Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,356)

Search Parameters:
Keywords = fracture test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5839 KiB  
Article
Hydrogen Bond-Regulated Rapid Prototyping and Performance Optimization of Polyvinyl Alcohol–Tannic Acid Hydrogels
by Xiangyu Zou and Jun Huang
Gels 2025, 11(8), 602; https://doi.org/10.3390/gels11080602 (registering DOI) - 1 Aug 2025
Abstract
Traditional hydrogel preparation methods typically require multiple steps and certain external stimuli. In this study, rapid and stable gelation of polyvinyl alcohol (PVA)-tannic acid (TA)-based hydrogels was achieved through the regulation of hydrogen bonds. The cross-linking between PVA and TA is triggered by [...] Read more.
Traditional hydrogel preparation methods typically require multiple steps and certain external stimuli. In this study, rapid and stable gelation of polyvinyl alcohol (PVA)-tannic acid (TA)-based hydrogels was achieved through the regulation of hydrogen bonds. The cross-linking between PVA and TA is triggered by the evaporation of ethanol. Rheological testing and analysis of the liquid-solid transformation process of the hydrogel were performed. The gelation onset time (GOT) could be tuned from 10 s to over 100 s by adjusting the ethanol content and temperature. The addition of polyhydroxyl components (e.g., glycerol) significantly enhances the hydrogel’s water retention capacity (by 858%) and tensile strain rate (by 723%), while concurrently increasing the gelation time. Further studies have shown that the addition of alkaline substances (such as sodium hydroxide) promotes the entanglement of PVA molecular chains, increasing the tensile strength by 23% and the fracture strain by 41.8%. The experimental results indicate that the optimized PVA-TA hydrogels exhibit a high tensile strength (>2 MPa) and excellent tensile properties (~600%). Moreover, the addition of an excess of weakly alkaline substances (such as sodium acetate) reduces the degree of hydrolysis of PVA, enabling the system to form a hydrogel with extrudable characteristics before the ethanol has completely evaporated. This property allows for patterned printing and thus demonstrates the potential of the hydrogel in 3D printing. Overall, this study provides new insights for the application of PVA-TA based hydrogels in the fields of rapid prototyping and strength optimization. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (3rd Edition))
Show Figures

