Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = forest stream channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4160 KiB  
Article
Evaluating Trends and Insights from Historical Suspended Sediment and Land Management Data in the South Fork Clearwater River Basin, Idaho County, Idaho, USA
by Kevin M. Humphreys and David C. Mays
Hydrology 2025, 12(3), 50; https://doi.org/10.3390/hydrology12030050 - 6 Mar 2025
Viewed by 827
Abstract
In forested watersheds, suspended sediment concentration (SSC) is an important parameter that impacts water quality and beneficial use. Water quality also has impacts beyond the stream channel, as elevated SSC can violate Indigenous sovereignty, treaty rights, and environmental law. To address elevated SSC, [...] Read more.
In forested watersheds, suspended sediment concentration (SSC) is an important parameter that impacts water quality and beneficial use. Water quality also has impacts beyond the stream channel, as elevated SSC can violate Indigenous sovereignty, treaty rights, and environmental law. To address elevated SSC, watershed partners must understand the dynamics of the sediment regime in the basins they steward. Collection of additional data is expensive, so this study presents modeling and analysis techniques to leverage existing data on SSC. Using data from the South Fork Clearwater River in Idaho County, Idaho, USA, we modeled SSC over water years 1986–2011 and we applied regression techniques to evaluate correlations between SSC and natural disturbances (channel-building flow events) and anthropogenic disturbances (timber harvesting, hazardous fuel management, controlled burns, and wildfire). Analysis shows that SSC did not change over the period of record. This study provides a monitoring program design to support future decision making leading to reductions in SSC. Full article
Show Figures

Graphical abstract

18 pages, 1414 KiB  
Article
Characterizing Stream Condition with Benthic Macroinvertebrates in Southeastern Minnesota, USA: Agriculture, Channelization, and Karst Geology Impact Lotic Habitats and Communities
by Neal D. Mundahl
Insects 2025, 16(1), 59; https://doi.org/10.3390/insects16010059 - 10 Jan 2025
Viewed by 1749
Abstract
Prior to implementing watershed-wide projects to reduce the impacts of agriculture on regional streams and rivers, stream habitats and benthic aquatic macroinvertebrate communities were assessed at 15 sites on the South Branch Root River and its major tributaries in southeastern Minnesota, USA. Triplicate [...] Read more.
Prior to implementing watershed-wide projects to reduce the impacts of agriculture on regional streams and rivers, stream habitats and benthic aquatic macroinvertebrate communities were assessed at 15 sites on the South Branch Root River and its major tributaries in southeastern Minnesota, USA. Triplicate kick-net samples were collected from each site during three time periods (1998, 1999, 2006/2008) and stream habitats were inventoried within 150 m long sections at each site. In total, 26,760 invertebrates representing 84 taxa were collected and used to rate stream sites using a regional multi-metric benthic index of biotic integrity (BIBI). BIBI scores were significantly correlated with total invertebrate taxa richness. BIBI ratings improved from poor and very poor at headwater sites in channelized stream sections draining agricultural lands to fair to good to excellent in downstream sections flowing through natural channels in largely forested lands. Fifty percent of samples rated stream sites as poor or very poor. Over 85% of stream habitat assessments indicated the presence of fair to good habitats, although stream sites were relatively wide and shallow and dominated by fine sediments that also embedded coarser substrates. BIBI metrics and scores were strongly positively correlated with pool area, riffle spacing-to-stream width ratios, and silt-free substrate, and negatively correlated with width-to-depth ratios. Most stream sites had few Ephemeroptera, Plecoptera, Trichoptera, and Diptera taxa and too few intolerant taxa. It is expected that benthic invertebrate communities should improve as more riparian buffers are added along all streams. However, on-going channel maintenance activities in headwater stream sections, mandated to encourage drainage of adjacent agricultural fields, will continue to negatively impact headwater habitats and biotic communities. Full article
(This article belongs to the Special Issue Aquatic Insects: Diversity, Ecology and Evolution)
Show Figures

