Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = fortified pasta

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 981 KiB  
Article
Fortification of Cereal-Based Food with Lactobacillus rhamnosus GG and Bacillus coagulans GBI-30 and Their Survival During Processing
by Junyan Wang, Peng Wu, Xiao Dong Chen, Aibing Yu and Sushil Dhital
Foods 2025, 14(13), 2250; https://doi.org/10.3390/foods14132250 - 25 Jun 2025
Viewed by 559
Abstract
Functional foods are evolving beyond basic nutrition to address nutrition-related diseases and enhance well-being. While probiotic-fortified products dominate this sector, most remain dairy-based. This study investigated the incorporation of Lactobacillus rhamnosus GG and Bacillus coagulans GBI-30 into cereal-based pasta and noodles, evaluating bacterial [...] Read more.
Functional foods are evolving beyond basic nutrition to address nutrition-related diseases and enhance well-being. While probiotic-fortified products dominate this sector, most remain dairy-based. This study investigated the incorporation of Lactobacillus rhamnosus GG and Bacillus coagulans GBI-30 into cereal-based pasta and noodles, evaluating bacterial survival during processing and cooking. Extrusion-based pasta production exerted greater stress on Lactobacillus rhamnosus GG, whereas Bacillus coagulans GBI-30 demonstrated higher thermal resistance. In sheeted noodles, both strains maintained ≥8 log CFU/g viability pre-cooking. After 7 min boiling, Lactobacillus rhamnosus GG retained 6.88 log CFU/g and Bacillus coagulans GBI-30 5.75 log CFU/g in noodles, meeting the recommended 106–107 CFU/g threshold for probiotic efficacy. Cooking performance analysis revealed lower cooking loss in noodles (2.4–4.04%) versus extruded pasta (10.6–19.05%), indicating superior structural integrity. These results confirm cereal matrices as viable non-dairy carriers for probiotics, with sheeting processes better preserving bacterial viability than extrusion. The findings highlight a practical strategy for developing functional foods that sustain probiotic viability through processing and consumption, potentially enhancing gut microbiota balance. This approach expands probiotic delivery options beyond traditional dairy formats while maintaining therapeutic bacterial concentrations critical for health benefits. Full article
Show Figures

Figure 1

17 pages, 1001 KiB  
Article
The Effect of Freeze-Dried Cherry Pomace and Red Potato Pulp on the Content of Bioactive Substances in Pasta
by Dorota Gumul, Wiktor Berski, Eva Ivanišová, Joanna Oracz and Marek Kruczek
Int. J. Mol. Sci. 2025, 26(13), 6020; https://doi.org/10.3390/ijms26136020 - 23 Jun 2025
Viewed by 331
Abstract
Pasta, due to its convenience, follows bread as the most common cereal product in the human diet. Typical wheat pasta is a high-energy product, since it contains a large amount of starch; at the same time, it is characterized by a low content [...] Read more.
Pasta, due to its convenience, follows bread as the most common cereal product in the human diet. Typical wheat pasta is a high-energy product, since it contains a large amount of starch; at the same time, it is characterized by a low content of health-promoting ingredients, such as dietary fiber, minerals, vitamins, and polyphenols. Food industry by-products, or even waste, can be applied as a source of many bioactive substances, thus enriching pasta with bioactive ingredients. Two by-products, Cherry Pomace (CP) and Red Potato Pulp (RPP) were applied as health-promoting supplements for wheat pasta, at three levels (10, 20, and 30%). The antioxidant potential of the resulting pasta was examined (by DPPH, ABTS, FRAP, and FOMO methods), and the antioxidant’s content was also tested. The amount of polyphenols determined by HPLC was higher in the case of CP than in RPP, and the main ones were 5-O-Caffeoylquinic acid and Cyanidin 3-O-rutinoside in CP, whereas for RPP it was Pelargonidin 3-(4‴-p-coumaroylrutinoside)-5-glucoside. Fortified pasta samples were characterized by a higher content of total polyphenols and phenolic acids, flavonoids, flavanols, and anthocyanins. In pasta with a share of CP, some polyphenols were unstable during pasta production. Pasta with a share of CP was characterized by very high antioxidant activity due to a high level of phenolic acids and anthocyanins acting synergistically. It was also characterized by a higher content of phytosterols. A 30% addition of CP into pasta is considered the most beneficial in terms of increasing the health-promoting properties of such a product. Full article
(This article belongs to the Special Issue Recent Advances in Bioactive Compounds in Human Health)
Show Figures