Graphical abstract

14 pages, 2428 KiB  
Article
Fracture Behavior of Steel-Fiber-Reinforced High-Strength Self-Compacting Concrete: A Digital Image Correlation Analysis
by Maoliang Zhang, Junpeng Chen, Junxia Liu, Huiling Yin, Yan Ma and Fei Yang
Materials 2025, 18(15), 3631; https://doi.org/10.3390/ma18153631 (registering DOI) - 1 Aug 2025
Abstract
In this study, steel fibers were used to improve the mechanical properties of high-strength self-compacting concrete (HSSCC), and its effect on the fracture mechanical properties was investigated by a three-point bending test with notched beams. Coupled with the digital image correlation (DIC) technique, [...] Read more.
In this study, steel fibers were used to improve the mechanical properties of high-strength self-compacting concrete (HSSCC), and its effect on the fracture mechanical properties was investigated by a three-point bending test with notched beams. Coupled with the digital image correlation (DIC) technique, the fracture process of steel-fiber-reinforced HSSCC was analyzed to elucidate the reinforcing and fracture-resisting mechanisms of steel fibers. The results indicate that the compressive strength and flexural strength of HSSCC cured for 28 days exhibited an initial decrease and then an enhancement as the volume fraction (Vf) of steel fibers increased, whereas the flexural-to-compressive ratio linearly increased. All of them reached their maximum of 110.5 MPa, 11.8 MPa, and 1/9 at 1.2 vol% steel fibers, respectively. Steel fibers significantly improved the peak load (FP), peak opening displacement (CMODP), fracture toughness (KIC), and fracture energy (GF) of HSSCC. Compared with HSSCC without steel fibers (HSSCC-0), the FP, KIC, CMODP, and GF of HSSCC with 1.2 vol% (HSSCC-1.2) increased by 23.5%, 45.4%, 11.1 times, and 20.1 times, respectively. The horizontal displacement and horizontal strain of steel-fiber-reinforced HSSCC both increased significantly with an increasing Vf. HSSCC-0 experienced unstable fracture without the occurrence of a fracture process zone during the whole fracture damage, whereas the fracture process zone formed at the notched beam tip of HSSCC-1.2 at its initial loading stage and further extended upward in the beams of high-strength self-compacting concrete with a 0.6% volume fraction of steel fibers and HSSCC-1.2 as the load approaches and reaches the peak. Full article
29 pages, 2309 KiB  
Systematic Review
The Influence of Printing Orientation on the Properties of 3D-Printed Polymeric Provisional Dental Restorations: A Systematic Review and Meta-Analysis
by Firas K. Alqarawi
J. Funct. Biomater. 2025, 16(8), 278; https://doi.org/10.3390/jfb16080278 (registering DOI) - 31 Jul 2025
Abstract
Three-dimensional printing is commonly used to fabricate provisional dental restorations. Studies have reported that changes in printing orientation affect the physical and mechanical properties of 3D-printed polymeric provisional restorations; however the findings have been inconsistent. Therefore, this systematic review and meta-analysis aims to [...] Read more.
Three-dimensional printing is commonly used to fabricate provisional dental restorations. Studies have reported that changes in printing orientation affect the physical and mechanical properties of 3D-printed polymeric provisional restorations; however the findings have been inconsistent. Therefore, this systematic review and meta-analysis aims to analyze the articles evaluating the influence of printing orientation on the physical and mechanical properties of 3D-printed polymeric provisional dental restorations. Recommendations provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to structure and compose the review. The PICO (Participant, Intervention, Comparison, Outcome) question ordered was: ‘Do 3D-printed provisional dental restorations (P) printed at various orientations (except 0°) (I) exhibit similar physical and mechanical properties (O) when compared to those printed at a 0° orientation (C)?’. An electronic search was conducted on 28 and 29 April 2025, by two independent researchers across four databases (MEDLINE/PubMed, Scopus, Cochrane Library, and Web of Science) to systematically collect relevant articles published up to March 2025. After removing duplicate articles and applying predefined inclusion and exclusion criteria, twenty-one articles were incorporated into this review. Self-designed Performa’s were used to tabulate all relevant information. For the quality analysis, the modified CONSORT scale was utilized. The quantitative analysis was performed on only fifteen out of twenty-one articles. It can be concluded that the printing orientation affects some of the tested properties, which include fracture strength (significantly higher for specimens printed at 0° when compared to 90°), wear resistance (significantly higher for specimens printed at 90° when compared to 0°), microhardness (significantly higher for specimens printed at 90°and 45° when compared to 0°), color stability (high at 0°), and surface roughness (significantly higher for specimens printed at 45° and 90° when compared to 0°). There were varied outcomes in terms of flexural strength and elastic modulus. Full article
(This article belongs to the Special Issue Advances in Restorative Dentistry Materials)
Show Figures

Figure 1

18 pages, 8192 KiB  
Article
Microstructure, Mechanical Properties, and Tribological Behavior of Friction Stir Lap-Welded Joints Between SiCp/Al–Fe–V–Si Composites and an Al–Si Alloy
by Shunfa Xiao, Pinming Feng, Xiangping Li, Yishan Sun, Haiyang Liu, Jie Teng and Fulin Jiang
Materials 2025, 18(15), 3589; https://doi.org/10.3390/ma18153589 (registering DOI) - 30 Jul 2025
Abstract
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of [...] Read more.
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of brake disks, this study fabricated a bimetallic structure of SiCp/Al–Fe–V–Si aluminum matrix composite and cast ZL101 alloy using friction stir lap welding (FSLW). Then, the microstructural evolution, mechanical properties, and tribological behavior of the FSLW joints were studied by XRD, SEM, TEM, tensile testing, and tribological tests. The results showed that the FSLW process homogenized the distribution of SiC particle reinforcements in the SiCp/Al–Fe–V–Si composites. The Al12(Fe,V)3Si heat-resistant phase was not decomposed or coarsened, and the mechanical properties were maintained. The FSLW process refined the grains of the ZL101 aluminum alloy through recrystallization and fragmented eutectic silicon, improving elongation to 22%. A metallurgical bond formed at the joint interface. Tensile fracture occurred within the ZL101 matrix, demonstrating that the interfacial bond strength exceeded the alloy’s load-bearing capacity. In addition, the composites exhibited significantly enhanced wear resistance after FSLW, with their wear rate reduced by approximately 40% compared to the as-received materials, which was attributed to the homogenized SiC particle distribution and the activation of an oxidative wear mechanism. Full article
Show Figures