Figure 1

26 pages, 7621 KiB  
Article
Factors Diversifying the Characteristics of Fluvial Sediments Accumulated in Mountain Stream Channels—A Case Study from the Polish Carpathians
by Ewa Słowik-Opoka and Anna Michno
Water 2024, 16(23), 3476; https://doi.org/10.3390/w16233476 - 3 Dec 2024
Viewed by 1083
Abstract
This paper presents the diversification of fluvial sediments caused by the occurrence of coarse woody debris (CWD), boulder steps (BSs), and mixed structures (MSs), understood as a combination of CWD and BSs in a stream channel in a small forested catchment in the [...] Read more.
This paper presents the diversification of fluvial sediments caused by the occurrence of coarse woody debris (CWD), boulder steps (BSs), and mixed structures (MSs), understood as a combination of CWD and BSs in a stream channel in a small forested catchment in the Polish Carpathians. This research is crucial for understanding the role of this kind of threshold present in a stream channel in shaping fluvial sediment characteristics in small forested mountain catchments. Our hypothesis is that the threshold type in a stream channel determines fluvial sediment diversification. This was verified in field research, including identification of the channel’s morphodynamic structure and the morphometric characteristics of CWD, BSs, and MSs as well as the collection of fluvial sediments upstream and downstream of them. In order to preserve research objectivity, tests were performed during comparable flow conditions in the summer (EX1) and autumn (EX2) periods. The statistical analysis showed that the type of threshold significantly affects the processing, size, and shape diversification of mineral material. This diversity is particularly noticeable in fluvial sediments within CWD and MSs, which retain material of more diverse sizes and shapes. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

24 pages, 5860 KiB  
Article
Temporal and Spatial Variations in Microplastic Concentrations in Small Headwater Basins in the Southern Blue Ridge Mountains, North Carolina, USA
by Jerry Miller, Nathaniel Barrett, Jason Love, Austin Gray, Robert Youker, Chloe Hall, Noa Meiri, Megan Gaesser, Georgeanna Randall, Reagan Jarrett and Juliet Spafford
Environments 2024, 11(11), 240; https://doi.org/10.3390/environments11110240 - 30 Oct 2024
Cited by 1 | Viewed by 2789
Abstract
Microplastics (MPs) are ubiquitous contaminants of emerging concern that require additional study in freshwater streams. We examined the spatial-temporal variations in MP concentrations and characteristics within two headwater basins in the Southern Appalachian Mountains of western North Carolina over ~1 year. Atmospheric samples [...] Read more.
Microplastics (MPs) are ubiquitous contaminants of emerging concern that require additional study in freshwater streams. We examined the spatial-temporal variations in MP concentrations and characteristics within two headwater basins in the Southern Appalachian Mountains of western North Carolina over ~1 year. Atmospheric samples were also collected to determine the significance of atmospheric MP deposition to these relatively small streams. MP concentrations in both basins were within the upper quartile of those reported globally, reaching maximum values of 65.1 MPs/L. Approximately 90% of MPs were fibers. MP composition was dominated by polystyrene, polyamides, and polyethylene terephthalate. Spatially, concentrations were highly variable and increased with development, indicating anthropogenic inputs from urbanized areas. MP concentrations were also elevated in forested tributary subbasins with limited anthropogenic activity, suggesting atmospheric deposition was an important MPs source. Significant atmospheric inputs are supported by high atmospheric depositional rates (ranging between 7.6 and 449.8 MPs/m2/day across our study sites) and similarities in morphology, color, and composition between atmospheric and water samples. Temporally, MP concentrations during storm events increased, decreased, or remained the same in comparison to base flows, depending on the site. The observed spatial and temporal variations in concentrations appear to be related to the complex interplay between precipitation and runoff intensities, channel transport characteristics, and MP source locations and contributions. Full article
Show Figures

