Powdered Calendula officinalis Petals Incorporated into Fresh Pasta: Nutritional and Chemical Evaluation Before and After Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pasta Formulation and Processing
2.3. Proximate Analysis
2.4. Phytochemical Analysis
2.4.1. Extracts Preparation
2.4.2. Total Phenolic Content
2.4.3. Total Flavonoid Content
2.4.4. Total Anthocyanin Content
2.4.5. Carotenoid Content
2.5. Antioxidant Activity
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Calendula Petals Characterization
4.2. Pasta Enriched with Calendula Petals
4.3. Cooking Process
4.4. Sensorial Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassen, B.T.; El Bilali, H. Impacts of the Russia-Ukraine war on global food security: Towards more sustainable and resilient food systems? Foods 2022, 11, 2301. [Google Scholar] [CrossRef] [PubMed]
- Jagdale, Y.D.; Mahale, S.V.; Zohra, B.; Nayik, G.A.; Dar, A.H.; Khan, K.A.; Abdi, G.; Karabagias, I.K. Nutritional profile and potential health benefits of super foods: A review. Sustainability 2021, 13, 9240. [Google Scholar] [CrossRef]
- Bianchi, F.; Tolve, R.; Rainero, G.; Bordiga, M.; Brennan, C.S.; Simonato, B. Technological, nutritional, and sensory properties of pasta fortified with agro-industrial by-products: A review. Int. J. Food Sci. Technol. 2021, 56, 4356–4366. [Google Scholar] [CrossRef]
- Embling, R.; Neilson, L.; Mellor, C.; Durodola, M.; Rouse, N.; Haselgrove, A.; Shipley, K.; Tales, A.; Wilkinson, L. Exploring consumer beliefs about novel fortified foods: A focus group study with UK-based older and younger adult consumers. Appetite 2024, 193, 107139. [Google Scholar] [CrossRef]
- Ali, S.; Rezende, V.T.; Ullah, S.; Lima de Paiva, E.; Tonin, F.G.; Abdullah, C.C.H.; Oliveira, C.A.F. Food processing and challenges in the food production and quality: The foodomics approach. Food Biosci. 2023, 56, 103217. [Google Scholar] [CrossRef]
- Sissons, M. Development of novel pasta products with evidence-based impacts on health—A review. Foods 2022, 11, 123. [Google Scholar] [CrossRef]
- Biernacka, B.; Dziki, D.; Gawlik-Dziki, U. Pasta enriched with dried and powdered leek: Physicochemical properties and changes during cooking. Molecules 2022, 27, 4495. [Google Scholar] [CrossRef]
- IPO. Global Pasta Market, Size, Forecast 2024–2030, Industry Trends, Share, Grown, Insight, Impact of Inflation, Company Analysis. Available online: http://www.globenewswire.com (accessed on 10 December 2024).
- Biernacka, B.; Dziki, D.; Gawlik-Dziki, U.; Różyło, R. Common wheat pasta enriched with cereal coffee: Quality and physical and functional properties. LWT Food Sci. Technol. 2021, 139, 110516. [Google Scholar] [CrossRef]
- Bustos, M.C.; Vignola, M.B.; Paesani, C.; León, A.E. Berry fruits-enriched pasta: Effect of processing and in vitro digestion on phenolics and its antioxidant activity, bioaccessibility and potential bioavailability. Int. J. Food Sci. Technol. 2020, 55, 2104–2112. [Google Scholar] [CrossRef]
- Hussein, A.; Ibrahim, G.; Kamil, M.; El-Shamarka, M.; Mostafa, S.; Mohamed, D. Spirulina -enriched pasta as functional food rich in protein and antioxidant. Biointerface Res. Appl. Chem. 2021, 11, 14736–14750. [Google Scholar]
- El-Sharnouby, G.; Abughoush, M.; Choudhury, I.H. Novel development of pasta enriched with spirulina platensis microalgae: Biochemical and histological parameters. Jordan J. Agric. Sci. 2024, 20, 48–62. [Google Scholar] [CrossRef]
