Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (178)

Search Parameters:
Keywords = foraging success

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 11108 KiB  
Article
Warming in the Maternal Environment Alters Seed Performance and Genetic Diversity of Stylosanthes capitata, a Tropical Legume Forage
by Priscila Marlys Sá Rivas, Fernando Bonifácio-Anacleto, Ivan Schuster, Carlos Alberto Martinez and Ana Lilia Alzate-Marin
Genes 2025, 16(8), 913; https://doi.org/10.3390/genes16080913 (registering DOI) - 30 Jul 2025
Viewed by 297
Abstract
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to [...] Read more.
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to warming and elevated CO2 on progeny physiology, genetic diversity, and population structure in Stylosanthes capitata, a resilient forage legume native to Brazil. Methods: Maternal plants were cultivated under controlled treatments, including ambient conditions (control), elevated CO2 at 600 ppm (eCO2), elevated temperature at +2 °C (eTE), and their combined exposure (eTEeCO2), within a Trop-T-FACE field facility (Temperature Free-Air Controlled Enhancement and Free-Air Carbon Dioxide Enrichment). Seed traits (seeds per inflorescence, hundred-seed mass, abortion, non-viable seeds, coat color, germination at 32, 40, 71 weeks) and abnormal seedling rates were quantified. Genetic diversity metrics included the average (A) and effective (Ae) number of alleles, observed (Ho) and expected (He) heterozygosity, and inbreeding coefficient (Fis). Population structure was assessed using Principal Coordinates Analysis (PCoA), Analysis of Molecular Variance (AMOVA), number of migrants per generation (Nm), and genetic differentiation index (Fst). Two- and three-way Analysis of Variance (ANOVA) were used to evaluate factor effects. Results: Compared to control conditions, warming increased seeds per inflorescence (+46%), reduced abortion (−42.9%), non-viable seeds (−57%), and altered coat color. The germination speed index (GSI +23.5%) and germination rate (Gr +11%) improved with warming; combined treatments decreased germination time (GT −9.6%). Storage preserved germination traits, with warming enhancing performance over time and reducing abnormal seedlings (−54.5%). Conversely, elevated CO2 shortened GSI in late stages, impairing germination efficiency. Warming reduced Ae (−35%), He (−20%), and raised Fis (maternal 0.50, progeny 0.58), consistent with the species’ mixed mating system; A and Ho were unaffected. Allele frequency shifts suggested selective pressure under eTE. Warming induced slight structure in PCoA, and AMOVA detected 1% (maternal) and 9% (progeny) variation. Fst = 0.06 and Nm = 3.8 imply environmental influence without isolation. Conclusions: Warming significantly shapes seed quality, reproductive success, and genetic diversity in S. capitata. Improved reproduction and germination suggest adaptive advantages, but higher inbreeding and reduced diversity may constrain long-term resilience. The findings underscore the need for genetic monitoring and broader genetic bases in cultivars confronting environmental stressors. Full article
(This article belongs to the Special Issue Genetics and Breeding of Forage)
Show Figures

Graphical abstract

36 pages, 539 KiB  
Review
Genomic Adaptation, Environmental Challenges, and Sustainable Yak Husbandry in High-Altitude Pastoral Systems
by Saima Naz, Ahmad Manan Mustafa Chatha, Qudrat Ullah, Muhammad Farooq, Tariq Jamil, Raja Danish Muner and Azka Kiran
Vet. Sci. 2025, 12(8), 714; https://doi.org/10.3390/vetsci12080714 - 29 Jul 2025
Viewed by 185
Abstract
The yak (Bos grunniens) is a key species in high-altitude rangelands of Asia. Despite their ecological and economic importance, yak production faces persistent challenges, including low milk yields, vulnerability to climate changes, emerging diseases, and a lack of systematic breeding programs. [...] Read more.
The yak (Bos grunniens) is a key species in high-altitude rangelands of Asia. Despite their ecological and economic importance, yak production faces persistent challenges, including low milk yields, vulnerability to climate changes, emerging diseases, and a lack of systematic breeding programs. This review presents the genomic, physiological, and environmental dimensions of yak biology and husbandry. Genes such as EPAS1, which encodes hypoxia-inducible transcription factors, underpin physiological adaptations, including enlarged cardiopulmonary structures, elevated erythrocyte concentrations, and specialized thermoregulatory mechanisms that enable their survival at elevations of 3000 m and above. Copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) present promising markers for improving milk and meat production, disease resistance, and metabolic efficiency. F1 and F2 generations of yak–cattle hybrids show superior growth and milk yields, but reproductive barriers, such as natural mating or artificial insemination, and environmental factors limit the success of these hybrids beyond second generation. Infectious diseases, such as bovine viral diarrhea and antimicrobial-resistant and biofilm-forming Enterococcus and E. coli, pose risks to herd health and food safety. Rising ambient temperatures, declining forage biomass, and increased disease prevalence due to climate changes risk yak economic performance and welfare. Addressing these challenges by nutritional, environmental, and genetic interventions will safeguard yak pastoralism. This review describes the genes associated with different yak traits and provides an overview of the genetic adaptations of yaks (Bos grunniens) to environmental stresses at high altitudes and emphasizes the need for conservation and improvement strategies for sustainable husbandry of these yaks. Full article
Show Figures