Figure 1

17 pages, 26856 KiB  
Article
Changed Seasonality and Forcings of Peak Annual Flows in Ephemeral Channels at Flagstaff, Northern Arizona, USA
by Erik Schiefer and Edward Schenk
Hydrology 2024, 11(8), 115; https://doi.org/10.3390/hydrology11080115 - 3 Aug 2024
Cited by 3 | Viewed by 1765
Abstract
Flood variability associated with urbanization, ecological change, and climatic change is of increasing economic and social concern in and around Flagstaff, Arizona, where flood hydrology is influenced by a biannual precipitation regime and the relatively unique geologic setting at the edge of the [...] Read more.
Flood variability associated with urbanization, ecological change, and climatic change is of increasing economic and social concern in and around Flagstaff, Arizona, where flood hydrology is influenced by a biannual precipitation regime and the relatively unique geologic setting at the edge of the San Francisco Volcanic Field on the southern edge of the Colorado Plateau. There has been limited long-term gauging of the ephemeral channels draining the developed lands and dry coniferous forests of the region, resulting in a spaciotemporal gap in observation-based assessments of large-scale flooding patterns. We present new data from over 10 years of flood monitoring using a crest stage gauge network, combined with other channel monitoring records from multiple agency sources, to assess inter-decadal patterns of flood change in the area, with a specific emphasis on examining how various controls and disturbances have altered the character and seasonality of peak annual flows. Methods of analysis included the following: using Fisher’s Exact Test to compare the seasonality of flooding between historic data spanning the 1970s and contemporary data obtained since 2010; summarizing GIS-based spatial data and meteorological timeseries to characterize study catchment conditions and changes between flood study periods; and relating spatiotemporal patterns of flood seasonality and occurrences of notably large floods with catchment characteristics and environmental changes. Our results show systematic patterns and changes in Flagstaff-area flood regimes that relate to geologic and topographic controls of the varied catchment systems, and in response to records of climate variations and local catchment disturbances, including urbanization and, especially, high-severity wildfire. For most catchments there has been a shift from predominantly late winter to spring snowmelt floods, or mixed seasonal flood regimes, towards monsoon-dominated flooding, patterns which may relate to observed local warming and precipitation changes. Post-wildfire flooding has produced extreme flood discharges which have likely exceeded historical estimates of flood magnitude over decade-long monitoring periods by one to two orders of magnitude. We advocate for continued monitoring and the expansion of local stream gauge networks to enable seasonal, magnitude-frequency trend analyses, improved climate and environmental change attribution, and to better inform the many planned and ongoing flood mitigation projects being undertaken in the increasingly developed Flagstaff region. Full article
(This article belongs to the Special Issue Runoff Modelling under Climate Change)
Show Figures

Graphical abstract

14 pages, 6365 KiB  
Article
Spatial Distribution Patterns and Influencing Factors of Dominant Species in Plain Valley Forests of the Irtysh River Basin
by Jihu Song, Zhifang Xue, Bin Yang, Tong Liu, Ye Yuan, Ling Xu and Zidong Zhang
Forests 2024, 15(7), 1237; https://doi.org/10.3390/f15071237 - 16 Jul 2024
Cited by 3 | Viewed by 1318
Abstract
The Irtysh River, which stretches for 633 km, is the second longest river in Xinjiang. The valley forests within its basin are unique forest resources that exhibit crucial ecological functions and form an integral part of China’s “Three North” Shelterbelt Forest Project. However, [...] Read more.
The Irtysh River, which stretches for 633 km, is the second longest river in Xinjiang. The valley forests within its basin are unique forest resources that exhibit crucial ecological functions and form an integral part of China’s “Three North” Shelterbelt Forest Project. However, previous studies mainly focused on individual tributaries or main streams, lacking comprehensive research on the overall river and valley forest resources and their ecological functions. To address this research gap based on comprehensive investigations, this study analyzed the dominant species composition, spatial distribution patterns, and influencing factors of valley forests across various branches of the Irtysh River basin plain. The results revealed the presence of 10 local tree species in the area, with Populus laurifolia, Populus alba, Salix alba, and Betula pendula as the dominant species. However, seedling regeneration was relatively weak. P. laurifolia, P. alba, and S. alba were widely distributed across tributaries and main streams, whereas B. pendula was primarily found in the tributaries. The four dominant species exhibited distinct clustering patterns. The concentration intensity of these dominant species in the main stream of the Irtysh River basin was significantly higher than those in other tributaries, with P. laurifolia showing a lower concentration intensity across the entire basin than the other dominant species. Negative density dependence was the primary biological factor influencing species aggregation intensity, with significant positive effects on P. alba and S. alba and significant negative effects on B. pendula. Among the abiotic factors, elevation had a significant positive effect on the aggregation intensities of P. alba, S. alba, and B. pendula, indicating that these species tend to aggregate more densely at higher elevations. Conversely, slope had a significant negative impact on the aggregation intensities of P. laurifolia, P. alba, and S. alba, suggesting that increasing slope steepness leads to a decrease in the clustering of these species. Similarly, the distance from the river channel had a significant negative effect on the aggregation intensities of S. alba and B. pendula, implying that as the distance from the river increases, the clustering patterns of these species become less pronounced. This study aimed to detail the current state of valley forest resources and their ecological functions, thereby laying a foundation for their effective protection. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