- Bazarnova, J.; Nilova, L.; Trukhina, E.; Bernavskaya, M.; Smyatskaya, Y.; Aktar, T. Use of microalgae biomass for fortification of food products from grain. Foods 2021, 10, 3018. [Google Scholar] [CrossRef] [PubMed]
- Duda, A.; Adamczak, J.; Chelminska, P.; Juszkiewicz, J.; Kowalczewski, P. Quality and nutritional/textural properties of durum wheat pasta enriched with cricket powder. Foods 2019, 8, 1298. [Google Scholar] [CrossRef] [PubMed]
- Arp, C.G.; Pasini, G. Exploring edible insects: From sustainable nutrition to pasta and noodle applications—A critical review. Foods 2024, 13, 3587. [Google Scholar] [CrossRef]
- Messia, M.C.; Cuomo, F.; Falasca, L.; Trivisonno, M.C.; De Arcangelis, E.; Marconi, E. Nutritional and technological quality of high protein pasta. Foods 2021, 10, 589. [Google Scholar] [CrossRef]
- Balli, D.; Cecchi, L.; Innocenti, M.; Bellumori, M.; Mulinacci, N. Food by-products valorisation: Grape pomace and olive pomace (pâté) as sources of phenolic compounds and fiber for enrichment of tagliatelle pasta. Food Chem. 2021, 355, 129642. [Google Scholar] [CrossRef]
- Ferreira, D.M.; Oliveira, B.C.C.; Barbosa, C.; Costa, A.S.G.; Nunes, M.A.; Oliveira, M.B.P.P.; Alves, R.C. Pasta incorporating olive pomace: Impact on nutritional composition and consumer acceptance of a prototype. Foods 2024, 13, 2933. [Google Scholar] [CrossRef]
- Michalak-Majewska, M.; Złotek, U.; Szymanowska, U.; Szwajgier, D.; Stanikowski, P.; Matysek, M.; Sobota, A. Antioxidant and potentially anti-inflammatory properties in pasta fortified with onion skin. Appl. Sci. 2020, 10, 8164. [Google Scholar] [CrossRef]
- Ho, L.H.; Che Dahri, N. Effect of watermelon rind powder on physicochemical, textural, and sensory properties of wet yellow noodles. CyTA-J. Food 2016, 14, 465–472. [Google Scholar] [CrossRef]
- Janarny, G.; Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S. Nutraceutical potential of dietary phytochemicals in edible flowers—A review. J. Food Biochem. 2021, 45, e13642. [Google Scholar] [CrossRef]
- Zhang, H.L.; Wu, Q.X.; Qin, X.M. Camellia nitidissima Chi flower extract alleviates obesity and related complications and modulates gut microbiota composition in rats with high-fat-diet-induced obesity. J. Sci. Food Agric. 2020, 100, 4378–4389. [Google Scholar] [CrossRef] [PubMed]
- Patil, K.; Sanjay, C.J.; Doggalli, N.; Devi, K.R.N.; Harshitha, N. A review of Calendula officinalis—Magic in science. J. Clin. Diagn. Res. 2022, 16, ZE23–ZE27. [Google Scholar]
- Garcia-Oliveira, P.; Barral, M.; Carpena, M.; Gullón, P.; Fraga-Corral, M.; Otero, P.; Prieto, M.A.; Simal-Gandara, J. Traditional plants from Asteraceae family as potential candidates for functional food industry. Food Funct. 2021, 12, 2850–2873. [Google Scholar] [CrossRef] [PubMed]
- Chitrakar, B.; Zhang, M.; Bhandari, B. Edible flowers with the common name “marigold”: Their therapeutic values and processing. Trends Food Sci. Technol. 2019, 89, 76–87. [Google Scholar] [CrossRef]
- Ak, G.; Zengin, G.; Ceylan, R.; Fawzi Mahomoodally, M.; Jugreet, S.; Mollica, A.; Stefanucci, A. Chemical composition and biological activities of essential oils from Calendula officinalis L. flowers and leaves. Flavour. Fragr. J. 2021, 36, 554–563. [Google Scholar] [CrossRef]
- Shahane, K.; Kshirsagar, M.; Tambe, S.; Jain, D.; Rout, S.; Ferreira, M.K.M.; Mali, S.; Amin, P.; Srivastav, P.P.; Cruz, J.; et al. An updated review on the multifaceted therapeutic potential of Calendula officinalis L. Pharmaceuticals 2023, 16, 611. [Google Scholar] [CrossRef]