Figure 1

19 pages, 6795 KiB  
Article
Strain-Rate-Dependent Tensile Behaviour and Viscoelastic Modelling of Kevlar® 29 Plain-Woven Fabric for Ballistic Applications
by Kun Liu, Ying Feng, Bao Kang, Jie Song, Zhongxin Li, Zhilin Wu and Wei Zhang
Polymers 2025, 17(15), 2097; https://doi.org/10.3390/polym17152097 - 30 Jul 2025
Abstract
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal [...] Read more.
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal material testing machine and a Split Hopkinson Tensile Bar (SHTB) apparatus. Tensile mechanical responses were obtained under various strain rates. Fracture morphology was characterised using scanning electron microscopy (SEM) and ultra-depth three-dimensional microscopy, followed by an analysis of microstructural damage patterns. Considering the strain rate effect, a viscoelastic constitutive model was developed. The results indicate that the tensile mechanical properties of Kevlar® 29 plain-woven fabric are strain-rate dependent. Tensile strength, elastic modulus, and toughness increase with strain rate, whereas fracture strain decreases. Under quasi-static loading, the fracture surface exhibits plastic flow, with slight axial splitting and tapered fibre ends, indicating ductile failure. In contrast, dynamic loading leads to pronounced axial splitting with reduced split depth, simultaneous rupture of fibre skin and core layers, and fibrillation phenomena, suggesting brittle fracture characteristics. The modified three-element viscoelastic constitutive model effectively captures the strain-rate effect and accurately describes the tensile behaviour of the plain-woven fabric across different strain rates. These findings provide valuable data support for research on ballistic mechanisms and the performance optimisation of protective materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

34 pages, 1156 KiB  
Systematic Review
Mathematical Modelling and Optimization Methods in Geomechanically Informed Blast Design: A Systematic Literature Review
by Fabian Leon, Luis Rojas, Alvaro Peña, Paola Moraga, Pedro Robles, Blanca Gana and Jose García
Mathematics 2025, 13(15), 2456; https://doi.org/10.3390/math13152456 - 30 Jul 2025
Abstract
Background: Rock–blast design is a canonical inverse problem that joins elastodynamic partial differential equations (PDEs), fracture mechanics, and stochastic heterogeneity. Objective: Guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, a systematic review of mathematical methods for geomechanically informed [...] Read more.
Background: Rock–blast design is a canonical inverse problem that joins elastodynamic partial differential equations (PDEs), fracture mechanics, and stochastic heterogeneity. Objective: Guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, a systematic review of mathematical methods for geomechanically informed blast modelling and optimisation is provided. Methods: A Scopus–Web of Science search (2000–2025) retrieved 2415 records; semantic filtering and expert screening reduced the corpus to 97 studies. Topic modelling with Bidirectional Encoder Representations from Transformers Topic (BERTOPIC) and bibliometrics organised them into (i) finite-element and finite–discrete element simulations, including arbitrary Lagrangian–Eulerian (ALE) formulations; (ii) geomechanics-enhanced empirical laws; and (iii) machine-learning surrogates and multi-objective optimisers. Results: High-fidelity simulations delimit blast-induced damage with ≤0.2 m mean absolute error; extensions of the Kuznetsov–Ram equation cut median-size mean absolute percentage error (MAPE) from 27% to 15%; Gaussian-process and ensemble learners reach a coefficient of determination (R2>0.95) while providing closed-form uncertainty; Pareto optimisers lower peak particle velocity (PPV) by up to 48% without productivity loss. Synthesis: Four themes emerge—surrogate-assisted PDE-constrained optimisation, probabilistic domain adaptation, Bayesian model fusion for digital-twin updating, and entropy-based energy metrics. Conclusions: Persisting challenges in scalable uncertainty quantification, coupled discrete–continuous fracture solvers, and rigorous fusion of physics-informed and data-driven models position blast design as a fertile test bed for advances in applied mathematics, numerical analysis, and machine-learning theory. Full article
Show Figures