Graphical abstract

20 pages, 1534 KiB  
Review
Physiological Functions of the By-Products of Passion Fruit: Processing, Characteristics and Their Applications in Food Product Development
by Zhaohan Liu, Xiaonan Wang, Qianwen Li, Xiaojing Kang, Yan Li, Chunmiao Gong, Yang Liu and Han Chen
Foods 2025, 14(9), 1643; https://doi.org/10.3390/foods14091643 - 7 May 2025
Viewed by 1041
Abstract
The by-products of passion fruit are typically discarded during processing, contributing to resource waste and environmental harm. These residues are rich in dietary fiber and polyphenols, compounds linked to health benefits, including blood sugar regulation, improved lipid profiles, gut microbiome balance, and weight [...] Read more.
The by-products of passion fruit are typically discarded during processing, contributing to resource waste and environmental harm. These residues are rich in dietary fiber and polyphenols, compounds linked to health benefits, including blood sugar regulation, improved lipid profiles, gut microbiome balance, and weight management. Beyond their nutritional value, these by-products possess dual functional roles in food systems: their bioactive components act as natural fortifiers and health-promoting agents. Recent studies indicate they can enhance food quality by improving water retention and texture while serving as prebiotics to promote beneficial gut bacteria growth. This dual functionality supports both food innovation and metabolic health, particularly in reducing post-meal blood sugar spikes. To advance research and industry applications, this review synthesizes recent findings on the nutritional properties of passion fruit by-products and their use in food products such as dairy, pasta, and meat. The analysis aims to guide the sustainable utilization of these underrated resources and expand their role in functional food development. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

15 pages, 356 KiB  
Article
Powdered Calendula officinalis Petals Incorporated into Fresh Pasta: Nutritional and Chemical Evaluation Before and After Processing
by Ana F. Vinha, Thiago F. Soares, Marlene Machado, Anabela S. G. Costa, Rita C. Alves and Maria Beatriz P. P. Oliveira
Appl. Sci. 2025, 15(5), 2771; https://doi.org/10.3390/app15052771 - 4 Mar 2025
Viewed by 944
Abstract
The sustainability of the agri-food chain is part of the current agenda through the investigation of alternative sources of ingredients and/or enriched foods. Following the current consumer trends for healthy foods with underlying sustainable principles, this work aimed to develop fortified fresh pasta [...] Read more.
The sustainability of the agri-food chain is part of the current agenda through the investigation of alternative sources of ingredients and/or enriched foods. Following the current consumer trends for healthy foods with underlying sustainable principles, this work aimed to develop fortified fresh pasta incorporating powdered calendula petals. A chemical assessment was performed to determine the effect of incorporating calendula petals (5%) on the sensory characteristics (color, flavor, appearance), phytochemical content, and antioxidant activity of fresh and cooked pasta. The incorporation of calendula petals remarkably increased ash (64%), fat (24%), and crude protein (18%). Similarly, there was a considerable increase in total phenolics, total flavonoids, and anthocyanins. As expected, antioxidant activity increased significantly with the addition of calendula in pasta (88%). The sensorial evaluation revealed that pasta with 5% calendula powder was as accepted as the control by the sensory panel. Cooking affected the nutritional and chemical constituents of the pasta. These findings suggest that powdered calendula petals can be employed as a functional food ingredient due to the large increase in protein and minerals, bioactive chemicals, and antioxidant activity, which remains after the integration procedure in typical fresh pasta. Full article
Show Figures