- Lima, E.; Medeiros, J. Terpenes as potential anti-Alzheimer’s disease agents. Appl. Sci. 2024, 14, 3898. [Google Scholar] [CrossRef]
- Khairnar, M.S.; Pawar, B.; Marawar, P.P.; Mani, A. Evaluation of Calendula officinalis as an anti-plaque and anti-gingivitis agent. J. Indian Soc. Periodontol. 2013, 17, 741. [Google Scholar] [CrossRef]
- Alruhaimi, R.S.; Kamel, E.M.; Alnasser, S.M.; Alzoghaibi, M.A.; Lamsabhi, A.M.; Mahmoud, A.M. Mechanistic insights into carbonic anhydrase IX inhibition by coumarins from Calendula officinalis: In vitro and in silico approaches. RSC Adv. 2024, 14, 33602–33618. [Google Scholar] [CrossRef]
- Zeinsteger, P.A.; Barberón, J.L.; Leaden, P.J.; Palacios, A. Antioxidant properties of Calendula officinalis L. (Asteraceae) on Fe2+-initiated peroxidation of rat brain mitochondria. Med. Chem. Res. 2018, 27, 2523–2529. [Google Scholar] [CrossRef]
- Preethi, K.C.; Kuttan, G.; Kuttan, R. Antioxidant potential of Calendula officinalis flowers in vitro and in vivo. Pharm. Biol. 2006, 44, 691–697. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Barreira, S.V.P.; Nunes, M.A.; Cunha, L.M.; Oliveira, M.B.P.P. Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process. Ind. Crops Prod. 2014, 53, 350–357. [Google Scholar] [CrossRef]
- Vinha, A.F.; Costa, A.S.G.; Barreira, J.C.M.; Pacheco, R.; Oliveira, M.B.P.P. Chemical and antioxidant profiles of acorn tissues from Quercus spp: Potential as new industrial raw materials. Ind. Crops Prod. 2016, 94, 143–151. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Barreira, J.C.M.; Ruas, A.; Vinha, A.F.; Pimentel, F.B.; Alves, R.C.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Improving bioactive compounds extractability of Amorphophallus paeoniifolius (Dennst.) Nicolson. Ind. Crops Prod. 2016, 79, 180–187. [Google Scholar] [CrossRef]
- Zhao, X.; Corrales, M.; Zhang, C.; Hu, X.; Ma, Y. Composition and thermal stability of anthocyanins from Chinese purple corn (Zea mays L.). J. Agric. Food Chem. 2008, 56, 10761–10766. [Google Scholar] [CrossRef]
- Vinha, A.F.; Alves, R.C.; Barreira, S.V.P.; Castro, A.; Costa, A.S.G.; Oliveira, M.B.P.P. Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L.) fruits. LWT Food Sci. Technol. 2014, 55, 197–202. [Google Scholar] [CrossRef]
- Conti, V.; Piccini, C.; Romi, M.; Salusti, P.; Cai, G.; Cantini, C. Pasta enriched with carrot and olive leaf flour retains high levels of accessible bioactives after in vitro digestion. Foods 2023, 12, 3540. [Google Scholar] [CrossRef]
- Miguel, M.; Barros, L.; Pereira, C.; Calhelha, R.C.; Garcia, P.A.; Castro, M.A.; Santos-Buelga, C.; Ferreira, I.C.F.R. Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis L. (flowers) and Mentha cervina L. (leaves). Food Funct. 2016, 7, 2223–2232. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Ferreira, I.C.F.R. Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chem. 2017, 220, 337–343. [Google Scholar] [CrossRef]
- Rop, O.; Mlcek, J.; Jurikova, T.; Neugebauerova, J.; Vabkova, J. Edible flowers-A new promising source of mineral elements in human nutrition. Molecules 2012, 17, 6672–6683. [Google Scholar] [CrossRef]
- Jabeur, I.; Pereira, E.; Barros, L.; Calhelha, R.C.; Soković, M.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Hibiscus sabdariffa L. as a source of nutrients, bioactive compounds and colouring agents. Food Res. Int. 2017, 100, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Primitivo, M.J.; Neves, M.; Pires, C.L.; Cruz, P.F.; Brito, C.; Rodrigues, A.C.; Carvalho, C.C.C.R.; Mortimer, M.M.; Moreno, M.J.; Brito, R.M.M.; et al. Edible flowers of Helichrysum italicum: Composition, nutritive value, and bioactivities. Food Res. Int. 2022, 157, 111399. [Google Scholar] [CrossRef] [PubMed]
