Modeled Forest Conversion Influences Humid Tropical Watershed Hydrology More than Projected Climate Change
Abstract
:1. Introduction
- Perform a global sensitivity analysis to assess which parameters produced the largest uncertainty in model simulations using a one-cell version of the SMR model.
- Evaluate the effects of predicted climate regime changes and land use on stream hydrology by modeling scenarios representing a matrix of climate and land use conditions in the three study watersheds.
2. Materials and Methods
2.1. Study Watersheds
2.2. Soil Moisture Routing Model
2.3. Model Performance Assessment
2.4. Model Sensitivity Analysis
2.5. Climate Scenarios and Land Use
3. Results
3.1. Model Performance
3.2. Sensitivity Analysis
3.3. Land Use and Climate Scenarios
3.3.1. Land Use Effects
3.3.2. Combined Climate and Land Use Effects
3.3.3. Land Use Effects on Flow Paths
4. Discussion
4.1. Model Performance
4.2. Sensitivity Analysis
4.2.1. Parameterization of Baseflow
4.2.2. Parameterization of Peak Flows
4.3. Land Use and Climate Change Influence on Hydrology
4.4. Hydrological Resilience to a Changing Climate
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mora, C.; Frazier, A.G.; Longman, R.J.; Dacks, R.S.; Walton, M.M.; Tong, E.J.; Sanchez, J.J.; Kaiser, L.R.; Stender, Y.O.; Anderson, J.M.; et al. The projected timing of climate departure from recent variability. Nature 2013, 502, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Wohl, E. Human impacts to mountain streams. Geomorphology 2006, 79, 217–248. [Google Scholar] [CrossRef]
- Wohl, E.; Barros, A.; Brunsell, N.; Chappell, N.A.; Coe, M.; Giambelluca, T.; Goldsmith, S.; Harmon, R.; Hendrickx, J.M.H.; Juvik, J.; et al. The hydrology of the humid tropics. Nat. Clim. Chang. 2012, 2, 655–662. [Google Scholar] [CrossRef]
- Karmalkar, A.V.; Bradley, R.S.; Diaz, H.F. Climate change scenario for Costa Rican montane forests. Geophys. Res. Lett. 2008, 35, L11702. [Google Scholar] [CrossRef]
- Funk, C.C. Drought, Flood, Fire: How Climate Change Contributes to Catastrophes; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Magrin, G.O.; Marengo, J.A.; Boulanger, J.-P.; Buckeridge, M.S.; Castellanos, E.; Poveda, G.; Scarano, F.R.; Vicun, S. Central and South America. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1499–1566. [Google Scholar]
- Solomon, S.; Qin, D.; Manning, M.; Averyt, K.; Marquis, M. (Eds.) Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Stocker, T. (Ed.) Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Mahowald, N.M.; Ward, D.S.; Doney, S.C.; Hess, P.G.; Randerson, J.T. Are the impacts of land use on warming underestimated in climate policy? Environ. Res. Lett. 2017, 12, 094016. [Google Scholar] [CrossRef]
- Ward, D.S.; Mahowald, N.M. Local sources of global climate forcing from different categories of land use activities. Earth Syst. Dyn. 2015, 6, 175–194. [Google Scholar] [CrossRef]
- Nath, P.K.; Behera, B. A critical review of impact of and adaptation to climate change in developed and developing economies. Environ. Dev. Sustain. 2010, 13, 141–162. [Google Scholar] [CrossRef]
- Salas, J.D.; Rajagopalan, B.; Saito, L.; Brown, C. Special Section on Climate Change and Water Resources: Climate Nonstationarity and Water Resources Management. J. Water Resour. Plan. Manag. 2012, 138, 385–388. [Google Scholar] [CrossRef]
