-DSMC method of modeling continuum-rarefied flows. In Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 5–8 January 2004. [Google Scholar]
- Xu, K. To overcome memory barrier of kinetic solvers for non-equilibrium flow study. Sci. Bull. 2017, 62, 99–101. [Google Scholar] [CrossRef] [Green Version]
- Bird, G. Application of the direct simulation Monte Carlo method to the full shuttle geometry. In Proceedings of the 5th Joint Thermophysics and Heat Transfer Conference, Seattle, WA, USA, 18–20 June 1990. [Google Scholar]
- Blanchard, R.C.; Wilmoth, R.G.; Moss, J.N. Aerodynamic flight measurements and rarefied-flow simulations of Mars entry vehicles. J. Spacecr. Rocket. 1997, 34, 687–690. [Google Scholar] [CrossRef]
- Fang, M.; Li, Z.H.; Li, Z.H.; Liang, J.; Zhang, Y.H. DSMC modeling of rarefied ionization reactions and applications to hypervelocity spacecraft reentry flows. Adv. Aerodyn. 2020, 2, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Liu, C.; Zhu, Y.; Zhang, J.; Xu, K. A unified gas-kinetic particle method for multiscale photon transport. arXiv 2018, arXiv:1810.05984. [Google Scholar]
- Shi, Y.; Song, P.; Sun, W. An asymptotic preserving unified gas kinetic particle method for radiative transfer equations. J. Comput. Phys. 2020, 420, 109687. [Google Scholar] [CrossRef]
- Shi, Y.; Sun, W.; Li, L.; Song, P. An improved unified gas kinetic particle method for radiative transfer equations. J. Quant. Spectrosc. Radiat. Transf. 2020, 261, 107428. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, H. Unified gas-kinetic particle method for dilute granular flow and its application in a solid jet. Acta Mech. Sin. 2020, 36, 22–34. [Google Scholar] [CrossRef]
- Li, W.; Liu, C.; Zhu, Y.; Zhang, J.; Xu, K. Unified gas-kinetic wave-particle methods III: Multiscale photon transport. J. Comput. Phys. 2020, 408, 109280. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhu, Y.; Xu, K. A three-dimensional unified gas-kinetic wave-particle solver for flow computation in all regimes. Phys. Fluids 2020, 32, 96108. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Xu, K. Modeling and computation for non-equilibrium gas dynamics: Beyond single relaxation time kinetic models. Phys. Fluids 2021, 33, 011703. [Google Scholar] [CrossRef]
- Wadsworth, D.; Erwin, D. One-dimensional hybrid continuum/particle simulation approach for rarefied hypersonic flows. In Proceedings of the 5th Joint Thermophysics and Heat Transfer Conference, Seattle, WA, USA, 18–20 June 1990. [Google Scholar]
- Degond, P.; Dimarco, G.; Mieussens, L. A multiscale kinetic-fluid solver with dynamic localization of kinetic effects. J. Comput. Phys. 2010, 229, 4907–4933. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y. Acceleration Algorithms for the Unified Gas Kinetic Scheme. Ph.D. Thesis, Northwestern Polytechnical University, Xi’an, China, 2020. (In Chinese). [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Zhong, C.; Xu, K. GKS and UGKS for High-Speed Flows. Aerospace 2021, 8, 141. https://doi.org/10.3390/aerospace8050141
Zhu Y, Zhong C, Xu K. GKS and UGKS for High-Speed Flows. Aerospace. 2021; 8(5):141. https://doi.org/10.3390/aerospace8050141
Chicago/Turabian StyleZhu, Yajun, Chengwen Zhong, and Kun Xu. 2021. "GKS and UGKS for High-Speed Flows" Aerospace 8, no. 5: 141. https://doi.org/10.3390/aerospace8050141
APA StyleZhu, Y., Zhong, C., & Xu, K. (2021). GKS and UGKS for High-Speed Flows. Aerospace, 8(5), 141. https://doi.org/10.3390/aerospace8050141