- Vijayanchali, S.S. Nutrient, phytonutrient and antioxidant activity of the dried rose petals. J. Res. Ext. Dev. 2017, 6, 36–39. [Google Scholar]
- González-Barrio, R.; Periago, M.J.; Luna-Recio, C.; Garcia-Alonso, F.J.; Navarro-González, I. Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chem. 2018, 252, 373–380. [Google Scholar] [CrossRef]
- Ali, A.A.H. Overview of the vital roles of macro minerals in the human body. J. Trace Elem. Miner. 2023, 4, 100076. [Google Scholar] [CrossRef]
- Youssef, H.A.; Ali, S.M.; Sanad, M.I.; Dawood, D.H. Chemical investigation of flavonoids, phenolic acids composition and antioxidant activity of Mexican marigold (Tagets erecta L.) flowers. Egypt. J. Chem. 2020, 63, 2605–2615. [Google Scholar]
- Rigane, H.; Chtourou, M.; Ben Mahmoud, I.; Medhioub, K.; Ammar, E. Polyphenolic compounds progress during olive mill wastewater sludge and poultry manure co-composting, and humic substances building (Southeastern Tunisia). Waste Manag. Res. 2015, 33, 73–80. [Google Scholar] [CrossRef]
- Farahpour, M.R. Antioxidant activity, Antinociceptive and anti-inflammatory effects of Pot marigold hydroalcoholic extract on experimental animals. Inter. J. Pharm. Tech. Res. 2014, 1, 1640–1646. [Google Scholar]
- Vella, F.M.; Pignone, D.; Laratta, B. The Mediterranean species Calendula officinalis and Foeniculum vulgare as valuable sources of bioactive compounds. Molecules 2024, 29, 3594. [Google Scholar] [CrossRef]
- Marchioni, I.; Gabriele, M.; Carmassi, G.; Ruffoni, B.; Pistelli, L.; Pistelli, L.; Najar, B. Phytochemical, nutritional and mineral content of four edible flowers. Foods 2024, 13, 939. [Google Scholar] [CrossRef]
- Krupa-Kozak, U.; Drabińska, N.; Bączek, N.; Šimková, K.; Starowicz, M.; Jeliński, T. Application of broccoli leaf powder in gluten-free bread: An innovative approach to improve its bioactive potential and technological quality. Foods 2021, 10, 819. [Google Scholar] [CrossRef]
- Ombra, M.N.N.; Nazzaro, F.; Fratianni, F. Pasta fortification with leaves of edible wild plants to lower the P Glycaemic Index of handmade fresh noodles. Recent. Prog. Nutr. 2023, 3, 8. [Google Scholar] [CrossRef]
- Ceccanti, C.; Finimundy, T.C.; Melgar, B.; Pereira, C.; Ferreira, I.C.F.R.; Barros, L. Sequential steps of the incorporation of bioactive plant extracts from wild Italian Plantago coronopus L. and Cichorium intybus L. leaves in fresh egg pasta. Food Chem. 2022, 384, 132462. [Google Scholar] [CrossRef] [PubMed]
- Betrouche, A.; Estivi, L.; Colombo, D.; Pasini, G.; Benatallah, L.; Brandolini, A.; Hidalgo, A. Antioxidant properties of gluten-free pasta enriched with vegetable by-products. Molecules 2022, 27, 8993. [Google Scholar] [CrossRef] [PubMed]
- Dick, J.W.; Youngs, V.L. Evaluation of Durum wheat semolina and pasta in the United States. In Durum Wheat: Chemistry and Technology; Fabriani, G., Lintas, C., Eds.; AACC Press: St. Paul, MN, USA, 1998; pp. 238–248. [Google Scholar]
- Abushita, A.A.; Hebshi, E.A.; Daood, H.G.; Biacs, P.A. Determination of antioxidant vitamins in tomatoes. Food Chem. 1997, 60, 207–212. [Google Scholar] [CrossRef]
Nutritional Composition | CP | FCP | FPC | CCP | CPC |
---|---|---|---|---|---|
Ash | 5.77 ± 0.14 a | 0.69 ± 0.11 e | 1.95 ± 0.19 c | 1.49 ± 0.34 d | 3.64 ± 0.23 b |
Total Fat | 6.09 ± 0.21 a | 4.47 ± 0.05 c | 5.89 ± 0.15 b | 3.79 ± 0.49 d | 6.51 ± 0.27 a |
Crude Protein | 4.64 ± 0.08 d | 9.38 ± 0.22 c | 11.47 ± 0.15 b | 9.68 ± 0.03 c | 12.87 ± 0.13 a |
Total Carbohydrates | 81.02 ± 0.17 b | 83.07 ± 0.50 a | 78.32 ± 0.27 c | 82.68 ± 0.77 a | 76.49 ± 0.63 d |
CP | FCP | FPC | CCP | CPC | |
---|---|---|---|---|---|
Total phenolics (mg GAE/g) | 8.36 ± 0.59 a | 0.15 ± 0.01 e | 2.23 ± 0.06 b | 0.46 ± 0.06 d | 1.10 ± 0.03 c |
Total flavonoids (mg CE/g) | 5.17 ± 0.72 a | 0.09 ± 0.04 d | 3.86 ± 0.32 b | 1.85 ± 0.21 c | 3.71 ± 0.16 b |
Total anthocyanins (mg/g) | 0.49 ± 0.03 a | 0.06 ± 0.00 b | 0.49 ± 0.04 a | 0.04 ± 0.00 c | 0.43 ± 0.01 a |
Carotenoids (mg/g) | 0.081 ± 0.001 a | ND | 0.039 ± 0.001 b | ND | 0.054 ± 0.018 b |
DPPH• (mg TE/g) | 110.33 ± 2.53 a | 10.33 ± 1.53 d | 90.67 ± 3.51 b | 7.77 ± 0.25 e | 77.93 ± 0.31 c |
r * | Phenolics | Flavonoids | Anthocyanins | DPPH• | Carotenoids |
---|---|---|---|---|---|
Phenolics | 1.00 | 1.00 | 0.62 | 0.97 | 0.82 |
Flavonoids | 1.00 | 1.00 | 0.84 | 0.95 | 0.58 |
Anthocyanins | 0.62 | 0.84 | 1.00 | 0.80 | 0.05 |
DPPH• | 0.97 | 0.95 | 0.80 | 1.00 | 0.64 |
Carotenoids | 0.82 | 0.58 | 0.05 | 0.64 | 1.00 |
Attributes | Age | Rank | Test Statistics | ||||
---|---|---|---|---|---|---|---|
N | Mean Rank | Z-Value | Chi-Square | DF | p-Value | ||
Control | |||||||
Appearance | <25 | 26 | 36.1 | 0.71 | 0.79 | 2 | 0.675 |
25–50 | 33 | 31.9 | −0.86 | ||||
>50 | 8 | 35.7 | 0.26 | ||||
Aroma | <25 | 26 | 36.4 | 0.81 | 0.85 | 2 | 0.654 |
25–50 | 33 | 33.0 | −0.40 | ||||
>50 | 8 | 30.0 | −0.60 | ||||
Flavor | <25 | 26 | 35.3 | 0.45 | 0.55 | 2 | 0.758 |
25–50 | 33 | 34.0 | 0.00 | ||||
>50 | 8 | 29.6 | −0.68 | ||||
Purchase probability | <25 | 26 | 30.5 | −1.16 | 3.14 | 2 | 0.208 |
25–50 | 33 | 34.8 | 0.34 | ||||
>50 | 8 | 41.8 | 1.21 | ||||
Enriched pasta with 5% calendula | |||||||
Appearance | <25 | 26 | 32.4 | −0.54 | 0.99 | 2 | 0.610 |
25–50 | 33 | 33.8 | −0.08 | ||||
>50 | 8 | 40.1 | 0.94 | ||||
Aroma | <25 | 26 | 28.8 | −1.75 | 4.49 | 2 | 0.106 |
25–50 | 33 | 35.7 | 0.70 | ||||
>50 | 8 | 44.0 | 1.55 | ||||
Flavor | <25 | 26 | 25.2 | −2.95 | 10.02 | 2 | 0.007 |
25–50 | 33 | 38.3 | 1.77 | ||||
>50 | 8 | 45.0 | 1.70 | ||||
Purchase probability | <25 | 26 | 32.0 | −0.68 | 2.65 | 2 | 0.266 |
25–50 | 33 | 33.9 | −0.04 | ||||
>50 | 8 | 41.0 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinha, A.F.; Soares, T.F.; Machado, M.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Powdered Calendula officinalis Petals Incorporated into Fresh Pasta: Nutritional and Chemical Evaluation Before and After Processing. Appl. Sci. 2025, 15, 2771. https://doi.org/10.3390/app15052771
Vinha AF, Soares TF, Machado M, Costa ASG, Alves RC, Oliveira MBPP. Powdered Calendula officinalis Petals Incorporated into Fresh Pasta: Nutritional and Chemical Evaluation Before and After Processing. Applied Sciences. 2025; 15(5):2771. https://doi.org/10.3390/app15052771
Chicago/Turabian StyleVinha, Ana F., Thiago F. Soares, Marlene Machado, Anabela S. G. Costa, Rita C. Alves, and Maria Beatriz P. P. Oliveira. 2025. "Powdered Calendula officinalis Petals Incorporated into Fresh Pasta: Nutritional and Chemical Evaluation Before and After Processing" Applied Sciences 15, no. 5: 2771. https://doi.org/10.3390/app15052771
APA StyleVinha, A. F., Soares, T. F., Machado, M., Costa, A. S. G., Alves, R. C., & Oliveira, M. B. P. P. (2025). Powdered Calendula officinalis Petals Incorporated into Fresh Pasta: Nutritional and Chemical Evaluation Before and After Processing. Applied Sciences, 15(5), 2771. https://doi.org/10.3390/app15052771