Figure 1

26 pages, 23183 KiB  
Article
Fracture Behaviour of Basalt Fibre-Reinforced Lightweight Geopolymer Concrete: A Multidimensional Analysis
by Jutao Tao, Mingxia Jing, Qingshun Yang and Feng Liang
Materials 2025, 18(15), 3549; https://doi.org/10.3390/ma18153549 - 29 Jul 2025
Viewed by 175
Abstract
This study introduced basalt fibres as a reinforcing material and employed notched beam three-point bending tests combined with digital image correlation (DIC) technology to comprehensively evaluate key fracture parameters—namely, initial fracture toughness, unstable fracture toughness, fracture energy, and ductility index—of expanded polystyrene (EPS)-based [...] Read more.
This study introduced basalt fibres as a reinforcing material and employed notched beam three-point bending tests combined with digital image correlation (DIC) technology to comprehensively evaluate key fracture parameters—namely, initial fracture toughness, unstable fracture toughness, fracture energy, and ductility index—of expanded polystyrene (EPS)-based geopolymer concrete with different mix proportions. The results demonstrate that the optimal fracture performance was achieved when the basalt fibre volume content was 0.4% and the EPS content was 20%, resulting in respective increases of 12.07%, 28.73%, 98.92%, and 111.27% in the above parameters. To investigate the toughening mechanisms, scanning electron microscopy was used to observe the fibre–matrix interfacial bonding and crack morphology, while X-ray micro-computed tomography enabled detailed three-dimensional visualisation of internal porosity and crack development, confirming the crack-bridging and energy-dissipating roles of basalt fibres. Furthermore, the crack propagation process was simulated using the extended finite element method, and the evolution of fracture-related parameters was quantitatively analysed using a linear superposition progressive assumption. A simplified predictive model was proposed to estimate fracture toughness and fracture energy based on the initial cracking load, peak load, and compressive strength. The findings provide theoretical support and practical guidance for the engineering application of basalt fibre-reinforced EPS-based geopolymer lightweight concrete. Full article
Show Figures

Figure 1

21 pages, 8317 KiB  
Article
Mechanical Properties and Ballistic Performance for Different Coatings on HARDOX 450 Steel for Defense Applications
by Cosmin Nicolescu, Tudor Viorel Tiganescu, Aurora Antoniac, Ovidiu Iorga, Brandusa Ghiban, Alexandru Pascu, Alexandru Streza and Iulian Antoniac
Crystals 2025, 15(8), 687; https://doi.org/10.3390/cryst15080687 - 29 Jul 2025
Viewed by 201
Abstract
The aim of the current study is to investigate the mechanical properties and ballistic performance of HARDOX 450 steel for defense applications in different conditions: uncoated, alumina-coated, and LINE X polyurea-coated. Tensile tests and Vickers microhardness measurements were conducted, along with fracture surface [...] Read more.
The aim of the current study is to investigate the mechanical properties and ballistic performance of HARDOX 450 steel for defense applications in different conditions: uncoated, alumina-coated, and LINE X polyurea-coated. Tensile tests and Vickers microhardness measurements were conducted, along with fracture surface analysis using stereomicroscopy, scanning electron microscopy, and computed tomography. Experimental results showed that uncoated HARDOX 450 steel exhibited the highest strength and hardness, with ductile fracture features. Polyurea-coated HARDOX 450 steel samples retained good mechanical properties and demonstrated effective ballistic protection, including the containment of fragments. In contrast, alumina-coated HARDOX 450 steel samples exhibited reduced strength and ballistic resistance, attributed to the microstructural changes in HARDOX 450 steel caused by the high-temperature deposition process of alumina. Numerical simulations performed with the 5.56 × 45 mm bullet used in the simulation, along with its ballistic impact interaction with the Hardox 450 target model, aligned well with experimental ballistic impact results for all the samples. Overall, LINE X polyurea coating on HARDOX 450 steel proved to be the more suitable coating for applications requiring a balance of mechanical strength and ballistic impact resistance. Full article
Show Figures