22 pages, 3247 KiB  
Article
Modeled Forest Conversion Influences Humid Tropical Watershed Hydrology More than Projected Climate Change
by Taylor Joyal, Alexander K. Fremier and Jan Boll
Hydrology 2023, 10(8), 160; https://doi.org/10.3390/hydrology10080160 - 31 Jul 2023
Cited by 1 | Viewed by 2527
Abstract
In the humid tropics, forest conversion and climate change threaten the hydrological function and stationarity of watersheds, particularly in steep terrain. As climate change intensifies, shifting precipitation patterns and expanding agricultural and pastoral land use may effectively reduce the resilience of headwater catchments. [...] Read more.
In the humid tropics, forest conversion and climate change threaten the hydrological function and stationarity of watersheds, particularly in steep terrain. As climate change intensifies, shifting precipitation patterns and expanding agricultural and pastoral land use may effectively reduce the resilience of headwater catchments. Compounding this problem is the limited long-term monitoring in developing countries for planning in an uncertain future. In this study, we asked which change, climate or land use, more greatly affects stream discharge in humid tropical mountain watersheds? To answer this question, we used the process-based, spatially distributed Soil Moisture Routing model. After first evaluating model performance (Ns = 0.73), we conducted a global sensitivity analysis to identify the model parameters that most strongly influence simulated watershed discharge. In particular, peak flows are most influenced by input model parameters that represent shallow subsurface soil pathways and saturation-excess runoff while low flows are most sensitive to macropore hydraulic conductivity, soil depth and porosity parameters. We then simulated a range of land use and climate scenarios in three mountain watersheds of central Costa Rica. Our results show that deforestation influences streamflow more than altered precipitation and temperature patterns through changes in first-order hydrologic hillslope processes. However, forest conversion coupled with intensifying precipitation events amplifies hydrological extremes, reducing the hydrological resilience to predicted climate shifts in mountain watersheds of the humid tropics. This finding suggests that reforestation can help mitigate the effects of climate change on streamflow dynamics in the tropics including impacts to water availability, flood pulses, channel geomorphology and aquatic habitat associated with altered flow regimes. Full article
(This article belongs to the Topic Hydrology and Water Resources Management)
Show Figures