Graphical abstract

27 pages, 4057 KiB  
Article
Incorporating Fresh Durum Wheat Semolina Pasta Fortified with Cardoncello (Pleurotus eryngii) Mushroom Powder as a Mediterranean Diet Staple
by Maria Calasso, Alessia Lisi, Arianna Ressa, Giusy Rita Caponio, Graziana Difonzo, Fabio Minervini, Maria Letizia Gargano, Mirco Vacca and Maria De Angelis
Antioxidants 2025, 14(3), 284; https://doi.org/10.3390/antiox14030284 - 27 Feb 2025
Cited by 2 | Viewed by 1262
Abstract
Pasta made from durum wheat semolina has a medium–high glycemic index score, high starch digestibility, and limited nutritional value due to its low fiber, vitamin, and bioactive compound content. This study aimed to enhance pasta’s nutritional and functional qualities by incorporating Pleurotus eryngii [...] Read more.
Pasta made from durum wheat semolina has a medium–high glycemic index score, high starch digestibility, and limited nutritional value due to its low fiber, vitamin, and bioactive compound content. This study aimed to enhance pasta’s nutritional and functional qualities by incorporating Pleurotus eryngii (PE) powder at various substitution levels to achieve one nutritional claim at least. This research involved two phases: evaluating the chemical/physical, nutritional, functional, and sensory properties of laboratory-scale samples and validating the selected formulations through industrial-scale production and shelf-life analyses. The pasta sample with 8.62% PE substitution (SPE8-P) demonstrated significantly improved nutritional qualities, including high fiber content sufficient for a “high fiber content” claim, and potential prebiotic activity indicated by increased bifidobacterial density during simulated fecal microbiota fermentation. Despite its enhanced riboflavin and antioxidant content, regulatory constraints limited the inclusion of claims for vitamin B2 richness and antioxidant activity. Although significantly affecting the color, taste, and odor profiles, the sensory analysis revealed high overall acceptability, supporting the product’s potential for consumer acceptance. This study confirms the feasibility of producing innovative, nutritionally enriched pasta with PE powder as a functional ingredient. Future research will focus on in vivo evaluation to establish the potential for classifying this pasta prototype as a functional food. Full article
Show Figures

Figure 1

27 pages, 521 KiB  
Review
Utilization of By-Products from the Fruit and Vegetable Processing Industry in Pasta Production
by Manuel Gómez, Marina Braojos, Raúl Fernández and Florencia Parle
Appl. Sci. 2025, 15(4), 2189; https://doi.org/10.3390/app15042189 - 18 Feb 2025
Cited by 1 | Viewed by 1442
Abstract
Pasta is a product made from wheat semolina and water. Due to its composition and low glycemic index, it is an ideal product for fortification with additional nutrients. Most plant-based food by-products are rich in nutrients of interest, such as fibers, vitamins, minerals, [...] Read more.
Pasta is a product made from wheat semolina and water. Due to its composition and low glycemic index, it is an ideal product for fortification with additional nutrients. Most plant-based food by-products are rich in nutrients of interest, such as fibers, vitamins, minerals, and bioactive compounds. Fortifying pasta with plant-based by-products can be nutritionally beneficial, and the number of publications on this topic has increased significantly in recent years. However, it presents a challenge when aiming to achieve products with good organoleptic quality. This review analyzes the published information on the effect of including plant-based by-products on the technological quality (optimal cooking time, solid loss, swelling index, and water absorption during cooking, color, and texture), nutritional value, and organoleptic properties of pasta. It also provides a critical perspective on gaps in the current knowledge and highlights aspects that should be addressed in the future. Full article
Show Figures