Figure 1

18 pages, 3199 KiB  
Article
Geomechanical Basis for Assessing Open-Pit Slope Stability in High-Altitude Gold Mining
by Farit Nizametdinov, Rinat Nizametdinov, Denis Akhmatnurov, Nail Zamaliyev, Ravil Mussin, Nikita Ganyukov, Krzysztof Skrzypkowski, Waldemar Korzeniowski, Jerzy Stasica and Zbigniew Rak
Appl. Sci. 2025, 15(15), 8372; https://doi.org/10.3390/app15158372 - 28 Jul 2025
Viewed by 208
Abstract
The development of mining operations in high-altitude regions is associated with a number of geomechanical challenges caused by increased rock fracturing, adverse climatic conditions, and high seismic activity. These issues are particularly relevant for the exploitation of gold ore deposits, where the stability [...] Read more.
The development of mining operations in high-altitude regions is associated with a number of geomechanical challenges caused by increased rock fracturing, adverse climatic conditions, and high seismic activity. These issues are particularly relevant for the exploitation of gold ore deposits, where the stability of open-pit slopes directly affects both safety and extraction efficiency. The aim of this study is to develop and practically substantiate a comprehensive approach to assessing and ensuring slope stability, using the Bozymchak gold ore deposit—located in a high-altitude and seismically active zone—as a case study. The research involves the laboratory testing of rock samples obtained from engineering–geological boreholes, field shear tests on rock prisms, laser scanning of pit slopes, and digital geomechanical modeling. The developed calculation schemes take into account the structural features of the rock mass, geological conditions, and the design contours of the pit. In addition, special bench excavation technologies with pre-shear slotting and automated GeoMoS monitoring are implemented for real-time slope condition tracking. The results of the study make it possible to reliably determine the strength characteristics of the rocks under natural conditions, identify critical zones of potential collapse, and develop recommendations for optimizing slope parameters and mining technologies. The implemented approach ensures the required level of safety. Full article
(This article belongs to the Special Issue Latest Advances in Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

13 pages, 5877 KiB  
Article
Effect of Interval Time Between Pre-Deformation and Artificial Aging on Mechanical Properties of Er-Containing 7075 Aluminum Alloy
by Yingze Liu, Zhiqian Liao, Desheng Wang, Guoyuan Liu, Jiangyi Ren, Wenfu Li, Yunao Yang, Lingjie Chen and Yue Wang
Metals 2025, 15(8), 841; https://doi.org/10.3390/met15080841 - 28 Jul 2025
Viewed by 147
Abstract
In order to obtain the optimal heat treatment process of Er-containing 7075 aluminum alloy, the effects of pre-stretching and the interval time between pre-stretching and aging on the microstructure and mechanical properties of Er-containing 7075 aluminum alloy during solution treatment followed by pre-stretching [...] Read more.
In order to obtain the optimal heat treatment process of Er-containing 7075 aluminum alloy, the effects of pre-stretching and the interval time between pre-stretching and aging on the microstructure and mechanical properties of Er-containing 7075 aluminum alloy during solution treatment followed by pre-stretching and two-stage aging processes were investigated by mechanical property tests, metallographic tests, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that the mechanical properties of Er-containing 7075 aluminum alloy can be significantly improved by increasing the extrusion ratio. Pre-stretching provides nucleation sites for the precipitation of reinforcing phases, accelerates the aging strengthening process, and shortens the peak aging time. The crack source of fracture in Er-containing 7075 aluminum alloy is attributed to the segregated second phases containing Cu and Er in the alloy. The research results have significant engineering significance for the optimization of the heat treatment process of Er-containing 7075 aluminum alloy. Full article
Show Figures

