Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,000)

Search Parameters:
Keywords = free energy difference

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3228 KiB  
Article
Wettability of Two-Dimensional Carbon Allotropes from Molecular Simulations
by Margaret E. Thornton, Serban G. Zamfir and Dusan Bratko
Molecules 2025, 30(15), 3296; https://doi.org/10.3390/molecules30153296 - 6 Aug 2025
Abstract
Force-field Monte Carlo and Molecular Dynamics simulations are used to compare wetting behaviors of model carbon sheets mimicking neat graphene, its saturated derivative, graphane, and related planar allotropes penta-graphene, γ-graphyne, and ψ-graphene in contact with aqueous droplets or an aqueous film [...] Read more.
Force-field Monte Carlo and Molecular Dynamics simulations are used to compare wetting behaviors of model carbon sheets mimicking neat graphene, its saturated derivative, graphane, and related planar allotropes penta-graphene, γ-graphyne, and ψ-graphene in contact with aqueous droplets or an aqueous film confined between parallel carbon sheets. Atomistic and area-integrated surface/water potentials are found to be essentially equivalent in capturing moderate differences between the wetting free energies of tested substrates. Despite notable differences in mechanical and electric properties of distinct allotropes, the predicted allotrope/water contact angles span a narrow window of weakly hydrophilic values. Contact angles in the range of 80 ± 10° indicate modest hydration repulsion incapable of competing with van der Waals attraction between carbon particles. Poor dispersibility in neat water is hence a common feature of studied materials. Full article
Show Figures

Graphical abstract

22 pages, 2666 KiB  
Article
Comparative Proteomic Analysis of Flammulina filiformis Reveals Substrate-Specific Enzymatic Strategies for Lignocellulose Degradation
by Weihang Li, Jiandong Han, Hongyan Xie, Yi Sun, Feng Li, Zhiyuan Gong and Yajie Zou
Horticulturae 2025, 11(8), 912; https://doi.org/10.3390/horticulturae11080912 - 4 Aug 2025
Viewed by 130
Abstract
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In [...] Read more.
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In this study, label-free comparative proteomic analysis of F. filiformis cultivated on sugarcane bagasse, cotton seed shells, corn cobs, and glucose substrates was conducted to identify degradation mechanism across various substrates. Label-free quantitative proteomics identified 1104 proteins. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of protein expression differences were predominantly enriched in energy metabolism and carbohydrate metabolic pathways. Detailed characterization of carbohydrate-active enzymes among the identified proteins revealed glucanase (GH7, A0A067NSK0) as the key enzyme. F. filiformis secreted higher levels of cellulases and hemicellulases on sugarcane bagasse substrate. In the cotton seed shells substrate, multiple cellulases functioned collaboratively, while in the corn cobs substrate, glucanase predominated among the cellulases. These findings reveal the enzymatic strategies and metabolic flexibility of F. filiformis in lignocellulose utilization, providing novel insights for metabolic engineering applications in biotechnology. The study establishes a theoretical foundation for optimizing biomass conversion and developing innovative substrates using targeted enzyme systems. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

40 pages, 585 KiB  
Article
Finite-Time Thermodynamics and Complex Energy Landscapes: A Perspective
by Johann Christian Schön
Entropy 2025, 27(8), 819; https://doi.org/10.3390/e27080819 - 1 Aug 2025
Viewed by 138
Abstract
Finite-time thermodynamics (FTT) describes the study of thermodynamic processes that take place in finite time. Due to the finite-time requirement, in general the system cannot move from equilibrium state to equilibrium state. As a consequence, excess entropy is generated, available work is reduced, [...] Read more.
Finite-time thermodynamics (FTT) describes the study of thermodynamic processes that take place in finite time. Due to the finite-time requirement, in general the system cannot move from equilibrium state to equilibrium state. As a consequence, excess entropy is generated, available work is reduced, and/or the maximally achievable efficiency is not achieved; minimizing these negative side-effects constitutes an optimal control problem. Particularly challenging are processes and cycles that involve phase transitions of the working fluid material or the target material of a synthesis process, especially since most materials reside on a highly complex energy landscape exhibiting alternative metastable phases or glassy states. In this perspective, we discuss the issues and challenges involved in dealing with such materials when performing thermodynamic processes that include phase transitions in finite time. We focus on thermodynamic cycles with one back-and-forth transition and the generation of new materials via a phase transition; other systems discussed concern the computation of free energy differences and the general applicability of FTT to systems outside the realm of chemistry and physics that exhibit cost function landscapes with phase transition-like dynamics. Full article
(This article belongs to the Special Issue The First Half Century of Finite-Time Thermodynamics)
Show Figures