Figure 1

13 pages, 872 KiB  
Article
The Commercial Application of Insect Protein in Food Products: A Product Audit Based on Online Resources
by Lei Cong, David Dean, Chunguang Liu, Ke Wang and Yakun Hou
Foods 2024, 13(21), 3509; https://doi.org/10.3390/foods13213509 - 1 Nov 2024
Cited by 1 | Viewed by 3034
Abstract
Insect protein has received considerable attention as an alternative to conventional animal proteins with its high nutritional contents and eco-friendly credentials. Exploring commercially available insect-protein-enhanced foods, this study aims to profile and compare such products in the ultra-processed category with products protein-enhanced with [...] Read more.
Insect protein has received considerable attention as an alternative to conventional animal proteins with its high nutritional contents and eco-friendly credentials. Exploring commercially available insect-protein-enhanced foods, this study aims to profile and compare such products in the ultra-processed category with products protein-enhanced with dairy (e.g., milk and whey) and plants (e.g., pea and rice). A global product audit was conducted drawing from English-language online retail portals to determine the product formats and statistically compare their nutritional contents with products fortified with non-insect proteins. The results show that four categories—flour/powder, pasta/noodle, starch-based snacks (e.g., chips, crackers, and cookies), and energy bars—are involved with food enhanced with insect protein. Flour/powder and pasta/noodles with insects demonstrated comparable protein contents to non-insect equivalents, highlighting insects’ potential as effective protein sources. However, insect protein’s performances in snacks and energy bars were less favourable, with significantly lower protein contents compared to products enhanced with non-insect sources. This may be attributed to the high fat content of insects, which may also contribute to undesirable flavours in complex foods, limiting their usage. The study highlights the need for industry innovation and scientific collaboration to overcome the challenges to widely applying insects as food ingredients, offering benefits for both the industry and consumers. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

18 pages, 2235 KiB  
Article
Best Combination of Vegetable By-Products for the Shelf-Life Extension of Fresh Pasta
by Adriana Lordi, Olimpia Panza, Amalia Conte and Matteo Alessandro Del Nobile
Foods 2024, 13(1), 44; https://doi.org/10.3390/foods13010044 - 21 Dec 2023
Cited by 5 | Viewed by 1796
Abstract
A combination of by-products was studied in fresh handmade pasta. Pomegranate peels and olive oil by-products were used in the range 0–6% (w/w) and properly combined in a total of nine combinations with an equal amount of broccoli by-products [...] Read more.
A combination of by-products was studied in fresh handmade pasta. Pomegranate peels and olive oil by-products were used in the range 0–6% (w/w) and properly combined in a total of nine combinations with an equal amount of broccoli by-products (10% w/w). The broccoli by-products were added to improve the sensory acceptance, which was compromised when the two above by-products were added to the dough. To verify the synergic effects, among these by-products, on tagliatelle shelf life, microbiological quality based on the main spoilage groups, sensory properties, appearance of visible molds, pH and moisture content were monitored in all the packaged samples stored at 4 °C. In addition to fortified pasta samples, control tagliatelle was also investigated. A mathematical approach was used to fit experimental data and calculate pasta shelf life. In addition, a mathematical model was also proposed to describe the dependence of the shelf life from each by-product percentage added to the formulation. Results showed that while the control fresh pasta lasted about 3 days for the undesired proliferation of yeasts and coliforms, all fortified samples maintained acceptable quality for at least one week. Depending on the by-product combination, shelf-life values could reach more than 13 days. The best combination of by-products calculated based on the mathematical model, that reached the highest shelf life (13.30 days), corresponded to 10% broccoli by-products combined with 6% olive oil by-products and 6% pomegranate peels. Full article
(This article belongs to the Special Issue Sustainable Approaches to Food Fortification and Shelf Life Extension)
Show Figures

Graphical abstract

11 pages, 2187 KiB  
Article
Innovative Approaches for Food: Using Natural Phenolic-Rich Extracts to Produce Value-Added Fresh Pasta
by Sandra M. Gomes, Daniela Albuquerque and Lúcia Santos
Int. J. Mol. Sci. 2023, 24(15), 12451; https://doi.org/10.3390/ijms241512451 - 5 Aug 2023
Cited by 10 | Viewed by 2424
Abstract
Cereal-based products, which are rich in carbohydrates, are widely consumed worldwide; however, this type of food lacks other nutrients. Phenolic compounds from natural sources, such as Moringa oleifera, can be incorporated into these products to increase their nutritional and biological value. In [...] Read more.
Cereal-based products, which are rich in carbohydrates, are widely consumed worldwide; however, this type of food lacks other nutrients. Phenolic compounds from natural sources, such as Moringa oleifera, can be incorporated into these products to increase their nutritional and biological value. In this study, a phenolic-rich extract was obtained from M. oleifera leaf powder using a Soxhlet extractor. The extract obtained presented a total phenolic content of 79.0 mg of gallic acid equivalents/g and the ABTS and DPPH assays showed that the extract can act as an anti-oxidant agent, with IC50 values of 205.2 mg/L and 636.0 mg/L, respectively. Afterwards, fresh pasta was produced and the extract was incorporated into the pasta to improve its biological properties and extend its shelf-life. The results demonstrated that the addition of M. oleifera to the fresh pasta increased its anti-oxidant capacity and did not interfere with the cooking properties of the product. Moreover, the fortified pasta presented an increased shelf-life, since the extract conferred protection against microbial contamination for longer periods of time. Therefore, these findings showed that the incorporation of phenolic-rich extracts from natural sources (such as M. oleifera) is a feasible sustainable biotechnological approach to produce value-added cereal-based products. Full article
(This article belongs to the Special Issue Applications of Natural Products in Sustainable Biotechnology)
Show Figures