Figure 1

18 pages, 9597 KiB  
Article
Nature-Based Solutions for Disaster Reduction and Improving Ecosystem Services in the Hutoubi Watershed, Taiwan
by Yen-Yu Chiu, Yi-Hung Wu, Kuei-Lin Fu, Tsung-Cheng Lai, Hung-En Chen and Su-Chin Chen
Water 2023, 15(14), 2527; https://doi.org/10.3390/w15142527 - 10 Jul 2023
Cited by 7 | Viewed by 3121
Abstract
The Hutoubi Reservoir and its mainstream, Huyuan Stream, in the southern mountainous region of Taiwan, have experienced riverbed sedimentation and flood disasters for the past 150 years. In addition to climate change, it is necessary to scientifically consider its regulation for the next [...] Read more.
The Hutoubi Reservoir and its mainstream, Huyuan Stream, in the southern mountainous region of Taiwan, have experienced riverbed sedimentation and flood disasters for the past 150 years. In addition to climate change, it is necessary to scientifically consider its regulation for the next hundred years. This study adopted a collaborative approach, involving industry, government, and academia, using Nature-based Solutions (NbS) to enhance ecosystem services. The solution layout is constructed by widening the channel and constructing additional farm ponds and wetlands. An hydraulic simulation indicated that flood control was addressed. The restoration project would create diverse aquatic habitats by simulating and evaluating the distribution of ecological biotopes, using porous materials as revetments. It provided urban residents with forest leisure and recreational sites and supported the local agricultural and forestry products. The restoration has propagated local culture and created environmental and professional education. Therefore, ecological services are enhanced regarding regulation, support, provision, and culture. This pilot study, led by researchers, aimed to promote comprehensive management concepts considering all stakeholders and their active participation. We integrated NbS into the watershed and its river system as a pathway for facing the challenges of rapid urbanization and climate change and improving ecosystem services. Full article
Show Figures

Figure 1

18 pages, 4342 KiB  
Article
Urban Stream Corridors and Forest Patches—The Connections: A Case Study of Bloomington, IN
by Gretchen M. Luchauer, Stephanie Freeman-Day and Burnell C. Fischer
Sustainability 2023, 15(10), 8064; https://doi.org/10.3390/su15108064 - 16 May 2023
Viewed by 1955
Abstract
Streams and forests are ecosystems connected through hydrology, but few studies have looked at the connectivity between streams and forests in the context of urban development. City-made decisions affect connections between streams and forests by isolating both ecosystems. Streams are often channelized or [...] Read more.
Streams and forests are ecosystems connected through hydrology, but few studies have looked at the connectivity between streams and forests in the context of urban development. City-made decisions affect connections between streams and forests by isolating both ecosystems. Streams are often channelized or buried to increase potential development areas. Forests often become fragmented and may be removed unless protected. Historical choices in land usage affect the sites and sizes of current urban streams, forests, and development. This affects the distribution of impervious surfaces, which separates streams from forests. Despite these barriers to stream/forest interactions, cities can experience stream/forest connectivity. Seven Bloomington watersheds are ranked on their proportions of buried streams, channelized streams, forested hydrology, forested streams, urban forest patch cover, and impervious surface cover, along with the historical presence of urbanization. Watersheds demonstrate stream/forest connectivity, with five watersheds containing 50% or greater forested stream segments. Bloomington canopy cover reduces stormwater runoff by approximately 127 kiloliters per year. These forested areas reduce flooding, reduce nutrient loading, and reduce stream conditions associated with urban stream syndrome. Understanding urban stream/forest connectivity can improve green infrastructure design and green space design, which improve urban resilience and better connect residents to the environment. Full article
(This article belongs to the Special Issue Forward Thinking Urban Forest Management for Sustainable Cities)
Show Figures

Figure 1

14 pages, 3482 KiB  
Article
The Impact of Urban Land-Use Regimes on the Stream Vegetation and Quality of a Mediterranean City
by Georgios Theodosiou and Sampson Panajiotidis
Hydrology 2023, 10(2), 45; https://doi.org/10.3390/hydrology10020045 - 9 Feb 2023
Cited by 5 | Viewed by 2317
Abstract
Urban streams are ecosystems of great ecological and hydrological importance for human environments. However, they face pressure on biodiversity, hydromorphology, and water quality. In this study, an urban riparian system of a Mediterranean city (Thessaloniki, Greece) which interacts with several land-use classes, namely [...] Read more.
Urban streams are ecosystems of great ecological and hydrological importance for human environments. However, they face pressure on biodiversity, hydromorphology, and water quality. In this study, an urban riparian system of a Mediterranean city (Thessaloniki, Greece) which interacts with several land-use classes, namely forests, pastures, cultivations, industrial-commercial infrastructure, and light and dense urban fabric, is assessed. The analyzed data were collected by implementing mainly QBR and ancillary RMP protocols on 37 plots of the Dendropotamos stream. The QBR protocol provided an assessment of total riparian vegetation cover, cover structure and quality, as well as channel alterations. The RMP protocol was used to enhance the quantitative assessment of dominant tree and shrub cover. Parts of Dendropotamos surrounded by agricultural (median QBR score: 27.5), industrial (50), and dense residential areas (27.5) suffer, in general, from low riparian vegetation cover, bad vegetation structure and quality, the continuous presence of alien/introduced species, and channel alterations. A variety of riparian habitat conditions characterize the sparse residential areas (60) where cover structure and quality of vegetation is improved. The reduction in grazing pressure has improved the riparian habitat in the greatest part of Dendropotamos that is surrounded by semi-natural pastures (65). Within forested areas (85), the stream conditions are considered quasi-natural. All previous land uses are differentiated in terms of the dominant trees found in the vegetation of Dendropotamos: Platanus orientalis in forested areas, alien Ailanthus altissima mainly in residential and industrial areas, and native shrubs, e.g., Quercus coccifera and Pyrus spinosa, in pastures. The QBR protocol could be a valuable tool in urban environment planning to help identify areas with potential for restoration, such as those with moderate residential pressure. Full article
Show Figures

Figure 1

20 pages, 63065 KiB  
Article
Is the Current Forest Management to the Northernmost Population of Cordulegaster heros (Anisoptera: Cordulegastridae) in Central Europe (Czech Republic) Threatening?
by Otakar Holuša, Kateřina Holušová and Attila Balázs
Forests 2023, 14(2), 228; https://doi.org/10.3390/f14020228 - 26 Jan 2023
Cited by 1 | Viewed by 1826
Abstract
Cordulegaster heros is included in the EN category on the IUCN Red List for the territory of the Czech Republic, where it inhabits an area of approximately 100 km2. All of the localities are located in the forest complex in Chřiby [...] Read more.
Cordulegaster heros is included in the EN category on the IUCN Red List for the territory of the Czech Republic, where it inhabits an area of approximately 100 km2. All of the localities are located in the forest complex in Chřiby hills, and all of the forests fall into the category of management forests. Most of the forest stands have a high and very high degree of naturalness; they are natural forest stands. The predominant management units are Nutrient sites in middle elevations (78.2% of the area) and Oligotrophic sites in middle elevations (2.1% of the area), with stand types of Fagus sylvatica representing 92.5% of the area, and forest stand types of Quercus sp. representing 5.7% of the area. The wider alluvia in forest streams are classified as being in management unit alder and ash sites on waterlogged and floodplain soils (1.1%), with the forest stand type of Alnus glutinosa. The forest stands are restored by regeneration under shelterwood (97.8% of the area). The waterlogged alluvia, if a separate management unit is established for them, are restored by a regeneration by strip method. Realistically, seven factors were recorded in C. heros habitats, but they mostly have only point effects. Within forestry management, the factors of logging directly in the habitats and the subsequent transport of harvested timber in the habitat were recorded. The most intrusive effects were found on tractor logging roads, where fine soil washes into the stream and causes prolonged turbidity. Of the water management structures in the study area, logging roads with bridges and culverts are constructed, stream banks are reinforced with longitudinal walls at points, and stone steps in the channels are constructed only sporadically. The current forest management system can be described as a nature-friendly system, and therefore, it fully ensures the conditions for the survival of the C. heros population in the Czech Republic. Full article
(This article belongs to the Special Issue The Extinction Crisis: How Bad, What Can Be Done?)
Show Figures

Figure 1

13 pages, 2714 KiB  
Article
Evaluating Water and Carbon Retention in a Low-Order, Designed River Corridor
by Jaclyn M. H. Cockburn, Alex Scott and Paul V. Villard
Land 2022, 11(12), 2256; https://doi.org/10.3390/land11122256 - 10 Dec 2022
Cited by 2 | Viewed by 1721
Abstract
As urban residential areas expand into the areas around cities, especially in North America, these areas were previously forested or were converted to agricultural uses (e.g., cropping, grazing). Many of the pre-existing channels were modified prior to residential area expansion and required modification [...] Read more.
As urban residential areas expand into the areas around cities, especially in North America, these areas were previously forested or were converted to agricultural uses (e.g., cropping, grazing). Many of the pre-existing channels were modified prior to residential area expansion and required modification and/or restoration in order for development permits to be granted. These pre-existing channels are often low-order, semi-ephemeral streams with hydrological and geomorphological functions and provide aquatic-terrestrial habitat and ecological linkages. Once restored, these corridors provide important services to the entire river network related to flood-risk mitigation, sediment trapping, and are potential carbon (via particulate organic matter) sinks. This research evaluated water flow and carbon trapping within a low-order tributary of East Morrison Creek in Southern Ontario, Canada in the years immediately following construction. Water level records (5 September and 30 November 2019, and 1 April and 30 November 2020) show that even in its early development this new system was functioning efficiently. Sediment samples taken throughout the 2020 field season determined particulate organic matter was being stored, especially in features where flow was attenuated. Channel roughness imposed by large wood structures promote organic matter deposition within bed sediments and were expected to increase over time. These findings highlight the importance of spatial heterogeneity imposed by the design features used in this reach-scale restoration and serve as a valuable ‘proof of concept’ for future work along the urban-rural interface of expanding cities. Full article
(This article belongs to the Section Urban Contexts and Urban-Rural Interactions)
Show Figures

Figure 1

13 pages, 4825 KiB  
Article
The University of West Florida Campus Ecosystem Study: Spatial and Temporal Variation in Water Quality at Thompson Bayou
by Frank S. Gilliam, Jacob W. Hardin, Jacob A. Williams and Rachel L. Lackaye
Water 2022, 14(18), 2916; https://doi.org/10.3390/w14182916 - 17 Sep 2022
Cited by 2 | Viewed by 3208
Abstract
Much of our understanding of factors influencing stream chemistry comes from studies of montane forests, whereas far less work has focused on streams of coastal areas that integrate a homogeneous, flat topography and interactions with the bodies of water into which they drain, [...] Read more.
Much of our understanding of factors influencing stream chemistry comes from studies of montane forests, whereas far less work has focused on streams of coastal areas that integrate a homogeneous, flat topography and interactions with the bodies of water into which they drain, especially involving tidal fluxes. Fewer still do so in the context of an urban interface, especially that of a college campus. This study assessed the water quality of Thompson Bayou, a freshwater stream entering the University of West Florida campus in a wetland after flowing through the urban property with impacted water quality. We measured temperature, pH, dissolved O2 (DO), and specific conductivity (SC) for one year at eight sites along Thompson Bayou from campus to the Escambia River. All variables, except temperature, varied spatially, with consistent increases in DO and SC toward the river of 10% and 75%, respectively. Variables exhibited temporal patterns of significant seasonal variation, especially temperature, increasing from a January minimum of 14 °C to a summer maximum of 28 °C. These results suggest that, in general, the biogeochemistry of coastal streams such as Thompson Bayou can be influenced by numerous factors, including (1) wetland processes, (2) interactions of the stream channel with forested uplands, and (3) tidal fluxes. Full article
(This article belongs to the Special Issue Water Quality Modeling and Monitoring)
Show Figures

