Evaluating Water and Carbon Retention in a Low-Order, Designed River Corridor
Abstract
:1. Introduction
2. Study Site
3. Methods
4. Results
4.1. Rainfall Variations 2019–2020
4.2. Water Temperature and Water Level 2019–2020
4.3. Organic Carbon Estimates in 2020
5. Discussion
5.1. Role of Spatial Heterogeneity in Attenuating Runoff
5.2. Role of Spatial Heterogeneity in Promoting Carbon Storage
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, P.M.; Arnold, J.G.; Skipwith, W. Prediction of Channel Degradation Rates in Urbanizing Watersheds. Hydrol. Sci. J. 2008, 53, 1013–1029. [Google Scholar] [CrossRef] [Green Version]
- Plumb, B.D.; Annable, W.K.; Thompson, P.J.; Hassan, M.A. The Impact of Urbanization on Temporal Changes in Sediment Transport in a Gravel Bed Channel in Southern Ontario, Canada. Water Resour. Res. 2017, 53, 8443–8458. [Google Scholar] [CrossRef]
- Kumar, S.; Agarwal, A.; Ganapathy, A.; Villuri, V.G.K.; Pasupuleti, S.; Kumar, D.; Kaushal, D.R.; Gosain, A.K.; Sivakumar, B. Impact of Climate Change on Stormwater Drainage in Urban Areas. Stoch Environ. Res. Risk Assess. 2022, 36, 77–96. [Google Scholar] [CrossRef]
- Hou, X.; Guo, H.; Wang, F.; Li, M.; Xue, X.; Liu, X.; Zeng, S. Is the Sponge City Construction Sufficiently Adaptable for the Future Stormwater Management under Climate Change? J. Hydrol. 2020, 588, 125055. [Google Scholar] [CrossRef]
- Smith, L.M.; Winkley, B.R. The Response of the Lower Mississippi River to River Engineering. Eng. Geol. 1996, 45, 433–455. [Google Scholar] [CrossRef]
- Bullock, J.M.; Aronson, J.; Newton, A.C.; Pywell, R.F.; Rey-Benayas, J.M. Restoration of Ecosystem Services and Biodiversity: Conflicts and Opportunities. Trends Ecol. Evol. 2011, 26, 541–549. [Google Scholar] [CrossRef]
- Wohl, E.; Hall Jr., R.O.; Lininger, K.B.; Sutfin, N.A.; Walters, D.M. Carbon Dynamics of River Corridors and the Effects of Human Alterations. Ecol. Monogr. 2017, 87, 379–409. [Google Scholar] [CrossRef]
- Newcomer, T.A.; Kaushal, S.S.; Mayer, P.M.; Shields, A.R.; Canuel, E.A.; Groffman, P.M.; Gold, A.J. Influence of Natural and Novel Organic Carbon Sources on Denitrification in Forest, Degraded Urban, and Restored Streams. Ecol. Monogr. 2012, 82, 449–466. [Google Scholar] [CrossRef] [Green Version]
- Wohl, E.; Lininger, K.B.; Scott, D.N. River Beads as a Conceptual Framework for Building Carbon Storage and Resilience to Extreme Climate Events into River Management. Biogeochemistry 2018, 141, 365–383. [Google Scholar] [CrossRef]
- Peipoch, M.; Brauns, M.; Hauer, F.R.; Weitere, M.; Valett, H.M. Ecological Simplification: Human Influences on Riverscape Complexity. BioScience 2015, 65, 1057–1065. [Google Scholar] [CrossRef]
- Marttila, M.; Louhi, P.; Huusko, A.; Mäki-Petäys, A.; Yrjänä, T.; Muotka, T. Long-Term Performance of in-Stream Restoration Measures in Boreal Streams. Ecohydrology 2016, 9, 280–289. [Google Scholar] [CrossRef]
- McMillan, S.K.; Tuttle, A.K.; Jennings, G.D.; Gardner, A. Influence of Restoration Age and Riparian Vegetation on Reach-Scale Nutrient Retention in Restored Urban Streams. J. Am. Water Resour Assoc. 2014, 50, 626–638. [Google Scholar] [CrossRef]
- McMillan, S.K.; Noe, G.B. Increasing Floodplain Connectivity through Urban Stream Restoration Increases Nutrient and Sediment Retention. Ecol. Eng. 2017, 108, 284–295. [Google Scholar] [CrossRef]
- Wohl, E. An Integrative Conceptualization of Floodplain Storage. Rev. Geophys. 2021, 59, e2020RG000724. [Google Scholar] [CrossRef]
- Peirce, S.E.; Lindsay, J.B. Characterizing Ephemeral Streams in a Southern Ontario Watershed Using Electrical Resistance Sensors. Hydrol. Process. 2015, 29, 103–111. [Google Scholar] [CrossRef]
- Solins, J.P.; Cadenasso, M.L. Urban Runoff and Stream Channel Incision Interact to Influence Riparian Soils and Understory Vegetation. Ecol. Appl. 2022, 32, e2556. [Google Scholar] [CrossRef]
- Beechie, T.J.; Sear, D.A.; Olden, J.D.; Pess, G.R.; Buffington, J.M.; Moir, H.; Roni, P.; Pollock, M.M. Process-Based Principles for Restoring River Ecosystems. BioScience 2010, 60, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Vietz, G.J.; Rutherfurd, I.D.; Fletcher, T.D.; Walsh, C.J. Thinking Outside the Channel: Challenges and Opportunities for Protection and Restoration of Stream Morphology in Urbanizing Catchments. Landsc. Urban. Plan. 2016, 145, 34–44. [Google Scholar] [CrossRef]
- Hinshaw, S.; Wohl, E. Quantitatively Estimating Carbon Sequestration Potential in Soil and Large Wood in the Context of River Restoration. Front. Earth Sci. 2021, 9, 708895. [Google Scholar] [CrossRef]
- Newson, M.D.; Newson, C.L. Geomorphology, Ecology and River Channel Habitat: Mesoscale Approaches to Basin-Scale Challenges. Prog. Phys. Geogr. 2000, 24, 195–217. [Google Scholar] [CrossRef]
- Sawyer, A.H.; Bayani Cardenas, M.; Buttles, J. Hyporheic Exchange Due to Channel-Spanning Logs. Water Resour. Res. 2011, 47, W08502. [Google Scholar] [CrossRef]
- Hough-Snee, N.; Kasprak, A.; Rossi, R.K.; Bouwes, N.; Roper, B.B.; Wheaton, J.M. Hydrogeomorphic and Biotic Drivers of Instream Wood Differ Across Sub-Basins of the Columbia River Basin, USA. River Res. Appl. 2016, 32, 1302–1315. [Google Scholar] [CrossRef]
- Krompart, J.; Cockburn, J.M.H.; Villard, P.V. Pocket Wetlands as Additions to Stormwater Treatment Train Systems: A Case Study from a Restored Stream in Brampton, ON, Canada. Can. Water Resour. J. Rev. Can. Des Ressour. Hydr. 2018, 43, 321–334. [Google Scholar] [CrossRef]
- Poelman, J.Y.; Hoitink, A.J.F.; de Ruijsscher, T.V. Flow and Bed Morphology Response to the Introduction of Wood Logs for Sediment Management. Adv. Water Resour. 2019, 130, 1–11. [Google Scholar] [CrossRef]
- Padovan, P.; Cockburn, J.; Villard, P. Faster than an Urban Stream: Evaluating Morphodynamics in Urban Channel Reaches That Have Undergone Form-Based Channel Enhancement. Geomorphology 2022, 411, 108288. [Google Scholar] [CrossRef]
- Ontario Geological Survey (OGS) Surficial Geology of Southern Ontario. Available online: https://www.mndm.gov.on.ca/mines-and-minerals/applications/ogsearth/surficial-geology (accessed on 22 January 2022).
- Ontario Flood Assessment Tool (OFAT). Available online: https://www.lioapplications.lrc.gov.on.ca/OWIT/Index.html?viewer=OWIT.OWIT&locale=en-ca (accessed on 1 November 2022).
- Hoogsteen, M.J.J.; Lantinga, E.A.; Bakker, E.J.; Groot, J.C.J.; Tittonell, P.A. Estimating Soil Organic Carbon through Loss on Ignition: Effects of Ignition Conditions and Structural Water Loss. Eur. J. Soil Sci. 2015, 66, 320–328. [Google Scholar] [CrossRef]
- Environment Canada Daily Data Report for November 2021. Available online: https://climate.weather.gc.ca/climate_data/daily_data_e.html?hlyRange=%7C&dlyRange=2007-01-30%7C2022-08-08&mlyRange=%7C&StationID=45667&Prov=ON&urlExtension=_e.html&searchType=stnName&optLimit=yearRange&StartYear=2014&EndYear=2019&selRowPerPage=25&Line=0&searchMethod=contains&txtStationName=oakville&timeframe=2&Day=1&Year=2021&Month=11# (accessed on 1 November 2022).
- Stanfield, L. Ontario Stream Assessment Protocol. Ontario Ministry of Natural Resource: Peterborough, ON, Canada, 2017; 550p, Available online: https://trca.ca/app/uploads/2019/06/osap-master-version-10-july1-accessibility-compliant_editfootnoteS1M4.pdf (accessed on 21 November 2022).
- Scott, A. Thinking Outside the Active Channel: Evaluating Water and Carbon Retention in a Low-Order, Designed River Corridor. Master’s Thesis, University of Guelph, Guelph, ON, Canada, September 2022; 89p. Available online: https://hdl.handle.net/10214/27211 (accessed on 21 November 2022).
- Beckman, N.D.; Wohl, E. Carbon Storage in Mountainous Headwater Streams: The Role of Old-Growth Forest and Logjams. Water Resour. Res. 2014, 50, 2376–2393. [Google Scholar] [CrossRef]
- Blauch, G.A.; Jefferson, A.J. If a Tree Falls in an Urban Stream, Does It Stick around? Mobility, Characteristics, and Geomorphic Influence of Large Wood in Urban Streams in Northeastern Ohio, USA. Geomorphology 2019, 337, 1–14. [Google Scholar] [CrossRef]
- Osei, N.A.; Gurnell, A.M.; Harvey, G.L. The Role of Large Wood in Retaining Fine Sediment, Organic Matter and Plant Propagules in a Small, Single-Thread Forest River. Geomorphology 2015, 235, 77–87. [Google Scholar] [CrossRef]
- Daniels, M.D. Distribution and Dynamics of Large Woody Debris and Organic Matter in a Low-Energy Meandering Stream. Geomorphology 2006, 77, 286–298. [Google Scholar] [CrossRef]
- Wohl, E.; Dwire, K.; Sutfin, N.; Polvi, L.; Bazan, R. Mechanisms of Carbon Storage in Mountainous Headwater Rivers. Nat. Commun. 2012, 3, 1263. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cockburn, J.M.H.; Scott, A.; Villard, P.V. Evaluating Water and Carbon Retention in a Low-Order, Designed River Corridor. Land 2022, 11, 2256. https://doi.org/10.3390/land11122256
Cockburn JMH, Scott A, Villard PV. Evaluating Water and Carbon Retention in a Low-Order, Designed River Corridor. Land. 2022; 11(12):2256. https://doi.org/10.3390/land11122256
Chicago/Turabian StyleCockburn, Jaclyn M. H., Alex Scott, and Paul V. Villard. 2022. "Evaluating Water and Carbon Retention in a Low-Order, Designed River Corridor" Land 11, no. 12: 2256. https://doi.org/10.3390/land11122256
APA StyleCockburn, J. M. H., Scott, A., & Villard, P. V. (2022). Evaluating Water and Carbon Retention in a Low-Order, Designed River Corridor. Land, 11(12), 2256. https://doi.org/10.3390/land11122256