Figure 1

16 pages, 3038 KiB  
Article
The Interaction Mechanism Between Modified Selective Catalytic Reduction Catalysts and Volatile Organic Compounds in Flue Gas: A Density Functional Theory Study
by Ke Zhuang, Hanwen Wang, Zhenglong Wu, Yao Dong, Yun Xu, Chunlei Zhang, Xinyue Zhou, Yangwen Wu and Bing Zhang
Catalysts 2025, 15(8), 728; https://doi.org/10.3390/catal15080728 - 31 Jul 2025
Viewed by 264
Abstract
The overall efficiency of combining denitrification and volatile organic compound (VOC) removal through selective catalytic reduction (SCR) technology is currently mainly limited by the VOC removal aspect. However, existing studies have not studied the microscopic mechanism of the interaction between VOCs and catalysts, [...] Read more.
The overall efficiency of combining denitrification and volatile organic compound (VOC) removal through selective catalytic reduction (SCR) technology is currently mainly limited by the VOC removal aspect. However, existing studies have not studied the microscopic mechanism of the interaction between VOCs and catalysts, failing to provide a theoretical basis for catalysts. Therefore, this work explored the interaction mechanisms between SCR catalysts doped with different additives and typical VOCs (acetone and toluene) in flue gas based on density functional theory (DFT) calculations. The results showed that the VNi-TiO2 surface exhibited a high adsorption energy of −0.80 eV for acetone and a high adsorption energy of −1.02 eV for toluene on the VMn-TiO2 surface. Electronic structure analysis revealed the VMn-TiO2 and VNi-TiO2 surfaces exhibited more intense orbital hybridization with acetone and toluene, promoting charge transfer between the two and resulting in stronger interactions. The analysis of temperature on adsorption free energy showed that VMn-TiO2 and VNi-TiO2 still maintained high activity at high temperatures. This work contributes to clarifying the interaction mechanism between SCR and VOCs and enhancing the VOC removal efficiency. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Graphical abstract

18 pages, 3967 KiB  
Article
A Thorough Investigation of the Mechanism of theAntagonistic Effect Between Phosphorus and Basic Oxide-Forming Minerals as Flame Retardants of PolymericComposite Coatings
by Evangelia Mitropoulou, Georgios N. Mathioudakis, Amaia Soto Beobide, Athanasios Porfyris, Vassilios Dracopoulos, Kerim Kılınç, Theodosios Chatzinikolaou, Deniz Savci, Cem Gunesoglu, Joannis Kallitsis and George A. Voyiatzis
Coatings 2025, 15(8), 886; https://doi.org/10.3390/coatings15080886 - 30 Jul 2025
Viewed by 274
Abstract
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising [...] Read more.
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising alternatives. Despite this, their combined use is neither straightforward nor guaranteed to be effective. This study scrutinizes the interactions between these two classes of flame retardants (FR) through a systematic analysis aimed at elucidating the antagonistic pathways that arise from their coexistence. Specifically, this study focuses on two inorganic fillers, mineral huntite and chemically precipitated magnesium hydroxide, both of which produce basic oxides upon thermal decomposition. These fillers were incorporated into a poly(butylene terephthalate) (PBT) matrix to be utilized as advanced-mattress FR coating fabric and were subjected to a series of flammability tests. The pyrolysis products of the prepared polymeric composite compounds were isolated and thoroughly characterized using a combination of analytical techniques. Thermogravimetric analysis (TGA) and differential thermogravimetric analysis (dTGA) were employed to monitor decomposition behavior, while the char residues collected at different pyrolysis stages were examined spectroscopically, using FTIR-ATR and Raman spectroscopy, to identify their structure and the chemical reactions that led to their formation. X-ray diffraction (XRD) experiments were also conducted to complement the spectroscopic findings in the chemical composition of the resulting char residues and to pinpoint the different species that constitute them. The morphological changes of the char’s structure were monitored by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). Finally, the Limited Oxygen Index (LOI) and UL94 (vertical sample mode) methods were used to assess the relative flammability of the samples, revealing a significant drop in flame retardancy when both types of flame retardants are present. This reduction is attributed to the neutralization of acidic phosphorus species by the basic oxides generated during the decomposition of the basic inorganic fillers, as confirmed by the characterization techniques employed. These findings underscore the challenge of combining organophosphorus with popular flame-retardant classes such as mineral or basic metal flame retardants, offering insight into a key difficulty in formulating next-generation halogen-free flame-retardant composite coatings. Full article
(This article belongs to the Special Issue Innovative Flame-Retardant Coatings for High-Performance Materials)
Show Figures