- Walker, B.; Salt, D. Resilience Thinking: Sustaining Ecosystems and People in a Changing World; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Bruijnzeel, L. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Harder, P.; Pomeroy, J.W.; Westbrook, C.J. Hydrological resilience of a Canadian Rockies headwaters basin subject to changing climate, extreme weather, and forest management. Hydrol. Process. 2015, 29, 3905–3924. [Google Scholar] [CrossRef]
- Mao, F.; Clark, J.; Karpouzoglou, T.; Dewulf, A.; Buytaert, W.; Hannah, D. HESS Opinions: A conceptual framework for assessing socio-hydrological resilience under change. Hydrol. Earth Syst. Sci. 2017, 21, 3655–3670. [Google Scholar] [CrossRef]
- Nadeau, T.-L.; Rains, M.C. Hydrological Connectivity Between Headwater Streams and Downstream Waters: How Science Can Inform Policy1. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 118–133. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A. Hydrology of Moist Tropical Forest and the Effects of Conversion: A State of Review; UNESCO: Paris, France; Vrije Universiteit: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Germer, S.; Neill, C.; Krusche, A.V.; Elsenbeer, H. Influence of land-use change on near-surface hydrological processes: Undisturbed forest to pasture. J. Hydrol. 2010, 380, 473–480. [Google Scholar] [CrossRef]
- Hanson, D.L.; Steenhuis, T.S.; Walter, M.F.; Boll, J. Effects of soil degradation and management practices on the surface water dynamics in the Talgua River Watershed in Honduras. Land Degrad. Dev. 2004, 15, 367–381. [Google Scholar] [CrossRef]
- Niemeyer, R.; Fremier, A.; Heinse, R.; Chávez, W.; DeClerck, F. Woody Vegetation Increases Saturated Hydraulic Conductivity in Dry Tropical Nicaragua. Vadose Zone J. 2014, 13, vzj2013.01.0025. [Google Scholar] [CrossRef]
- Spaans, E.J.A.; Baltissen, G.A.M.; Bouma, J.; Miedema, R.; Lansu, A.L.E.; Schoonderbeek, D.; Wielemaker, W.G. Changes in physical properties of young and old volcanic surface soils in Costa Rica after clearing of tropical rain forest. Hydrol. Process. 1989, 3, 383–392. [Google Scholar] [CrossRef]
- Toohey, R.C.; Boll, J.; Brooks, E.S.; Jones, J.R. Effects of land use on soil properties and hydrological processes at the point, plot, and catchment scale in volcanic soils near Turrialba, Costa Rica. Geoderma 2018, 315, 138–148. [Google Scholar] [CrossRef]
- Costa, M.H.; Botta, A.; Cardille, J.A. Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J. Hydrol. 2003, 283, 206–217. [Google Scholar] [CrossRef]
- McDonnel, J.J.; McGlynn, B.; Vache, K.; Tromp-Van Meerveld, I. A perspective on hillslope hydrology in the context of PUB, In Predictions in Ungauged Basins: International Perspectives on the State of the Art and Pathways Forward. In Proceedings of the Predictions in Ungauged Basins (PUB) Workshop, Perth, Australia, 2–5 February 2004; IAHS Publication: Wallingford, UK, 2005; Volume 301, pp. 204–212. [Google Scholar]
- Mulligan, M. WaterWorld: A self-parameterising, physically based model for application in data-poor but problem-rich environments globally. Hydrol. Res. 2012, 44, 748–769. [Google Scholar] [CrossRef]