Figure 1

25 pages, 4747 KiB  
Article
Impact of Fish Ponds on Stream Hydrology and Temperature Regime in the Context of Freshwater Pearl Mussel Conservation
by Rebecca Hoess, Konstantina A. Generali, Johannes Kuhn and Juergen Geist
Water 2022, 14(16), 2490; https://doi.org/10.3390/w14162490 - 12 Aug 2022
Cited by 8 | Viewed by 4556
Abstract
Conservation of endangered, cold-stenothermic species, such as the freshwater pearl mussel (FPM) and its salmonid host fish, are particularly challenging in headwater streams as their last refuge areas. Understanding the impact of anthropogenic catchment features such as fish ponds on the hydrology and [...] Read more.
Conservation of endangered, cold-stenothermic species, such as the freshwater pearl mussel (FPM) and its salmonid host fish, are particularly challenging in headwater streams as their last refuge areas. Understanding the impact of anthropogenic catchment features such as fish ponds on the hydrology and the temperature regime of such streams is, therefore, important. In this study, runoff in a FPM catchment with more than 150 small ponds was simulated using SWAT and compared to a scenario without ponds. Additionally, water temperature was monitored hourly along three steams over 2.5 years, at sites upstream and downstream of the inflow of pond outlet channels. Temperature metrics were related to land use within a 180 m corridor along the streams. Peak flows were reduced by 1.5% with ponds, while low flows were increased by 4.5%. In summer, temperature in pond effluents was higher than in the receiving stream, depending on the proximity of the inflow points. Discharge from close-by ponds increased summer stream temperature directly downstream of the inflow by up to 5.5 °C. These increased temperatures were partly compensated by groundwater contribution in forested areas. In contrast, stream temperature significantly further increased along stretches flowing through open land, persisting independently of pond inflows. We suggest incorporating this knowledge on pond- and land use-dependent effects on stream temperature regimes into the conservation management of FPM and other cold-stenothermic species, as well as into climate change mitigation strategies targeting an increased resilience against temperature extremes. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

24 pages, 3234 KiB  
Article
Spatio-Temporal Variability of Methane Fluxes in Boreo-Nemoral Alder Swamp (European Russia)
by Tamara V. Glukhova, Danil V. Ilyasov, Stanislav E. Vompersky, Gennady G. Suvorov, Alla V. Golovchenko, Natalia A. Manucharova and Alexey L. Stepanov
Forests 2022, 13(8), 1178; https://doi.org/10.3390/f13081178 - 25 Jul 2022
Cited by 2 | Viewed by 2941
Abstract
In 1995–1998 and 2013–2016, we measured methane fluxes (1Q-median-3Q, mgC m−2 h−1) in the Petushikha black alder swamp of the boreo-nemoral zone of European Russia. At microelevations (EL sites), flat surfaces (FL), microdepressions (DEP), and water surfaces of streams and [...] Read more.
In 1995–1998 and 2013–2016, we measured methane fluxes (1Q-median-3Q, mgC m−2 h−1) in the Petushikha black alder swamp of the boreo-nemoral zone of European Russia. At microelevations (EL sites), flat surfaces (FL), microdepressions (DEP), and water surfaces of streams and channels (STR) sites, the fluxes comprised 0.01–0.03–0.09, 0.02–0.06–0.19, 0.04–0.14–0.43, and 0.10–0.21–0.44, respectively. The biggest uncertainty of methane fluxes was caused by seasonal variability (the level of relative variability of fluxes is a nonparametric analogue of the coefficient of variation) which comprised 144%, then by spatial variability—105%, and the smallest by interannual variability—75%. Both spatial and temporal variability of methane fluxes at different elements of the microrelief is heterogeneous: the most variable are communities that are “unstable” in terms of hydrological conditions, such as FL and DEP, and the least variable are the most drained EL and the most moistened STR (“stable” in terms of hydrological conditions). The obtained data on the fluxes and their spatial and temporal variability are consistent with the literature data and can be used to optimize the process of planning studies of the methane budget of “sporadic methane sources”, such as waterlogged forests. This is especially relevant for an adequate assessment of the role of methane fluxes in the formation of the waterlogged forests carbon budget and a changing climate. Full article
(This article belongs to the Special Issue Carbon Fluxes and Production in Forest Ecosystems)
Show Figures

Figure 1

Back to TopTop