Figure 1

22 pages, 1129 KiB  
Article
Randomised Trial Shows Readymade Oral Nutritional Supplements in Older Malnourished People in the Community Improve Total Nutrient Intakes and Meet More Dietary Reference Values Without Reducing Intake from the Diet
by Marinos Elia, Trevor R. Smith, Abbie L. Cawood, Emily R. Walters and Rebecca J. Stratton
Nutrients 2025, 17(15), 2474; https://doi.org/10.3390/nu17152474 - 29 Jul 2025
Viewed by 374
Abstract
Background: There is little information about the effectiveness of oral nutritional supplements (ONS) in combatting nutrient inadequacies in primary care, where most malnutrition exists. Aim: To examine the extent to which readymade ONS add or displace the nutrients consumed in the diet and [...] Read more.
Background: There is little information about the effectiveness of oral nutritional supplements (ONS) in combatting nutrient inadequacies in primary care, where most malnutrition exists. Aim: To examine the extent to which readymade ONS add or displace the nutrients consumed in the diet and their impact on combatting dietary inadequacies. Methods: 308 free-living people >50 years with medium + high risk of malnutrition (Malnutrition Universal Screening Tool) were randomised to receive readymade low volume (2.4 kcal/mL), liquid ONS plus dietary advice (ONS + DA) or dietary advice alone (DA). Intake was assessed at baseline (24 h recall) and 4-weekly for 12 weeks (3-day diet record). Total nutrient intake was benchmarked against UK and European dietary reference values (DRVs). The proportion of energy and nutrients from the ONS that added or displaced those from the diet (net addition/displacement) was calculated. Results: ONS + DA led to significantly greater total energy and nutritional intakes, with 25/29 nutrient intakes significantly higher than with DA alone. There were no significant differences in dietary energy and nutrient intakes from food between the groups. There was little or no displacement of nutrients from the diet, with over 90% of the energy and nutrients consumed in the ONS additive to the diet. ONS + DA more than halved the number of people with nutrient intakes that failed to meet DRVs and the number of nutrients per person that did not meet DRVs compared to DA alone. Conclusions: Supplementation with readymade, low volume (2.4 kcal/mL) liquid ONS overcomes most nutrient intake inadequacies in malnourished older people in primary care without significantly reducing intake from the diet. This makes ONS an effective way to improve nutritional intakes above dietary advice alone to improve the outcomes for the management of older people at risk of malnutrition. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Figure 1

15 pages, 1251 KiB  
Article
Research on the Adhesion Performance of Fast-Melting SBS-Modified Emulsified Asphalt–Aggregate Based on the Surface Free Energy Theory
by Hao Zhang, Haowei Li, Fei Guo, Shige Wang and Jinchao Yue
Materials 2025, 18(15), 3523; https://doi.org/10.3390/ma18153523 - 27 Jul 2025
Viewed by 371
Abstract
Aiming at the problems of complex process flow, high energy consumption, and difficult emulsification in the preparation of traditional SBS-modified emulsified asphalt, a preparation method of fast-melting SBS (referred to as SBS-T) modified emulsified asphalt based on the integration of modification and emulsification [...] Read more.
Aiming at the problems of complex process flow, high energy consumption, and difficult emulsification in the preparation of traditional SBS-modified emulsified asphalt, a preparation method of fast-melting SBS (referred to as SBS-T) modified emulsified asphalt based on the integration of modification and emulsification is proposed. Based on surface free energy theory, the contact angles between three rapid-melting SBS-modified emulsified asphalts with different dosages and three probe liquids (deionized water, glycerol, and formamide) were measured using the sessile drop method. The adhesion performance of the asphalt–aggregate system was studied by means of micromechanical methods. The evaluation indicators such as the cohesion work of the emulsified asphalt, the adhesion work of asphalt–aggregate, the spalling work, and the energy ratio were analyzed. The results show that the SBS-T modifier can significantly improve the thermodynamic properties of emulsified asphalt. With increasing modifier content, the SBS-T-modified emulsified asphalt demonstrated enhanced cohesive work, improved asphalt–aggregate adhesive work, and increased energy ratio, while showing reduced stripping work. At equivalent dosage levels, the SBS-T-modified emulsified asphalt demonstrates a slight improvement in adhesion performance to aggregates compared to conventional SBS-modified emulsified asphalt. The SBS-T emulsified modified asphalt provides an effective technical solution for the preventive maintenance of asphalt pavements. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