- Boll, J.; Brooks, E.S.; Campbell, C.R.; Stockle, C.O.; Young, S.K.; Hammel, J.E.; McDaniel, P.A. Progress toward Development of a GIS based Water Quality Management Tool for Small Rural Watersheds: Modification and Application of a Distributed Model. Paper 982230. In Proceedings of the ASAE Annual International Meeting, Orlando, FL, USA, 12–16 July 1998. [Google Scholar]
- Brooks, E.S.; Boll, J.; McDaniel, P.A. Distributed and integrated response of a geographic information system-based hydrologic model in the eastern Palouse region, Idaho. Hydrol. Process. 2006, 21, 110–122. [Google Scholar] [CrossRef]
- Frankenberger, J.R.; Brooks, E.S.; Walter, M.F.; Steenhuis, T.S. A GIS-based variable source area hydrology model. Hydrol. Process. 1999, 13, 805–822. [Google Scholar] [CrossRef]
- Yourek, M.; Brooks, E.S.; Brown, D.J.; Poggio, M.; Gasch, C. Development and application of the soil moisture routing (SMR) model to identify subfield-scale hydrologic classes in dryland cropping systems using the Budyko framework. J. Hydrol. 2019, 573, 153–167. [Google Scholar] [CrossRef]
- Zhao, M.; Boll, J.; Brooks, E.S. Evaluating the effects of timber harvest on hydrologically sensitive areas and hydrologic response. J. Hydrol. 2020, 593, 125805. [Google Scholar] [CrossRef]
- Ticehurst, J.; Cresswell, H.; McKenzie, N.; Glover, M. Interpreting soil and topographic properties to conceptualise hillslope hydrology. Geoderma 2007, 137, 279–292. [Google Scholar] [CrossRef]
- Peréz, C.F.B. Análisis Multitemporal de Cambio de uso de Suelo y Dinámica del Paisaje en el Corredor Biológico Volcánica Central Talamanca, Costa Rica. Masters Thesis, CATIE, Turrialba, Costa Rica, 2009; 124p. [Google Scholar]
- Instituto Mexicano de Tecnología del Agua. Elaboración de Balances Hídricos por Cuencas Hidrográficas y Propuesta de Modernización de las Redes de Medición en Costa Rica; BID: San José, Costa Rica, 2008.
- UNESCO Office Montevideo and Regional Bureau for Science in Latin America and the Caribbean. Balance Hídrico Superficial de Costa Rica, Período 1970–2002; Documento Técnico del PHI-LAC; UNESCO: Montevideo, Uruguay, 2007; 55p. [Google Scholar]
- Winowiecki, L.; McDaniel, P.A.; Mata, R.; Jones, J.J. Constructing a soil map for the coffee-dominated region of Turrialba, Using GIS. In Proceedings of the Fifth Annual meeting of the University of Idaho and CATIE IGERT Project, Moscow, ID, USA, 16–19 May 2007; pp. 101–102. [Google Scholar]
- Bergoeing, J.P.; Malavassi, E. Geomorphological Map of the Central Valley of Costa Rica, in 1:50,000; Instituto Geográfico Nacional: San José, Costa Rica, 1982. [Google Scholar]
- Jansson, M.B. Determining sediment source areas in a tropical river basin, Costa Rica. Catena 2002, 47, 63–84. [Google Scholar] [CrossRef]
- Mora Cordero, I. Evaluación de la Pérdida de Suelo Mediante la Ecuación Universal (EUPS): Aplicación Para Definir Acciones de Manejo en la Cuenca del Río Pejibaye, Vertiente Atlantica, Costa Rica. Masters Thesis, Univeridad de Costa Rica, San José, Costa Rica, 1987; 104p. [Google Scholar]
- Torres, J.A. Estudio de suelos. In Estudio Geoagronómico de la Región Oriental de la Meseta Central; Dóndoli, C., Torres, J.A., Eds.; Ministerio de Agricultura e Industrias: San José, Costa Rica, 1952; pp. 107–175. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Welsh, K.; Boll, J.; Sánchez-Murillo, R.; Roupsard, O. Isotope hydrology of a tropical coffee agroforestry wa-tershed: Seasonal and event-based analyses. Hydrol. Process. 2018, 32, 1965–1977. [Google Scholar]