Figure 1

23 pages, 8489 KiB  
Article
Validation of the Pull-Back Method for Dynamic Tensile Strength Characterization in Unidirectional Reinforced Concrete
by Xinlu Yu, Junfeng Zhang and Junhui Gu
Appl. Sci. 2025, 15(15), 8369; https://doi.org/10.3390/app15158369 - 28 Jul 2025
Viewed by 194
Abstract
The pull-back method for determining dynamic tensile strength assumes one-dimensional stress wave propagation and material homogeneity. This study validates these assumptions for unidirectional reinforced concrete (UDRC) through experiments and numerical simulations. Split Hopkinson pressure bar tests were conducted on plain concrete, plain UDRC, [...] Read more.
The pull-back method for determining dynamic tensile strength assumes one-dimensional stress wave propagation and material homogeneity. This study validates these assumptions for unidirectional reinforced concrete (UDRC) through experiments and numerical simulations. Split Hopkinson pressure bar tests were conducted on plain concrete, plain UDRC, and deformed UDRC specimens containing a central 6 mm steel bar. Ultra-high-speed digital image correlation at 500,000 fps enabled precise local strain rate measurements (3 s−1 to 55 s−1) at fracture locations. Finite element simulations revealed that while reinforcement induces localized multi-axial stresses near the steel–concrete interface, the bulk concrete maintains predominantly uniaxial stress conditions. Experimental results showed less than 1% variation in pull-back velocity between specimen types. Statistical analysis confirmed a unified strain rate-strength relationship: σspall=4.1+4.7log10(ε˙)MPa, independent of reinforcement configuration (ANCOVA: p=0.2182 for interaction term). The dynamic tensile strength is governed by concrete matrix properties rather than reinforcement type. These findings are the first to experimentally and numerically validate the pull-back method’s applicability to UDRC systems, establishing that dynamic tensile failure is matrix-dominated and enabling simplified one-dimensional analysis for reinforced concrete under impact. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 4456 KiB  
Article
Study on the Filling and Plugging Mechanism of Oil-Soluble Resin Particles on Channeling Cracks Based on Rapid Filtration Mechanism
by Bangyan Xiao, Jianxin Liu, Feng Xu, Liqin Fu, Xuehao Li, Xianhao Yi, Chunyu Gao and Kefan Qian
Processes 2025, 13(8), 2383; https://doi.org/10.3390/pr13082383 - 27 Jul 2025
Viewed by 325
Abstract
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their [...] Read more.
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their excellent oil solubility, temperature/salt resistance, and high strength. However, their application is limited by the efficient filling and retention in deep fractures. This study innovatively combines the OSR particle plugging system with the mature rapid filtration loss plugging mechanism in drilling, systematically exploring the influence of particle size and sorting on their filtration, packing behavior, and plugging performance in channeling fractures. Through API filtration tests, visual fracture models, and high-temperature/high-pressure (100 °C, salinity 3.0 × 105 mg/L) core flow experiments, it was found that well-sorted large particles preferentially bridge in fractures to form a high-porosity filter cake, enabling rapid water filtration from the resin plugging agent. This promotes efficient accumulation of OSR particles to form a long filter cake slug with a water content <20% while minimizing the invasion of fine particles into matrix pores. The slug thermally coalesces and solidifies into an integral body at reservoir temperature, achieving a plugging strength of 5–6 MPa for fractures. In contrast, poorly sorted particles or undersized particles form filter cakes with low porosity, resulting in slow water filtration, high water content (>50%) in the filter cake, insufficient fracture filling, and significantly reduced plugging strength (<1 MPa). Finally, a double-slug strategy is adopted: small-sized OSR for temporary plugging of the oil layer injection face combined with well-sorted large-sized OSR for main plugging of channeling fractures. This strategy achieves fluid diversion under low injection pressure (0.9 MPa), effectively protects reservoir permeability (recovery rate > 95% after backflow), and establishes high-strength selective plugging. This study clarifies the core role of particle size and sorting in regulating the OSR plugging effect based on rapid filtration loss, providing key insights for developing low-damage, high-performance channeling plugging agents and scientific gradation of particle-based plugging agents. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 4974 KiB  
Article
Investigation of the Evolution of Anisotropic Full-Field Strain Characteristics of Coal Samples Under Creep Loading Conditions
by Xuguang Li, Yu Wang, Xuefeng Yi and Xinyu Bai
Appl. Sci. 2025, 15(15), 8355; https://doi.org/10.3390/app15158355 - 27 Jul 2025
Viewed by 159
Abstract
This work aims to reveal the full-field strain evolution characteristics and failure mechanisms of anisotropic coal samples under creep loading. A series of compression tests combined with digital image correlation (DIC) monitoring were employed to characterize the strain evolution process of coal specimens [...] Read more.
This work aims to reveal the full-field strain evolution characteristics and failure mechanisms of anisotropic coal samples under creep loading. A series of compression tests combined with digital image correlation (DIC) monitoring were employed to characterize the strain evolution process of coal specimens with bedding angles of 0°, 30°, 60°, and 90°. Testing results show that the peak strength, peak strain, and the creep loading stage of coal are significantly influenced by the bedding angle. The peak strength initially decreases and then increases as the bedding angle increases. In addition, the creep failure of coal manifests as a process of instantaneous deformation, decelerating creep, steady-state creep, accelerating creep, and failure. Under graded creep loading conditions, coal specimens exhibit distinct creep characteristics at high stress levels. Moreover, the bedding angle significantly influences the strain field evolution of the coal samples. Finally, for coal specimens with bedding angles of 0° and 90°, the final macroscopic fracture pattern upon failure is characterized by longitudinal tensile splitting. In contrast, coal samples with bedding angles of 30° and 60° tend to exhibit failure along the bedding interfaces, forming tensile-shear fractures. The results of this study will provide theoretical guidance for the prevention, early warning, and safety management of coal mine disasters. Full article
(This article belongs to the Topic Failure Characteristics of Deep Rocks, Volume II)
Show Figures