17 pages, 1402 KiB  
Article
A 3-Week Inpatient Rehabilitation Programme Improves Body Composition in People with Cystic Fibrosis with and Without Elexacaftor/Tezacaftor/Ivacaftor Therapy
by Jana Koop, Wolfgang Gruber, Franziska A. Hägele, Kristina Norman, Catrin Herpich, Stefan Dewey, Christian Falkenberg, Olaf Schnabel, Burkhard Weisser, Mario Hasler and Anja Bosy-Westphal
Nutrients 2025, 17(15), 2439; https://doi.org/10.3390/nu17152439 - 25 Jul 2025
Viewed by 242
Abstract
Background: The introduction of cystic fibrosis transmembrane conductance regulator modulators, especially the triple therapy elexacaftor, tezacaftor, ivacaftor (ETI), has improved outcomes in people with cystic fibrosis (pwCF), reducing underweight but increasing overweight rates. Objectives: This study investigates the effect of ETI on appetite [...] Read more.
Background: The introduction of cystic fibrosis transmembrane conductance regulator modulators, especially the triple therapy elexacaftor, tezacaftor, ivacaftor (ETI), has improved outcomes in people with cystic fibrosis (pwCF), reducing underweight but increasing overweight rates. Objectives: This study investigates the effect of ETI on appetite control, body composition, and energy balance during a 3-week inpatient rehabilitation programme with regular exercise. Methods: In 54 pwCF (38 on ETI, 16 without ETI), changes in body composition (fat mass index, FMI; fat-free mass index, FFMI) and energy balance (calculated from body composition changes) were assessed. Appetite control was evaluated via plasma peptide YY (PYY) levels and post-exercise meal energy intake. Results: The programme significantly increased BMI (+0.3 ± 0.1 kg/m2; CI 0.1–0.4) and energy balance (+4317 ± 1976 kcal/3 weeks), primarily through FFMI gains (+0.3 ± 0.1 kg/m2; CI 0.1–0.4). Despite higher post-exercise meal energy intake and a tendency towards lower PYY levels in the ETI group, changes in body composition and energy balance did not differ between groups. This is explained by a higher prevalence of exocrine pancreatic insufficiency in the ETI group (92% vs. 50%, p < 0.001). Small sample sizes limit the interpretation of data on appetite control and energy intake. Conclusions: A 3-week inpatient rehabilitation programme improved body composition in pwCF, without resulting in a more positive energy balance with ETI therapy. This is due to a higher prevalence of pancreatic insufficiency in this group. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