- Keller, C.K.; van der Kamp, G.; Cherry, J.A. Fracture permeability and groundwater flow in clayey till near Saskatoon, Saskatchewan. Can. Geotech. J. 1986, 23, 229–240. [Google Scholar] [CrossRef]
- Keller, C.; Van Der Kamp, G.; Cherry, J. Hydrogeology of two Saskatchewan tills, I. Fractures, bulk permeability, and spatial variability of downward flow. J. Hydrol. 1988, 101, 97–121. [Google Scholar] [CrossRef]
- Tallaksen, L.M. A review of baseflow recession analysis. J. Hydrol. 1995, 165, 349–370. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Foglia, L.; Hill, M.C.; Mehl, S.W.; Burlando, P. Sensitivity analysis, calibration, and testing of a distributed hydrological model using error-based weighting and one objective function. Water Resour. Res. 2009, 45, W06427. [Google Scholar] [CrossRef]
- Guinot, V.; Gourbesville, P. Calibration of physically based models: Back to basics? J. Hydroinformatics 2003, 5, 233–244. [Google Scholar] [CrossRef]
- Harper, E.B.; Stella, J.; Fremier, A.K. Global sensitivity analysis for complex ecological models: A case study of riparian cottonwood population dynamics. Ecol. Appl. 2011, 21, 1225–1240. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hamon, W.R. Estimating Potential Evapotranspiration. J. Hydraul. Div. 1961, 87, 107–120. [Google Scholar] [CrossRef]
- Welsh, K. Hydrologic Processes and Water Resource Management of Tropical Watersheds: An Interdisciplinary Study in Costa Rica. Ph.D. Thesis, University of Idaho, Moscow, ID, USA, 2015; 137p. [Google Scholar]
- Brutsaert, W. Hydrology; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Montero, P.W.; Lewis, J.C.; Marshall, J.S.; Kruse, S.; Wetmore, P. Neotectonic faulting and forearc sliver motion along the Atirro-Rio Sucio fault system, Costa Rica, Central America. GSA Bull. 2013, 125, 857–876. [Google Scholar] [CrossRef]
- Jones, J.A.; Grant, G.E. Peak Flow Responses to Clear-Cutting and Roads in Small and Large Basins, Western Cascades, Oregon. Water Resour. Res. 1996, 32, 959–974. [Google Scholar] [CrossRef]
- Lamparter, G.; Nobrega, R.; Kovacs, K.; Amorim, R.S.S.; Gerold, G. Modelling hydrological impacts of agricultural expansion in two macro-catchments in Southern Amazonia, Brazil. Reg. Environ. Chang. 2018, 18, 91–103. [Google Scholar] [CrossRef]
- Schellekens, J.; Scatena, F.N.; Bruijnzeel, L.A.; van Dijk, A.I.J.M.; Groen, M.M.A.; van Hogezand, R.J.P. Stormflow generation in a small rainforest catchment in the Luquillo Experimental Forest, Puerto Rico. Hydrol. Process. 2004, 18, 505–530. [Google Scholar] [CrossRef]
- Toohey, R. Land Use, Hydrological Processes and Ecosystem Services in the Upper Reventazón Watershed, Costa Rica. Ph.D. Thesis, University of Idaho, Moscow, ID, USA, 2012. [Google Scholar]
- Schumm, S.A. Causes and controls of channel incision. In Incised River Channels, Processes, Forms, Engineering and Management; Darby, S.E., Simon, A., Eds.; John Wiley & Sons: Chichester, UK, 1999; pp. 19–33. [Google Scholar]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The Natural Flow Regime. Bioscience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Wood, P.J.; Armitage, P.D. Sediment deposition in a small lowland stream—Management implications. Regulated Rivers: Research & Management. Int. J. Devoted River Res. Manag. 1999, 15, 199–210. [Google Scholar] [CrossRef]