Figure 1

15 pages, 8574 KiB  
Article
Hydrogen Embrittlement Resistance of an Optimized Additively Manufactured Austenitic Stainless Steel from Recycled Sources
by Mattia Cabrioli, María Silva Colmenero, Matteo Vanazzi, Luisa E. Mondora, Gianluca Acquistapace, Fabio Esposito and Michela Giovanardi
Corros. Mater. Degrad. 2025, 6(3), 34; https://doi.org/10.3390/cmd6030034 - 26 Jul 2025
Viewed by 125
Abstract
In the framework of hydrogen production and storage for clean energy generation, the resistance to hydrogen embrittlement of a newly developed austenitic stainless steel is presented. Gas-atomized metal powders prepared from secondary-sourced metals were employed to manufacture test specimens with Laser Powder Bed [...] Read more.
In the framework of hydrogen production and storage for clean energy generation, the resistance to hydrogen embrittlement of a newly developed austenitic stainless steel is presented. Gas-atomized metal powders prepared from secondary-sourced metals were employed to manufacture test specimens with Laser Powder Bed Fusion (LPBF) technology. After machining and exposure to a controlled, pressurized hydrogen atmosphere at high temperature, the effect of hydrogen charging on the mechanical performance under static and dynamic conditions was investigated. The stabilizing effect of the optimized chemical composition is reflected in the absence of degradation effects on Yield Stress (YS), Ultimate Tensile Stress (UTS), and fatigue life observed for specimens exposed to hydrogen. Moreover, despite a moderate reduction in the elongation at fracture observed by increasing the hydrogen charging time, ductility loss calculated as Relative Reduction of Area (RRA) remains substantially unaffected by the duration of exposure to hydrogen and demonstrates that the austenitic steel is capable of resisting hydrogen embrittlement (HE). Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Modern Alloys in Advanced Applications)
Show Figures

Figure 1

14 pages, 2206 KiB  
Article
Numerical Simulation Study on the Fracture Process of CFRP-Reinforced Concrete
by Xiangqian Fan, Jueding Liu, Li Zou and Juan Wang
Buildings 2025, 15(15), 2636; https://doi.org/10.3390/buildings15152636 - 25 Jul 2025
Viewed by 166
Abstract
To investigate the crack extension mechanism in CFRP-reinforced concrete, this paper derives analytical expressions for the external load and crack opening displacement in the fracture process of CFRP concrete beams based on the crack emergence toughness criterion and the Paris displacement formula as [...] Read more.
To investigate the crack extension mechanism in CFRP-reinforced concrete, this paper derives analytical expressions for the external load and crack opening displacement in the fracture process of CFRP concrete beams based on the crack emergence toughness criterion and the Paris displacement formula as the theoretical basis. A numerical iterative method was used to computationally simulate the fracture process of CFRP-reinforced concrete beams and to analyze the effect of different initial crack lengths on the fracture process. The research results indicate that the numerical simulation results of the crack initiation load are in good agreement with the test results, and the crack propagation curves and the test results are basically consistent before the CFRP-concrete interface peels off. The numerical results of ultimate load are lower than the test results, but it is safe for fracture prediction in actual engineering. With the increase in the initial crack length, the effect of the initial crack length on the critical effective crack propagation length is more obvious. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop