Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,745)

Search Parameters:
Keywords = fracture mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3572 KB  
Article
Numerical Prediction for Reinforced Concrete Beams Subjected to Monotonic Fatigue Loading Using Various Concrete Damage Models
by Nagwa Ibrahim, Said Elkholy and Ahmed Godat
Buildings 2026, 16(1), 175; https://doi.org/10.3390/buildings16010175 (registering DOI) - 30 Dec 2025
Abstract
In the literature, fatigue-loaded reinforced concrete (RC) beams have been the subject of several experimental investigations; however, few numerical studies have specifically examined this behavior. The primary goal of this study is to create and validate a comprehensive nonlinear finite element (FE) modeling [...] Read more.
In the literature, fatigue-loaded reinforced concrete (RC) beams have been the subject of several experimental investigations; however, few numerical studies have specifically examined this behavior. The primary goal of this study is to create and validate a comprehensive nonlinear finite element (FE) modeling framework that combines an existing concrete damage model with specialized modelling techniques (e.g., material modelling, structural modelling, mesh configuration) to forecast the behaviour of reinforced concrete beams under monotonic fatigue loads and track the failure progress. This was accomplished by implementing suitable constitutive and structural models pertaining to concrete and reinforcing steel using VecTor2 finite element software. The Lü concrete damage model, which accounts for the accumulated damage in the concrete at each loading cycle, was taken from the literature to enhance the numerical findings. A number of published experimental tests conducted under monotonic fatigue loading were used to assess the accuracy of the suggested numerical model. The obtained numerical results demonstrated that the FE model may be used to simulate the monotonic fatigue behaviour of various RC beam types. The monotonic fatigue results were significantly improved by applying the Lü concrete damage model. Additionally, the FE model was implemented into practice to offer valuable information on failure mechanisms, fracture patterns, and strain profiles at different loading cycles. Full article
Show Figures

Figure 1

10 pages, 1386 KB  
Article
Effect of Carbon Addition on Mechanical and Corrosion Properties of CoCrFeNiMn High-Entropy Alloy
by Huiling Zhou, Hongqun Liu, Ji Li, Chengtao Li, Haokun Yang and Yanxin Qiao
Metals 2026, 16(1), 50; https://doi.org/10.3390/met16010050 (registering DOI) - 30 Dec 2025
Abstract
The CoCrFeNiMn High-Entropy Alloy (HEA) with 0, 0.5 and 1.0 at.% Carbon (C) addition has been evaluated by mechanical and corrosion testing, including tensile, wear and corrosion resistance testings. The result shows that the medium of 0.5 at.% C addition into HEA brings [...] Read more.
The CoCrFeNiMn High-Entropy Alloy (HEA) with 0, 0.5 and 1.0 at.% Carbon (C) addition has been evaluated by mechanical and corrosion testing, including tensile, wear and corrosion resistance testings. The result shows that the medium of 0.5 at.% C addition into HEA brings higher tensile toughness with 27,213.6 MPa%, less wear damage (0.37 mm3) and superior thermodynamic stability (0.73 VSCE), compared with that of the other two compositions. The tensile fracture observation points out that the high C addition embrittles the HEA with poorer toughness and wear resistance with content increasing to 1.0 at.%. The HEA material with 0.5 at.% C addition has high corrosion potential and the lowest corrosion current density, indicating that the appropriate C-alloying plays a significant role in determining the corrosion properties of HEA. The current study shall provide meaningful instruction for high-performance C-alloyed HEA development. Full article
27 pages, 6323 KB  
Article
Multivariate Analysis and Hydrogeochemical Evolution of Groundwater in a Geologically Controlled Aquifer System: A Case Study in North Central Province, Sri Lanka
by Uthpala Hansani, Sapumal Asiri Witharana, Prasanna Lakshitha Dharmapriya, Pushpakanthi Wijekoon, Zhiguo Wu, Xing Chen, Shameen Jinadasa and Rohan Weerasooriya
Water 2026, 18(1), 89; https://doi.org/10.3390/w18010089 (registering DOI) - 30 Dec 2025
Abstract
This study investigates the coupled relationship between groundwater chemistry, lithology, and structural features in the dry zone of Netiyagama, Sri Lanka, within a fractured crystalline basement. Groundwater chemistry fundamentally reflects geological conditions determined by rock-water interactions, we hypothesized that the specific spatial patterns [...] Read more.
This study investigates the coupled relationship between groundwater chemistry, lithology, and structural features in the dry zone of Netiyagama, Sri Lanka, within a fractured crystalline basement. Groundwater chemistry fundamentally reflects geological conditions determined by rock-water interactions, we hypothesized that the specific spatial patterns of groundwater chemistry in heterogeneous fractured systems are distinctly controlled by integrated effects of lithological variations, structurally driven flow pathways, aquifer stratification, and geochemical processes, including cation exchange and mineral-specific weathering. To test this, we integrated hydrogeochemical signatures with mapped hydrogeological data and applied multi-stage multivariate analyses, including Piper diagrams, Hierarchical Cluster Analysis (HCA), and Principal Component Analysis (PCA), and various bivariate plots. Piper diagrams identified five distinct hydrochemical facies, but these did not correlate directly with specific rock types, highlighting the limitations of traditional methods in heterogeneous settings. Employing a multi-stage multivariate analysis, we identified seven clusters (C1–C7) that exhibited unique spatial distributions across different rock types and provided a more refined classification of groundwater chemistries. These clusters align with a three-unit aquifer framework (shallow weathered zone, intermittent fracture zone at ~80–100 m MSL, and deeper persistent fractures) controlled by a regional syncline and lineaments. Further analysis through bivariate diagrams revealed insights into dominant weathering processes, cation-exchange mechanisms, and groundwater residence times across the identified clusters. Recharge-type clusters (C1, C2, C5) reflect plagioclase-dominated weathering and short flow paths; transitional clusters (C3, C7) show mixed sources and increasing exchange; evolved clusters (C4, C6) exhibit higher mineralization and longer residence. Overall, the integrated workflow (facies plots + PCA/HCA + bivariate/process diagrams) constrains aquifer dynamics, recharge pathways, and flow-path evolution without additional drilling, and provides practical guidance for well siting and treatment. Full article
Show Figures

Figure 1

16 pages, 3671 KB  
Article
Validation and Verification of Novel Three-Dimensional Crack Growth Simulation Software GmshCrack3D
by Sven Krome, Tobias Duffe, Gunter Kullmer, Britta Schramm and Richard Ostwald
Appl. Sci. 2026, 16(1), 384; https://doi.org/10.3390/app16010384 (registering DOI) - 30 Dec 2025
Abstract
The accurate prediction of crack initiation and propagation is essential for assessing the structural integrity of mechanically joined components and other complex assemblies. To overcome the limitations of existing finite element tools, a modular Python framework has been developed to automate three-dimensional crack [...] Read more.
The accurate prediction of crack initiation and propagation is essential for assessing the structural integrity of mechanically joined components and other complex assemblies. To overcome the limitations of existing finite element tools, a modular Python framework has been developed to automate three-dimensional crack growth simulations. The program combines geometric reconstruction, adaptive remeshing, and the numerical evaluation of fracture mechanics parameters within a single, fully automated workflow. The framework builds on open-source components and remains solver-independent, enabling straightforward integration with commercial or research finite element codes. A dedicated sequence of modules performs all required steps, from mesh separation and crack insertion to local submodeling, stress and displacement mapping, and iterative crack-front update, without manual interaction. The methodology was verified using a mini-compact tension (Mini-CT) specimen as a benchmark case. The numerical results demonstrate the accurate reproduction of stress intensity factors and energy release rates while achieving high computational efficiency through localized refinement. The developed approach provides a robust basis for crack growth simulations of geometrically complex or residual stress-affected structures. Its high degree of automation and flexibility makes it particularly suited for analyzing cracks in clinched and riveted joints, supporting the predictive design and durability assessment of joined lightweight structures. Full article
(This article belongs to the Special Issue Application of Fracture Mechanics in Structures)
Show Figures

Figure 1

23 pages, 8309 KB  
Article
Study on the Mechanism of Intense Strata Behavior and Control Technology for Goaf-Side Roadway in Extra-Thick Coal Seam
by Shuai Yan, Yongjie Wang, Jianbiao Bai, Xiaolin Li and Qundi Qu
Appl. Sci. 2026, 16(1), 378; https://doi.org/10.3390/app16010378 (registering DOI) - 29 Dec 2025
Abstract
With the depletion of shallow coal resources, deep extra-thick coal seam mining has become vital for energy security, yet fully mechanized top-coal caving (FMTC) goaf-side roadways face severe challenges of excessive advanced deformation and intense strata behavior. To address this gap, this study [...] Read more.
With the depletion of shallow coal resources, deep extra-thick coal seam mining has become vital for energy security, yet fully mechanized top-coal caving (FMTC) goaf-side roadways face severe challenges of excessive advanced deformation and intense strata behavior. To address this gap, this study took the 4301 tailgate of a coal mine in Shaanxi province as the engineering background, integrating field investigation, theoretical analysis, FLAC3D numerical simulation, and industrial tests. Guided by the key stratum theory, we systematically analyzed the influence of overlying key strata fracture on strata pressure. The results show three key strata: near-field secondary key strata (KS1, KS2) with “vertical O-X” fracturing and far-field main key stratum (MKS) with “horizontal O-X” fracturing. The radial extrusion force from MKS rotational blocks is the core cause of 200 m range advanced deformation. A collaborative control scheme of near-field key strata directional fracturing roof-cutting pressure relief and high-strength bolt-cable support was proposed. Industrial verification indicates roadway deformation was significantly reduced, with roof subsidence, floor heave, and rib convergence controlled within safe engineering limits. This study fills the gap of insufficient research on far-field key strata’s impact, providing a reliable technical solution for similar extra-thick coal seam FMTC goaf-side roadway surrounding rock control. Full article
Show Figures

Figure 1

18 pages, 69163 KB  
Article
Mechanisms of Gold Enrichment and Precipitation at the Sawayardun Gold Deposit, Southwestern Tianshan, Xinjiang, China
by Weiyu Ding, Lin Meng, Jiangang Ding, Shengtao Li, Xiuzhi Yang, Xiaoyi Hou and Wenjie Yu
Minerals 2026, 16(1), 39; https://doi.org/10.3390/min16010039 (registering DOI) - 29 Dec 2025
Abstract
The mechanisms of massive gold migration and enrichment are challenging issues in mineral deposit research. The evolution of the elements and structures of gold-bearing minerals is the key to revealing the mechanisms of gold enrichment and migration. The Sawayardun gold deposit has an [...] Read more.
The mechanisms of massive gold migration and enrichment are challenging issues in mineral deposit research. The evolution of the elements and structures of gold-bearing minerals is the key to revealing the mechanisms of gold enrichment and migration. The Sawayardun gold deposit has an ore reserve of 127 t located in the southwestern Tianshan, Xinjiang, China. It is an ideal place for studying the mechanisms of massive gold migration and precipitation. However, the occurrence and distribution of gold are unclear, preventing an understanding of the massive gold enrichment and precipitation mechanism in the Sawayardun gold deposit. Therefore, in this study, the microscopic structural characteristics and chemical compositions of sulfides and gold minerals in the deposit were comprehensively analyzed using scanning electron microscopy (SEM) and electron probe microanalysis (EPMA) techniques. The mineralization evolution is divided into a metamorphosed sedimentary period and a hydrothermal mineralization period, with the latter further subdivided into four mineralization stages: the quartz–pyrite stage, the arsenopyrite–pyrite stage, the polymetallic sulfide stage, and the carbonate stage. EPMA analysis reveals no clear compositional trends among different pyrite generations. Arsenopyrite (Apy) is more enriched in Au and Sb than pyrite. Overall, arsenopyrite is S-rich and As-deficient. Compared to Apy2, Apy1 is enriched in Fe and S but depleted in As. Stibnite is closely associated with native gold and contains elevated Au (up to 3.63%). Invisible gold exists in a form that is visible at the micrometer-to-atomic scale within pyrite and is lattice-bound in arsenopyrite. Visible gold occurs as native grains in quartz fractures or within sulfides. The composition of pyrite indicates that the Sawayardun gold deposit formed in a reducing, medium-depth, meso-epithermal environment. Au extraction by Sb-rich melts, dissolution–reprecipitation, and adsorption by As-bearing pyrite were the primary mechanisms for Au migration and precipitation. This study contributes to understanding the enrichment and precipitation processes of gold in orogenic-gold deposits in southwestern Tianshan. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

19 pages, 5167 KB  
Article
Safety Support Design and Sustainable Guarantee Method for Gob-Side Roadway Along Thick Coal Seams
by Peng Huang, Bo Wu, Erkan Topal, Hu Shao, Zhenjiang You, Shuxuan Ma and Ruirui Chen
Sustainability 2026, 18(1), 346; https://doi.org/10.3390/su18010346 (registering DOI) - 29 Dec 2025
Abstract
Maintaining the stability of the mine roadway is of paramount importance, as it is critical in ensuring the daily operational continuity, personnel safety, long-term economic viability, and sustainability of the entire mining operation. Significant instability can trigger serious disruptions—such as production stoppages, equipment [...] Read more.
Maintaining the stability of the mine roadway is of paramount importance, as it is critical in ensuring the daily operational continuity, personnel safety, long-term economic viability, and sustainability of the entire mining operation. Significant instability can trigger serious disruptions—such as production stoppages, equipment damage, and severe safety incidents—which ultimately compromise the project’s financial returns and future prospects. Therefore, the proactive assessment and rigorous control of roadway stability constitute a foundational element of successful and sustainable resource extraction. In China, thick and extra-thick coal seams constitute over 44% of the total recoverable coal reserves. Consequently, their safe and efficient extraction is considered vital in guaranteeing energy security and enhancing the efficiency of resource utilization. The surrounding rock of gob-side roadways in typical coal seams is often fractured due to high ground stress, intensive mining disturbances, and overhanging goaf roofs. Consequently, asymmetric failure patterns such as bolt failure, steel belt tearing, anchor cable fracture, and shoulder corner convergence are common in these entries, which pose a serious threat to mine safety and sustainable mining operations. This deformation and failure process is associated with several parameters, including the coal seam thickness, mining technology, and surrounding rock properties, and can lead to engineering hazards such as roof subsidence, rib spalling, and floor heave. This study proposes countermeasures against asymmetric deformation affecting gob-side entries under intensive mining pressure during the fully mechanized caving of extra-thick coal seams. This research selects the 8110 working face of a representative coal mine as the case study. Through integrated field investigation and engineering analysis, the principal factors governing entry stability are identified, and effective control strategies are subsequently proposed. An elastic foundation beam model is developed, and the corresponding deflection differential equation is formulated. The deflection and stress distributions of the immediate roof beam are thereby determined. A systematic analysis of the asymmetric deformation mechanism and its principal influencing factors is conducted using the control variable method. A support approach employing a mechanical constant-resistance single prop (MCRSP) has been developed and validated through practical application. The findings demonstrate that the frequently observed asymmetric deformation in gob-side entries is primarily induced by the combined effect of the working face’s front abutment pressure and the lateral pressure originating from the neighboring goaf area. It is found that parameters including the immediate roof thickness, roadway span, and its peak stress have a significant influence on entry convergence. Under both primary and secondary mining conditions, the maximum subsidence shows an inverse relationship with the immediate roof thickness, while exhibiting a positive correlation with both the roadway span and the peak stress. Based on the theoretical analysis, an advanced support scheme, which centers on the application of an MCRSP, is designed. Field monitoring data confirm that the peak roof subsidence and two-side closure are successfully limited to 663 mm and 428 mm, respectively. This support method leads to a notable reduction in roof separation and surrounding rock deformation, thereby establishing a theoretical and technical foundation for the green and safe mining of deep extra-thick coal seams. Full article
(This article belongs to the Special Issue Scientific Disposal and Utilization of Coal-Based Solid Waste)
Show Figures

Figure 1

26 pages, 20340 KB  
Article
Laser Power-Dependent Microstructural Evolution and Fracture Mechanisms in Ti80 Titanium Alloy Welds: A Multi-Scale Investigation
by Chuanbo Zheng, Zhanwen Yang, Guo Yi, Liuyu Zhang, Xiaomeng Zhou and Xinyu Yao
Materials 2026, 19(1), 116; https://doi.org/10.3390/ma19010116 (registering DOI) - 29 Dec 2025
Abstract
The laser welding of 4 mm thick Ti80 alloy under different powers was analyzed, and the weld morphology, microstructure, and mechanical properties were studied. A simulation model was established based on ABAQUS, and laser welding simulations were conducted using 2520 W and 3000 [...] Read more.
The laser welding of 4 mm thick Ti80 alloy under different powers was analyzed, and the weld morphology, microstructure, and mechanical properties were studied. A simulation model was established based on ABAQUS, and laser welding simulations were conducted using 2520 W and 3000 W laser welding power sources to analyze the temperature field and stress field, which were verified by experiments. The increase in power changed the weld morphology from Y-shaped to X-shaped and affected the number of pores in incomplete and complete penetration. The microstructure in the weld zone presented fine acicular α′ phase. Subsequently, grain boundary distribution maps, Kernel Average Misorientation (KAM) maps, and geometrically necessary dislocation (GND) density maps were generated through electron backscatter diffraction (EBSD) analysis. These comprehensive data visualizations enabled multi-dimensional investigation, establishing and analyzing correlations between laser welding parameters, microstructural evolution, and mechanical properties in Ti80 titanium laser welding. The hardness of the base material was 320 HV to 360 HV, and it increased from 420 HV to 460 HV in the weld zone. At 3000 W, the tensile strength reached 903.12 MPa, and the elongation was 10.40%, indicating ductile fracture. The simulation results accurately predicted the maximum longitudinal residual stress in the weld zone, with an error of 1.65% to 1.81% of the measured value. Full article
Show Figures

Graphical abstract

23 pages, 6755 KB  
Article
Weight-Bearing Ladder Climbing Exercise Improves Bone Loss and Bone Microstructural Damage While Promoting Bone Injury Healing in OVX Rats
by Yiting Kang, Nan Li, Yanan Yu, Dingkang Wang, Tingting Zhao, Lijun Sun, Changjiang Liu and Liang Tang
Biology 2026, 15(1), 55; https://doi.org/10.3390/biology15010055 - 28 Dec 2025
Viewed by 27
Abstract
Osteoporosis is highly prevalent in postmenopausal women, causing chronic pain, fractures, and limited mobility that burden individuals and society. While resistance exercise benefits bone health, its role in osteoporotic bone injury healing and underlying mechanisms remain unclear. This study aimed to explore the [...] Read more.
Osteoporosis is highly prevalent in postmenopausal women, causing chronic pain, fractures, and limited mobility that burden individuals and society. While resistance exercise benefits bone health, its role in osteoporotic bone injury healing and underlying mechanisms remain unclear. This study aimed to explore the effects of 10-week weight-bearing ladder climbing exercise on ovariectomy (OVX)-induced osteoporosis and subsequent bone injury healing, and to investigate whether these effects are associated with the myostatin (MSTN) and Wnt/β-catenin pathways. Fifty-four 12-week-old female SD rats were randomized into Sham, OVX, and OVX + EX groups. Rats in the OVX and OVX + EX groups underwent ovariectomy to induce postmenopausal osteoporosis, and those in the OVX + EX group received 10-week weight-bearing ladder climbing. After the exercise intervention, 6 rats in each group were sacrificed; the remaining rats underwent femoral midshaft drilling to establish bone injury. The improvement in osteoporosis was evaluated via Micro-CT, biomechanical tests, RT-qPCR for mRNA detection, and Western blot for measuring protein levels of MSTN and Wnt/β-catenin pathway-related molecules at post-exercise and 21 days post-injury. Bone healing was reflected by the bone volume fraction at the bone injury site detected via Micro-CT at 10 and 21 days post-injury. This exercise significantly enhanced muscle strength and improved femoral bone mineral density (BMD), trabecular microstructure, and biomechanical properties in OVX rats. Meanwhile, the level of MSTN in the OVX + EX group was decreased, the expression of its downstream signaling pathways was inhibited, and the mRNA and protein expressions of Wnt/β-catenin were upregulated. Moreover, 21 days after exercise intervention, the biomechanical properties and bone microstructure of the OVX + EX group were still significantly superior to those of the OVX group, and the aforementioned molecular regulatory effect remained. In addition, pre-conducted exercise was able to promote increases in bone volume fraction at the bone injury site 10 and 21 days after drilling, which was conducive to bone injury healing. Ten-week weight-bearing ladder climbing ameliorates OVX-induced bone loss and promotes osteoporotic bone repair via regulating the MSTN/ActRIIB/Smad3 and Wnt/β-catenin pathways, providing evidence for exercise as a safe non-pharmacological intervention. Full article
(This article belongs to the Special Issue Bone Mechanics: From Cells to Organs, to Function)
Show Figures

Figure 1

17 pages, 961 KB  
Review
Biophysics of Bacterial Colonial Structures and the Occupancy of Microecological Spaces
by Fernando Baquero, Teresa M. Coque, Natalia Bastón-Paz and Ana Elena Pérez-Cobas
Biology 2026, 15(1), 56; https://doi.org/10.3390/biology15010056 - 28 Dec 2025
Viewed by 34
Abstract
The process of bacterial reproduction on surfaces conducive to growth forms colonies, which are defined as physical bodies with functional and environmental effects. This phenomenon can be conceptualized as transforming biological processes into physical phenomena. Large bacterial multicellular aggregates can be conceptualized as [...] Read more.
The process of bacterial reproduction on surfaces conducive to growth forms colonies, which are defined as physical bodies with functional and environmental effects. This phenomenon can be conceptualized as transforming biological processes into physical phenomena. Large bacterial multicellular aggregates can be conceptualized as physical entities, produced by “colonial organisms”, thereby transforming physics into biology. The formation of colonies requires surfaces, typically hydrogels or liquid–air interfaces, but also hard solid surfaces. Bacterial cell layers also contribute to the production of surfaces. Within a typical 3D-shaped, frequently domed colony, a variety of microcompartments form at the intersections of gradients that diffuse from its aerial and surface limits, leading to cellular functional diversity. This heterogeneity can lead to physical changes and fractures in the colony material, leading to the formation of fluid microchannels. The second primary type of colony is the 2D-shaped form that spreads over larger surfaces and is known as a biofilm. These physical structures possess significant water content, which is retained by a bacterial-excreted exopolymer. Biofilms are structurally organized as multilayer structures that can expand in the space through the lateral slippage of a more fluid overlayer on top of the surface-attached layer. The dissemination of biofilms may entail the integration of additional bacterial colonies, thereby giving rise to complex biofilms. The physical occupancy of microenvironments by colonies created on surfaces of higher organisms or on environmental surfaces exerts a significant influence on fluid mechanics and the functioning of organisms and ecosystems. In addition, colonies also contribute to the pathology of industrial constructions and devices, often leading to microbiologically influenced electrochemical corrosion, which results in material degradation. Full article
(This article belongs to the Section Biophysics)
Show Figures

Figure 1

27 pages, 5090 KB  
Review
Advanced High-Strength Medium-Manganese Steels as an Alternative to Conventional Forging Steels: A Review
by Aleksandra Kozłowska and Anna Wojtacha
Materials 2026, 19(1), 109; https://doi.org/10.3390/ma19010109 - 28 Dec 2025
Viewed by 35
Abstract
This review highlights conventional forging steels and advanced medium-Mn steels containing retained austenite (RA), emphasizing their potential for industrial forging applications. Modern steels intended for forgings are required to combine strength, ductility, toughness and fatigue resistance with good hardenability and machinability at minimal [...] Read more.
This review highlights conventional forging steels and advanced medium-Mn steels containing retained austenite (RA), emphasizing their potential for industrial forging applications. Modern steels intended for forgings are required to combine strength, ductility, toughness and fatigue resistance with good hardenability and machinability at minimal cost. Medium-Mn multiphase steels fulfill these requirements by the strain-induced martensitic transformation (SIMT) of fine, lath-type RA, which can create a strength–ductility balance. Ferritic–austenitic steels provide high ductility with moderate strength, martensitic–austenitic steels show very high strength at the expense of ductility, and bainitic–austenitic steels achieve intermediate properties. Impact toughness and fatigue resistance are strongly influenced by the morphology of RA. The lath-type RA enhances energy absorption and delays crack initiation, while blocky RA may promote intergranular fracture. Low carbon (0.2–0.3 wt.%) combined with elevated manganese (3–7 wt.%) contents provides superior hardenability and machinability, enabling cost-effective air-hardening of components with various cross-sections. Advanced medium-Mn steels provide a superior mechanical performance and economically attractive solution for modern forgings, exceeding the limitations of conventional steel grades. Full article
(This article belongs to the Special Issue Advanced High-Strength Steels: Processing and Characterization)
Show Figures

Figure 1

23 pages, 19846 KB  
Article
Effects of Aging on Sucrose-Based Poly(ester-urethane)s: Thermal, Ultraviolet, and Hydrolytic Stability
by Violeta Otilia Potolinca, Cristian-Dragos Varganici, Florica Doroftei and Stefan Oprea
Polymers 2026, 18(1), 88; https://doi.org/10.3390/polym18010088 - 28 Dec 2025
Viewed by 60
Abstract
Environmentally friendly sucrose-based poly(ester-urethane)s were synthesized and characterized, and their stability and degradation behavior were assessed under three different aging conditions: thermal, ultraviolet (UV), and hydrolytic treatment. The specimens underwent thermal treatment in both hot and cold climates to simulate a temperate continental [...] Read more.
Environmentally friendly sucrose-based poly(ester-urethane)s were synthesized and characterized, and their stability and degradation behavior were assessed under three different aging conditions: thermal, ultraviolet (UV), and hydrolytic treatment. The specimens underwent thermal treatment in both hot and cold climates to simulate a temperate continental climate. The samples were thoroughly characterized to assess chemical and structural changes (FT-IR, TGA, and DSC) and surface modifications (contact angle measurements and AFM and SEM analyses), providing insights into surface morphology and wettability alterations. Mechanical testing was also performed to evaluate the retention rate of the strength and the elongation after the aging process. The results showed that the introduction of sucrose into the main chain of the polyurethanes protected the ester and urethane groups from environmental degradation. The best stability in all three degradation environments was achieved by PCL-poly(ester urethane) due to its higher degree of crystallinity. PCL-based polyurethane exhibited a fracture strength retention rate exceeding 85% under all aging conditions, while the weight ratio remained practically unchanged after hydrolytic degradation. Thus, the obtained polyurethanes may support the advancement of sustainable, eco-friendly materials for future industrial applications. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

21 pages, 2265 KB  
Article
Simulation and Sensitivity Analysis of CO2 Migration and Pressure Propagation Considering Molecular Diffusion and Geochemical Reactions in Shale Oil Reservoirs
by Ruihong Qiao, Bing Yang, Hai Huang, Qianqian Ren, Zijie Cheng and Huanyu Feng
Energies 2026, 19(1), 164; https://doi.org/10.3390/en19010164 - 27 Dec 2025
Viewed by 114
Abstract
Unconventional shale oil reservoirs, characterized by ultra-low porosity and permeability, severely constrain oil recovery. CO2-enhanced oil recovery (CO2-EOR) following hydraulic fracturing is an effective approach that combines incremental oil recovery with long-term CO2 storage. However, CO2 transport [...] Read more.
Unconventional shale oil reservoirs, characterized by ultra-low porosity and permeability, severely constrain oil recovery. CO2-enhanced oil recovery (CO2-EOR) following hydraulic fracturing is an effective approach that combines incremental oil recovery with long-term CO2 storage. However, CO2 transport in the fracture–matrix system is complex, especially when molecular diffusion and geochemical reactions are coupled. This study conducts numerical simulations on a representative shale reservoir in the Ordos Basin, incorporating both mechanisms under post-fracturing injection–soaking conditions. The results show that molecular diffusion enhances CO2 mass transfer across the fracture–matrix interface, increasing the final CO2 sweep efficiency by 0.17 percentage points relative to convection alone, whereas geochemical reactions reduce it by about 0.3 percentage points. When both mechanisms coexist, the net effect is a decrease of approximately 0.2 percentage points in CO2 sweep efficiency. In contrast, pressure sweep efficiency differs by less than 0.5 percentage points among all cases and stabilizes near 47%, suggesting that pressure propagation is only weakly affected by diffusion and reactions. Sensitivity analysis reveals that, among operational parameters, injection pressure and injection rate strongly affect CO2 sweep efficiency, whereas soaking time governs pressure propagation. Among reservoir parameters, permeability has the most pronounced influence on both CO2 and pressure sweep efficiencies, followed by temperature, while initial reservoir pressure has minimal impact. This work quantitatively elucidates the coupled roles of molecular diffusion and geochemical reactions in shale reservoirs and provides practical guidance for optimizing post-fracturing CO2-EOR operations. Full article
Show Figures

Figure 1

20 pages, 6603 KB  
Article
Effect of Cryogenic Treatment on Low-Density Magnesium Multicomponent Alloys with Exceptional Ductility
by Yu Fang, Michael Johanes and Manoj Gupta
Materials 2026, 19(1), 100; https://doi.org/10.3390/ma19010100 - 27 Dec 2025
Viewed by 109
Abstract
There is growing emphasis on lightweight and energy-efficient metallic materials, with multicomponent alloying (MCA) being one strategy to achieve this. This was combined with the inherently lightweight magnesium (Mg) as the base metal. Two Mg-based MCAs, namely Mg-71MCA and Mg-80MCA (Mg-10Li-9Al-6Zn-4Si and Mg-10Li-6Al-2Zn-2Si, [...] Read more.
There is growing emphasis on lightweight and energy-efficient metallic materials, with multicomponent alloying (MCA) being one strategy to achieve this. This was combined with the inherently lightweight magnesium (Mg) as the base metal. Two Mg-based MCAs, namely Mg-71MCA and Mg-80MCA (Mg-10Li-9Al-6Zn-4Si and Mg-10Li-6Al-2Zn-2Si, respectively, wt.%), with density in the range of 1.55–1.632 g/cc akin to plastics were synthesized via the Disintegrated Melt Deposition method in this work. The effects of cryogenic treatment (CT) at –20 °C, 80 °C, and –196 °C (LN) on the physical, microstructural, thermal, and mechanical properties were systematically evaluated. CT resulted in densification, significant grain refinement (up to a 27.9% reduction in grain diameter after LN treatment), alterations in crystallographic texture, and notable changes to secondary phases—namely, an increased precipitate area fraction. These led to enhanced mechanical performance such as damping capacity, microhardness, and compressive response (most apparent for Mg-71MCA with 12.1%, 6.7%, and 1.6% increase in yield strength, ultimate compressive strength, and energy absorbed, respectively, after RF20 treatment), coupled with exceptional ductility (>80% strain without fracture), which is superior to pure Mg and commercial Mg alloys. Overall, this work showcases the potential of MCAs compared to existing conventional lightweight materials, as well as the property-enhancing/tailoring effects brought upon by different CT temperatures. This highlights the multi-faceted nature of material designs where compositional control and judicious processing parameter selection need to be both leveraged to optimize final properties, and serves as a baseline for further lightweight MCA development to meet future needs. Full article
Show Figures

Figure 1

24 pages, 3135 KB  
Article
Layer-by-Layer Integration of Electrospun Nanofibers in FDM 3D Printing for Hierarchical Composite Fabrication
by Jaymin Vrajlal Sanchaniya, Hilary Smogor, Valters Gobins, Vincent Noël, Inga Lasenko and Simas Rackauskas
Polymers 2026, 18(1), 78; https://doi.org/10.3390/polym18010078 - 27 Dec 2025
Viewed by 163
Abstract
This study presents a novel integrated manufacturing approach that combines fused deposition modeling (FDM) 3D printing with in situ electrospinning to fabricate hierarchical composite structures composed of polylactic acid (PLA) reinforced with polyacrylonitrile (PAN) nanofibers. A mounting fixture was employed to enable layer-by-layer [...] Read more.
This study presents a novel integrated manufacturing approach that combines fused deposition modeling (FDM) 3D printing with in situ electrospinning to fabricate hierarchical composite structures composed of polylactic acid (PLA) reinforced with polyacrylonitrile (PAN) nanofibers. A mounting fixture was employed to enable layer-by-layer nanofiber deposition directly onto printed PLA layers in a continuous automated process, eliminating the need for prefabricated electrospun nanofiber mats. The influences of nozzle temperature (210–230 °C) and electrospinning time (5–15 min per layer) on mechanical, thermal, and morphological properties were systematically investigated. Optimal performance was achieved at an FDM nozzle temperature of 220 °C with 5 min of electrospinning time (sample E1), showing a 36.5% increase in tensile strength (71 MPa), a 33.3% increase in Young’s modulus (2.8 GPa), and a 62.0% increase in flexural strength (128 MPa) compared with the neat PLA. This enhancement resulted from the complete infiltration of molten PLA into the thin nanofiber mats, creating true fiber–matrix integration. Excessive nanofiber content (15 min ES) caused a 36.5% reduction in strength due to delamination and incomplete infiltration. Thermal analysis revealed a decrease in glass transition temperature (1.2 °C) and onset of thermal degradation (5.3–15.2 °C) with nanofiber integration. Fracture morphology confirmed that to achieve optimal properties, it was critical to balance the nanofiber reinforcement content with the depth of infiltration, as excessive content created poorly bonded interleaved layers. This integrated fabrication platform enables the production of lightweight hierarchical composites with multiscale, custom-made reinforcement for applications in biomedical scaffolds, protective equipment, and structural components. Full article
(This article belongs to the Special Issue Advanced Electrospinning Technology for Polymer Materials)
Show Figures

Figure 1

Back to TopTop