- Welsh, K.; Keesecker, L.; Hill, R.; Joyal, T.; Boll, J.; Bosque-Pérez, N.A.; Cosens, B.; Fremier, A.K. Scale mismatch in social–ecological systems: A Costa Rican case study of spring water management. Sustain. Water Resour. Manag. 2020, 6, 40. [Google Scholar]
- Hassler, S.K.; Zimmermann, B.; van Breugel, M.; Hall, J.S.; Elsenbeer, H. Recovery of saturated hydraulic conductivity under secondary succession on former pasture in the humid tropics. For. Ecol. Manag. 2011, 261, 1634–1642. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Broadbent, E.N.; Rozendaal, D.M.; Bongers, F.; Zambrano, A.M.A.; Aide, T.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.; et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2016, 2, e1501639. [Google Scholar] [CrossRef]
Watershed | Drainage Area | Elevation Range | Max Slope | Median Slope | Altered Land Cover |
---|---|---|---|---|---|
Gato | 3340 ha | 755–2355 m | 58° | 31° | <0.1% |
Atirro | 3249 ha | 780–1980 m | 60° | 26° | 2.50% |
Platanillo | 2595 ha | 700–1940 m | 56° | 24° | 41.00% |
SMR Input Parameter | Source | Value |
---|---|---|
Precipitation (not in GSA) | Meteorological station data (ICE), Climate models [7,8] | See Figure 4 |
PET (not in GSA) | Hamon PET equation | Calculated ET: 0.16–0.24 cm/day |
Crop Coefficient | General value for humid tropical vegetation [41] | 0.8 |
Soil Depth | Field sampled and corrected for slope; depth of hydrologic soil layers A and B adopted from [20,23] | Forest: A: 35 cm, B: 65 cm Coffee: A: 50 cm, B: 50 cm Sugar Cane: A: 50 cm, B: 50 cm Pasture: A: 10 cm, B: 90 cm Road †: A: 50 cm, B: 50 cm |
Slope (not in GSA) | DEM | Range: 0–62° |
Ksat Matrix | [20,22,23] | Forest: A: 13.4, B: 8.9 cm/day Coffee: A: 7.7, B: 8.9 cm/day Sugar Cane: A: 3.1, B: 1.7 cm/day Pasture: A: 2.9, B: 5.5 cm/day Road †: A: 0.05, B: 0.05 cm/day |
Ksat Macropore | [20,22,23] | Forest: A: 134.4, B: 88.8 cm/day Coffee: A: 76.8, B: 88.8 cm/day Sugar Cane: A: 31.2, B: 16.8 cm/day Pasture: A: 28.8, B: 55.2 cm/day Road †: A: 1.0, B: 1.0 cm/day |
Ksub | [23], Estimated | Forest: 84.0 cm/day Coffee: 84.0 cm/day Sugar Cane: 1.4 cm/day Pasture: 4.8 cm/day Road †: 1.4 cm/day |
Field Capacity Moisture Content | [23] | Forest: 28% Coffee: 28% Sugar Cane: 28% Pasture: 18% Road †: 8% |
Porosity (Saturated Moisture Content) | Field sampled; [22] | Forest: A: 38%, B: 28% Coffee: A: 38%, B: 28% Sugar Cane: A: 38%, B: 28% Pasture: A: 28%, B: 18% Road †: A: 3.8%, B: 2.8% |
Residual Moisture Content | [22,23] | All land cover types: 2% |
Wilting Point Moisture Content | [23] | All land cover types: A: 1.94%, B: 1.21% |
Max Canopy Storage Amount (not in GSA) | [42]; Estimated | Forest: 0.2 cm Coffee: 0.1 cm Sugar Cane: 0.05 cm Pasture: 0.05 cm Road: 0.0 cm |
Rock Content | Field sampled | All land cover types: 10% |
Road Area (not in GSA) | [32], Aerial imagery | Atirro: 7.66 ha; 0.24% cover Gato: 0 ha; 0% cover Platanillo: 22.98 ha; 0.89% cover |