Figure 1

15 pages, 2652 KiB  
Article
Effect of the Addition of Freeze-Dried Grape Pomace on Fresh Tagliatelle Gluten Network and Relationship to Sensory and Chemical Quality
by Barbara la Gatta, Mariacinzia Rutigliano, Maria Teresa Liberatore, Flavia Dilucia, Maurizio Palmitessa, Aldo Di Luccia and Carmela Lamacchia
Foods 2023, 12(14), 2699; https://doi.org/10.3390/foods12142699 - 13 Jul 2023
Cited by 4 | Viewed by 2385
Abstract
The incorporation of 5 and 10% freeze-dried grape pomace powder (GPP) in fresh tagliatelle pasta preparation was evaluated for its effect on chemical composition, gluten protein structure, and sensory properties. The addition of the freeze-dried GPP led to a significant increase (p [...] Read more.
The incorporation of 5 and 10% freeze-dried grape pomace powder (GPP) in fresh tagliatelle pasta preparation was evaluated for its effect on chemical composition, gluten protein structure, and sensory properties. The addition of the freeze-dried GPP led to a significant increase (p < 0.05) in polyphenol content in the raw and cooked fortified pasta samples with respect to 100% semolina pasta, although the phenolic content decreased after the cooking process. The opposite phenomenon was observed with the antioxidant activity, which increased significantly (p < 0.05) when switching from raw to cooked pasta samples fortified with GPP. The formation of a proper gluten structure was found in the fortified raw pasta, even if a change in the protein arrangement was shown in the fortified cooked samples, confirmed by a significant reduction (p < 0.05) in both the unextractable polymeric protein percentage (% UPP) and disulfide bond (S-S) formation. These results suggest a possible interaction between the protein sulfhydryl groups (-Cys) and polyphenols of grape pomace during cooking through non-disulfide covalent bonds, which was confirmed by the significant (p < 0.05) decrease in the -SH groups when comparing 100% semolina pasta with fortified pasta sample. Finally, a sensory analysis showed that the highest significant score (p < 0.05) was achieved by the 5% GP-fresh pasta sample. Full article
Show Figures

Figure 1

22 pages, 2034 KiB  
Article
Quality Evaluation of Fresh Pasta Fortified with Sourdough Containing Wheat Germ and Wholemeal Semolina
by Pasquale Catzeddu, Simonetta Fois, Valentina Tolu, Manuela Sanna, Angela Braca, Ilaria Vitangeli, Roberto Anedda and Tonina Roggio
Foods 2023, 12(14), 2641; https://doi.org/10.3390/foods12142641 - 8 Jul 2023
Cited by 8 | Viewed by 2980
Abstract
Pasta is a staple food in the Mediterranean diet, primarily manufactured with two essential ingredients, semolina and water; nowadays, it is often supplemented with functional ingredients. In this work, a sourdough obtained with wheat germ and wholemeal semolina was used, in order to [...] Read more.
Pasta is a staple food in the Mediterranean diet, primarily manufactured with two essential ingredients, semolina and water; nowadays, it is often supplemented with functional ingredients. In this work, a sourdough obtained with wheat germ and wholemeal semolina was used, in order to improve sensorial and nutritional properties of fresh pasta, to prevent lipids oxidation, and to improve the shelf life. Three different formulations were prepared, a first one using semolina, a second one with raw wheat germ, wholemeal semolina, and semolina, and the last one with semolina and sourdough. The study highlighted the improved nutritional properties of pasta with sourdough (reduced phytic acid content, higher antioxidant activity and phenolic content). Proteins, ashes, dietary fibers, lipids, and tocols (vitamin E) increased in pasta with wheat germ and wholemeal semolina, and with sourdough. The amount of tocols decreased in pasta samples after cooking, except for the β–tocopherol in sourdough pasta, the amount of which remained high, surprisingly. Lipase and lipoxygenase enzymes likely decreased as an effect of the pasteurization process. The NMR analysis showed that lipid oxidation was higher in semolina pasta than in pasta with wheat germ, most likely due to the protective effect of antioxidants deriving from wheat germ. Full article
Show Figures

Graphical abstract

15 pages, 836 KiB  
Article
Whole Grape Pomace Flour as Nutritive Ingredient for Enriched Durum Wheat Pasta with Bioactive Potential
by Carmela Gerardi, Leone D’Amico, Miriana Durante, Maria Tufariello and Giovanna Giovinazzo
Foods 2023, 12(13), 2593; https://doi.org/10.3390/foods12132593 - 4 Jul 2023
Cited by 12 | Viewed by 2434
Abstract
In this study, grape pomace is used as an ingredient to fortify pasta. The grape pomace phenolic component is highly accessible and available for metabolization in the human gut. Hence, grape pomace can be exploited as a source of polyphenols and fiber for [...] Read more.
In this study, grape pomace is used as an ingredient to fortify pasta. The grape pomace phenolic component is highly accessible and available for metabolization in the human gut. Hence, grape pomace can be exploited as a source of polyphenols and fiber for sustainable and dietary beneficial food production. Analyses of soluble and bound phenols and volatile compounds in raw and cooked pasta were performed. In the uncooked pasta fortified with pomace, the content of soluble and bound phenolic molecules increased significantly. During the cooking process, the bound phenols were lost, while the soluble phenols doubled. The whole grape pomace flour as a pasta ingredient increased the fiber component by at least double, increased the soluble polyphenol component by at least 10 times, and doubled the isoprenoids (toco-chromanols and carotenoids) while maintaining the unaltered fatty acid content after cooking. In accordance with the polyphenol content, antioxidant activity resulted higher than that of the control pasta. Analysis of volatile compounds in fortified pasta, both uncooked and cooked, indicated an improvement in aromatic profile when compared to the control pasta. Our results show that durum wheat pasta fortified with whole pomace flour has bioactive potential for the reuse of food industry byproducts. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

18 pages, 1121 KiB  
Review
Spent Grain: A Functional Ingredient for Food Applications
by Ancuța Chetrariu and Adriana Dabija
Foods 2023, 12(7), 1533; https://doi.org/10.3390/foods12071533 - 4 Apr 2023
Cited by 23 | Viewed by 7528
Abstract
Spent grain is the solid fraction remaining after wort removal. It is nutritionally rich, composed of fibers—mainly hemicellulose, cellulose, and lignin—proteins, lipids, vitamins, and minerals, and must be managed properly. Spent grain is a by-product with high moisture, high protein and high fiber [...] Read more.
Spent grain is the solid fraction remaining after wort removal. It is nutritionally rich, composed of fibers—mainly hemicellulose, cellulose, and lignin—proteins, lipids, vitamins, and minerals, and must be managed properly. Spent grain is a by-product with high moisture, high protein and high fiber content and is susceptible to microbial contamination; thus, a suitable, cost-effective, and environmentally friendly valorization method of processing it is required. This by-product is used as a raw material in the production of many other food products—bakery products, pasta, cookies, muffins, wafers, snacks, yogurt or plant-based yogurt alternatives, Frankfurter sausages or fruit beverages—due to its nutritional values. The circular economy is built on waste reduction and the reuse of by-products, which find opportunities in the regeneration and recycling of waste materials and energy that become inputs in other processes and food products. Waste disposal in the food industry has become a major issue in recent years when attempting to maintain hygiene standards and avoid soil, air and water contamination. Fortifying food products with spent grain follows the precepts of the circular bio-economy and industrial symbiosis of strengthening sustainable development. The purpose of this review is to update information on the addition of spent grain to various foods and the influence of spent grain on these foods. Full article
Show Figures

Figure 1

16 pages, 637 KiB  
Article
Hemp Flour Particle Size Affects the Quality and Nutritional Profile of the Enriched Functional Pasta
by Sonia Bonacci, Vita Di Stefano, Fabiola Sciacca, Carla Buzzanca, Nino Virzì, Sergio Argento and Maria Grazia Melilli
Foods 2023, 12(4), 774; https://doi.org/10.3390/foods12040774 - 10 Feb 2023
Cited by 14 | Viewed by 3507
Abstract
The rheological and chemical quality of pasta samples, which were obtained using the durum wheat semolina fortified with the hemp seed solid residue, after oil extraction, sieved at 530 μm (Hemp 1) or 236 μm (Hemp 2) at different percentages of substitution (5%, [...] Read more.
The rheological and chemical quality of pasta samples, which were obtained using the durum wheat semolina fortified with the hemp seed solid residue, after oil extraction, sieved at 530 μm (Hemp 1) or 236 μm (Hemp 2) at different percentages of substitution (5%, 7.5%, and 10%, were evaluated. The total polyphenolic content in hemp flour was quantified in the range of 6.38–6.35 mg GAE/g, and free radical scavenging was included in the range from 3.94–3.75 mmol TEAC/100 g in Hemp 1 and Hemp 2, respectively. The phenolic profiles determined by UHPLC-ESI/QTOF-MS showed that cannabisin C, hydroxycinnamic and protocatechuic acids were the most abundant phenolic compounds in both hemp flours. Among the amino acids, isoleucine, glutamine, tyrosine, proline, and lysine were the most abundant in raw materials and pasta samples. Although the hemp seeds were previously subjected to oil extraction, hemp flours retain about 8% of oil, and the fatty acids present in the largest amount were linoleic acid and α-linolenic acid. Characterization of the minerals showed that the concentration of macro and trace elements increased according to fortification percentage. Sensory evaluation and cooking quality indicated that the best performance in terms of process production and consumer acceptance was obtained using Hemp 2 at 7.5%. Hemp supplementation could be a potential option for producing high-quality, nutritionally rich, low-cost pasta with good color and functionality. Full article
Show Figures

Figure 1

16 pages, 4046 KiB  
Article
Promoting Protein Intake in an Ageing Population: Product Design Implications for Protein Fortification
by Victoria Norton, Stella Lignou and Lisa Methven
Nutrients 2022, 14(23), 5083; https://doi.org/10.3390/nu14235083 - 29 Nov 2022
Cited by 7 | Viewed by 3942
Abstract
Protein is a macronutrient of interest for an ageing population and intake requirements increase with age. Accordingly, protein is often fortified into products for older adults to help alleviate malnutrition and impede sarcopenia. However, more emphasis needs to be placed upon designing protein-fortified [...] Read more.
Protein is a macronutrient of interest for an ageing population and intake requirements increase with age. Accordingly, protein is often fortified into products for older adults to help alleviate malnutrition and impede sarcopenia. However, more emphasis needs to be placed upon designing protein-fortified products to ensure suitability for older adults. This study involved a two-stage approach: (1) an initial review of products commonly fortified with protein and (2) two questionnaires for younger and older adults (n = 73; 18–30; 65+) to investigate optimal portion sizes (drinks and cakes) as well as attitudes, consumption habits and preferences towards protein fortification. The initial literature and market review demonstrated protein-fortified products are typically in liquid or snack format; however, there is considerable variability in terms of product types, serving size and protein sources. There were no age-related differences found for ideal cakes portion size whereas there were for liquids. Older adults are typically not consuming protein-fortified products; therefore, more importance should be placed on the consumption moment (breakfast or as snacks between meals) and on cereals, pasta, porridge, cakes, and biscuits. Older adults need increased awareness of, and more education on, the benefits of protein consumption, coupled with products tailored and designed to encourage intake. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Figure 1

Back to TopTop