17 pages, 3682 KiB  
Article
Comparative Analysis of Testicular Transcriptional and Translational Landscapes in Yak and Cattle–Yak: Implications for Hybrid Male Sterility
by Mengli Cao, Shaoke Guo, Ziqiang Ding, Liyan Hu, Lin Xiong, Qianyun Ge, Jie Pei and Xian Guo
Biomolecules 2025, 15(8), 1080; https://doi.org/10.3390/biom15081080 - 25 Jul 2025
Viewed by 303
Abstract
Cattle–yak, a hybrid of yak and cattle, exhibits significant heterosis but male infertility, hindering heterosis fixation. Although extensive research has been conducted on transcriptional mechanisms in the testes of cattle–yak, the understanding of their translational landscape remains limited. In this study, we characterized [...] Read more.
Cattle–yak, a hybrid of yak and cattle, exhibits significant heterosis but male infertility, hindering heterosis fixation. Although extensive research has been conducted on transcriptional mechanisms in the testes of cattle–yak, the understanding of their translational landscape remains limited. In this study, we characterized the translational landscape of yak and cattle–yak based on Ribo-seq technology integrated with RNA-seq data. The results revealed that gene expression was not fully concordant between transcriptional and translational levels, whereas cattle–yak testes exhibited a stronger correlation across these two regulatory layers. Notably, genes that were differentially expressed at the translational level only (MEIOB, MEI1, and SMC1B) were mainly involved in meiosis. A total of 4,236 genes with different translation efficiencies (TEs) were identified, and the TEs of most of the genes gradually decreased as the mRNA expression level increased. Further research revealed that genes with higher TE had a shorter coding sequence (CDS) length, lower GC content, and higher normalized minimum free energy in the testes of yaks, but this characteristic was not found in cattle–yaks. We also identified upstream open reading frames (uORFs) in yak and cattle–yak testes, and the sequence characteristics of translated uORFs and untranslated uORFs were markedly different. In addition, we identified several short polypeptides that may play potential roles in spermatogenesis. In summary, our study uncovers distinct translational dysregulations in cattle–yak testes, particularly affecting meiosis, which provides novel insights into the mechanisms of spermatogenesis and male infertility in hybrids. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 564 KiB  
Article
Electrons in Quantum Dots on Helium: From Charge Qubits to Synthetic Color Centers
by Mark I. Dykman and Johannes Pollanen
Entropy 2025, 27(8), 787; https://doi.org/10.3390/e27080787 - 25 Jul 2025
Viewed by 196
Abstract
Electrons trapped above the surface of helium provide a means to study many-body physics free from the randomness that comes from defects in other condensed-matter systems. Localizing an electron in an electrostatic quantum dot makes its energy spectrum discrete, with controlled level spacing. [...] Read more.
Electrons trapped above the surface of helium provide a means to study many-body physics free from the randomness that comes from defects in other condensed-matter systems. Localizing an electron in an electrostatic quantum dot makes its energy spectrum discrete, with controlled level spacing. The lowest two states can act as charge qubit states. In this paper, we study how the coupling to the quantum field of capillary waves on helium—known as ripplons—affects electron dynamics. As we show, the coupling can be strong. This bounds the parameter range where electron-based charge qubits can be implemented. The constraint is different from the conventional relaxation time constraint. The electron–ripplon system in a dot is similar to a color center formed by an electron defect coupled to phonons in a solid. In contrast to solids, the coupling in the electron on helium system can be varied from strong to weak. This enables a qualitatively new approach to studying color center physics. We analyze the spectroscopy of the pertinent synthetic color centers in a broad range of the coupling strength. Full article
Show Figures

Figure 1

17 pages, 2863 KiB  
Article
Thermodynamic Aspects of Ion Exchange Properties of Bio-Resins from Phosphorylated Cellulose Fibers
by Lahbib Abenghal, Adrien Ratier, Hamid Lamoudan, Dan Belosinschi and François Brouillette
Polymers 2025, 17(15), 2022; https://doi.org/10.3390/polym17152022 - 24 Jul 2025
Viewed by 403
Abstract
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber [...] Read more.
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber degradation. Herein, phosphorylated fibers, with three types of counterions (sodium, ammonium, or hydrogen), are used in adsorption trials involving four individual metals: nickel, copper, cadmium, and lead. The Langmuir isotherm model is applied to determine the maximum adsorption capacities at four different temperatures (10, 20, 30, and 50 °C), enabling the calculation of the Gibbs free energy (ΔG), entropy (ΔS), and enthalpy (ΔH) of adsorption. The results show that the adsorption capacity of phosphorylated fibers is equal or even higher than that of commercially available resins (1.7–2.9 vs. 2.4–2.6 mmol/g). However, the nature of the phosphate counterion plays an important role in the adsorption capacity, with the alkaline form showing a superior ion exchange capacity than the hybrid form and acid form (2.7–2.9 vs. 2.3–2.7 vs. 1.7–2.5 mmol/g). The thermodynamic analysis indicates the spontaneous (ΔG = (-)16–(-)30 kJ/mol) and endothermic nature of the adsorption process with positive changes in enthalpy (0.45–15.47 kJ/mol) and entropy (0.07–0.14 kJ/mol·K). These results confirm the high potential of phosphorylated lignocellulosic fibers for ion exchange applications, such as the removal of heavy metals from process or wastewaters. Full article
(This article belongs to the Special Issue New Advances in Cellulose and Wood Fibers)
Show Figures

Figure 1

14 pages, 35554 KiB  
Article
Influence of Polishing and Glazing on Surface Characteristics and Biofilm Formation on Zirconia: An In Vitro Study
by Gabriela de Arruda Ribeiro, Viviane de Cássia Oliveira, Adriana Cláudia Lápria Faria, Ana Paula Macedo, Carla Roberta de Oliveira Maciel, Cláudia Helena Lovato da Silva, Ricardo Faria Ribeiro and Renata Cristina Silveira Rodrigues
Antibiotics 2025, 14(8), 739; https://doi.org/10.3390/antibiotics14080739 - 23 Jul 2025
Viewed by 282
Abstract
Background: Monolithic zirconia has attracted considerable interest in dentistry due to its favorable physical and mechanical properties, making it a promising alternative for crown fabrication. Nonetheless, a standardized finishing protocol for this material has yet to be established. Objective: This study [...] Read more.
Background: Monolithic zirconia has attracted considerable interest in dentistry due to its favorable physical and mechanical properties, making it a promising alternative for crown fabrication. Nonetheless, a standardized finishing protocol for this material has yet to be established. Objective: This study aimed to evaluate the surface characteristics and in vitro biofilm formation of zirconia finished by either polishing or glazing. Methods: A total of 72 zirconia specimens were fabricated and divided into control, glazing, and polishing groups. Surface analysis included roughness, wettability, and surface free energy. Microbiological analysis included CFU (colony-forming units per mL) counts, microbial adhesion at 2, 4, 6, and 8 h, biofilm biovolume, and qualitative biofilm assessment via scanning electron microscopy (sEm). Results: The glazing group showed significantly greater roughness than the polishing (p = 0.006) and control (p = 0.016) groups, along with a lower contact angle (polishing—p = 0.002; control—p < 0.001) and higher surface energy (polishing—p = 0.005; control—p < 0.001). No significant differences were observed in CFU counts for the tested microorganisms (C. albicans, p = 0.158; L. casei, p = 0.610; S. mutans, p = 0.904). Regarding microbial adhesion, the polishing group showed a smaller biofilm-covered area compared to the control group for both total biofilm (p = 0.008) and viable biofilm (p = 0.005). no statistically significant difference was observed in biofilm biovolume (p = 0.082). Conclusions: These findings suggest that, despite the surface differences among the groups, biofilm formation was not significantly affected. Full article
Show Figures

Figure 1

21 pages, 17488 KiB  
Article
Mechanistic Study on the Inhibitory Effect of Dandelion Extract on Breast Cancer Cell Proliferation and Its Induction of Apoptosis
by Weifeng Mou, Ping Zhang, Yu Cui, Doudou Yang, Guanjie Zhao, Haijun Xu, Dandan Zhang and Yinku Liang
Biology 2025, 14(8), 910; https://doi.org/10.3390/biology14080910 - 22 Jul 2025
Viewed by 803
Abstract
This study aimed to investigate the underlying mechanisms by which dandelion extract inhibits the proliferation of breast cancer MDA-MB-231 cells. Dandelion root and leaf extracts were prepared using a heat reflux method and subjected to solvent gradient extraction to obtain fractions with different [...] Read more.
This study aimed to investigate the underlying mechanisms by which dandelion extract inhibits the proliferation of breast cancer MDA-MB-231 cells. Dandelion root and leaf extracts were prepared using a heat reflux method and subjected to solvent gradient extraction to obtain fractions with different polarities. MTT assays revealed that the ethyl acetate fraction exhibited the strongest inhibitory effect on cell proliferation. LC-MS analysis identified 12 potential active compounds, including sesquiterpenes such as Isoalantolactone and Artemisinin, which showed significantly lower toxicity toward normal mammary epithelial MCF-10A cells compared to tumor cells (p < 0.01). Mechanistic studies demonstrated that the extract induced apoptosis in a dose-dependent manner, with an apoptosis rate as high as 85.04%, and significantly arrested the cell cycle at the S and G2/M phases. Label-free quantitative proteomics identified 137 differentially expressed proteins (|FC| > 2, p < 0.05). GO enrichment analysis indicated that these proteins were mainly involved in cell cycle regulation and apoptosis. KEGG pathway analysis revealed that the antitumor effects were primarily mediated through the regulation of PI3K-Akt (hsa04151), JAK-STAT (hsa04630), and PPAR (hsa03320) signaling pathways. Moreover, differential proteins such as PI3K, AKT1S1, SIRT6, JAK1, SCD, STAT3, CASP8, STAT2, STAT6, and PAK1 showed strong correlation with the core components of the EA-2 fraction of dandelion. Molecular docking results demonstrated that these active compounds exhibited strong binding affinities with key target proteins such as PI3K and JAK1 (binding energy < −5.0 kcal/mol). This study elucidates the multi-target, multi-pathway synergistic mechanisms by which dandelion extract inhibits breast cancer, providing a theoretical basis for the development of novel antitumor agents. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Graphical abstract

19 pages, 3407 KiB  
Article
Surface Property Differences of European Larch Sapwood and Heartwood After Sanding
by Agnieszka Laskowska, Karolina Lipska, Teresa Kłosińska, Anna Piwek and Piotr Boruszewski
Coatings 2025, 15(7), 860; https://doi.org/10.3390/coatings15070860 - 21 Jul 2025
Viewed by 339
Abstract
The sapwood and heartwood of European larch (Larix decidua Mill.) are both used in industrial applications, but they differ in structure and composition, which may lead to surface property differences. This study compared their surface characteristics (on radial and tangential sections) after [...] Read more.
The sapwood and heartwood of European larch (Larix decidua Mill.) are both used in industrial applications, but they differ in structure and composition, which may lead to surface property differences. This study compared their surface characteristics (on radial and tangential sections) after sanding with aluminium oxide papers of four grit sizes (P60, P120, P180, P240). Surface roughness (Ra, Rz), wettability (contact angle with two reference liquids: water and diiodomethane, 3 and 30 s after droplet deposition), surface free energy, and colour parameters (L*, a*, b*) were analysed. Microscopic measurements were also performed to assess anatomical differences between sapwood and heartwood. The results showed no significant differences in roughness (Ra, Rz) between sapwood and heartwood. Measurement direction and sandpaper grit accounted for about 80% of variability in roughness parameters. Wettability was mainly influenced by wood area, with its effect ranging from 55% to 89% depending on measurement time. The sapwood was characterised by the lower wettability on the tangential section, while the heartwood was characterised by the lower wettability on the radial section. This was examined for the contact angle tests performed 3 s after the water droplet had been applied to the wood surface. Such dependencies were not observed after 30 s. Sapwood exhibited higher surface free energy (SFE) values than heartwood. The greatest colour change ΔE, at level 2.59, was noted for the heartwood on the radial section after sanding with P240 sandpaper. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

20 pages, 1106 KiB  
Article
Synchrotron-Based Structural Analysis of Nanosized Gd2(Ti1−xZrx)2O7 for Radioactive Waste Management
by Marco Pinna, Andrea Trapletti, Claudio Minelli, Armando di Biase, Federico Bianconi, Michele Clemente, Alessandro Minguzzi, Carlo Castellano and Marco Scavini
Nanomaterials 2025, 15(14), 1134; https://doi.org/10.3390/nano15141134 - 21 Jul 2025
Viewed by 322
Abstract
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. [...] Read more.
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. In this study, samples with varying zirconium content (xZr = 0.00, 0.15, 0.25, 0.375, 0.56, 0.75, 0.85, 1.00) were synthesized via the sol–gel method and thermally treated at 500 °C to obtain nanosized powders mimicking the defective structure of irradiated materials. Synchrotron-based techniques were employed to investigate their structural properties: High-Resolution X-ray Powder Diffraction (HR-XRPD) was used to assess long-range structure, while Pair Distribution Function (PDF) analysis and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy provided insights into the local structure. HR-XRPD data revealed that samples with low Zr content (xZr ≤ 0.25) are amorphous. Increasing Zr concentration led to the emergence of a crystalline phase identified as defective fluorite (xZr = 0.375, 0.56). Samples with the highest Zr content (xZr ≥ 0.75) were fully crystalline and exhibited only the fluorite phase. The experimental G(r) functions of the fully crystalline samples in the low r range are suitably fitted by the Weberite structure, mapping the relaxations induced by structural disorder in defective fluorite. These structural insights informed the subsequent EXAFS analysis at the Zr-K and Gd-L3 edges, confirming the splitting of the cation–cation distances associated with different metal species. Moreover, EXAFS provided a local structural description of the amorphous phases, identifying a consistent Gd-O distance across all compositions. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Graphical abstract

Back to TopTop