Recession Constants (not in GSA) | Estimated based on gauge data | a = 75; b = 0.2 (See equation in text) |
Antecedent Moisture Content (not in GSA) | Estimated (model equilibrates) | 72 cm |
Watershed | Land Use | Rainfall Intensity | Temperature (Based on 2002 Record) | Rainfall Amount (% of 2002 Precipitation) |
---|---|---|---|---|
Atirro | All pasture Existing | High rate Existing rate | Existing Temperature +1 °C (daily time step only) +4 °C | 70% 100% 110% |
Gato | All pasture Existing | High rate Existing rate | ||
Platanillo | All pasture Existing All forested | High rate Existing rate |
LowDuration | PeakFlow | PeakDuration | WetStandDev | |||
---|---|---|---|---|---|---|
Field Capacity Moisture Content | 3.7% | 8.9% | 6.2% | 4.4% | 5.8% | |
Subsurface K | 2.9% | 4.0% | 23.7% | 3.1% | 14.2% | |
Macropore Ksat | 45.4% | 25.9% | 19.9% | 27.5% | 42.0% | |
Matrix Ksat | 2.7% | 3.7% | 3.6% | 3.1% | 3.3% | |
Max Canopy Storage | 2.8% | 3.8% | 3.7% | 3.1% | 3.2% | |
Porosity | 14.3% | 12.8% | 15.8% | 15.1% | 9.8% | |
Residual Moisture Content | 5.7% | 8.3% | 5.0% | 6.3% | 4.8% | |
Rock Content | 7.3% | 9.8% | 6.6% | 8.4% | 5.4% | |
Soil Depth | 12.5% | 19.2% | 11.9% | 25.9% | 8.4% | |
Wilting Point Moisture Content | 2.7% | 3.6% | 3.6% | 3.2% | 3.2% | |
Scale | 0.0% | 10.0% | 20.0% | 30.0% | 40.0% | 50.0% |
Atirro Existing | Atirro Pasture Conversion | Atirro Pasture with Restrictive Layer | ||||||
---|---|---|---|---|---|---|---|---|
MASS BALANCE | DEFICIT | MASS BALANCE | DEFICIT | MASS BALANCE | DEFICIT | |||
ppt input (cm/basin) | output (cm/basin) | ppt–output | ppt input (cm/basin) | output (cm/basin) | ppt–output | ppt input (cm/basin) | output (cm/basin) | ppt–output |
503.5 | 480.8 | 22.7 | 503.5 | 496.3 | 7.2 | 503.5 | 496.3 | 7.2 |
Water Balance Term | % | cm | Water Balance Term | % | cm | Water Balance Term | % | cm |
Precipitation | 100.00% | 503.5 | Precipitation | 100.00% | 503.5 | Precipitation | 100.00% | 503.5 |
Evapotranspiration | 11.60% | 58.4 | Evapotranspiration | 12.30% | 61.8 | Evapotranspiration | 12.30% | 61.8 |
Baseflow | 76.50% | 385.3 | Baseflow | 74.40% | 374.8 | Baseflow | 40.80% | 205.6 |
Saturation Excess Runoff | 7.40% | 37.1 | Saturation Excess Runoff | 11.90% | 59.8 | Saturation Excess Runoff | ||
45.50% | 229 | |||||||
Storage | 4.50% | 22.7 | Storage | 1.40% | 7.2 | Storage | 1.40% | 7.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joyal, T.; Fremier, A.K.; Boll, J. Modeled Forest Conversion Influences Humid Tropical Watershed Hydrology More than Projected Climate Change. Hydrology 2023, 10, 160. https://doi.org/10.3390/hydrology10080160
Joyal T, Fremier AK, Boll J. Modeled Forest Conversion Influences Humid Tropical Watershed Hydrology More than Projected Climate Change. Hydrology. 2023; 10(8):160. https://doi.org/10.3390/hydrology10080160
Chicago/Turabian StyleJoyal, Taylor, Alexander K. Fremier, and Jan Boll. 2023. "Modeled Forest Conversion Influences Humid Tropical Watershed Hydrology More than Projected Climate Change" Hydrology 10, no. 8: 160. https://doi.org/10.3390/hydrology10080160
APA StyleJoyal, T., Fremier, A. K., & Boll, J. (2023). Modeled Forest Conversion Influences Humid Tropical Watershed Hydrology More than Projected Climate Change. Hydrology, 10(8), 160. https://doi.org/10.3390/hydrology10080160