Figure 1

19 pages, 4928 KiB  
Article
Microbial and Metabolomic Insights into Lactic Acid Bacteria Co-Inoculation for Dough-Stage Triticale Fermentation
by Yujie Niu, Xiaoling Ma, Chuying Wang, Peng Zhang, Qicheng Lu, Rui Long, Yanyan Wu and Wenju Zhang
Microorganisms 2025, 13(8), 1723; https://doi.org/10.3390/microorganisms13081723 - 23 Jul 2025
Viewed by 225
Abstract
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that [...] Read more.
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that may impair silage quality. This study aimed to investigate the effects of lactic acid bacteria inoculation on the fermentation quality, bacterial community, and metabolome of whole-plant triticale silage at the dough stage. Fresh triticale was ensiled for 30 days without or with an inoculant containing Lactiplantibacillus plantarum and Streptococcus bovis. Fermentation quality, bacterial succession, and metabolic profiles were analyzed at multiple time points. Inoculation significantly improved fermentation quality, characterized by a rapid pH drop, increased lactic acid production, and better preservation of fiber components. Microbial analysis revealed that inoculation successfully established Lactobacillus as the dominant genus while suppressing spoilage bacteria like Enterobacter and Clostridium. Metabolomic analysis on day 30 identified numerous differential metabolites, indicating that inoculation primarily altered pathways related to amino acid and purine metabolism. In conclusion, inoculating dough-stage triticale with this LAB combination effectively directs the fermentation trajectory. It enhances silage quality not only by optimizing organic acid profiles and microbial succession but also by modulating key metabolic pathways, ultimately leading to improved nutrient preservation. Full article
(This article belongs to the Special Issue Beneficial Microorganisms and Antimicrobials: 2nd Edition)
Show Figures

Figure 1

13 pages, 253 KiB  
Perspective
Enhancing Climate Resilience of Forage Ecosystems Through Sustainable Intensification and Educational Knowledge Transfer in the Southeastern USA
by Liliane Severino da Silva
Crops 2025, 5(4), 42; https://doi.org/10.3390/crops5040042 - 11 Jul 2025
Viewed by 337
Abstract
Forages are the primary feed source for livestock production systems due to their diversity of adapted species and lower production costs. Forage-based livestock operations are complex systems across climates, soil types, genetics, and production systems. Therefore, increasing the resilience of forage ecosystems requires [...] Read more.
Forages are the primary feed source for livestock production systems due to their diversity of adapted species and lower production costs. Forage-based livestock operations are complex systems across climates, soil types, genetics, and production systems. Therefore, increasing the resilience of forage ecosystems requires a comprehensive approach to assess and understand the conditions of each system while considering its needs, goals, and resources. In the southeastern USA, favorable climatic conditions allow for the incorporation of annual forage species into perennial stands to extend the grazing season. Adopting management strategies that support forage biodiversity and nutrients, and land use efficiency are ways to improve sustainable production intensification of forage ecosystems. Additionally, providing proper access to education and knowledge transfer for current and future generations is essential to guarantee the success and longevity of the livestock industry. This review provides an overview of key issues related to the climate and economic resilience of forage–livestock ecosystems and the role of agricultural education and knowledge transfer in shaping sustainable ecosystems. Full article
17 pages, 1058 KiB  
Article
Dynamics of Microorganisms and Metabolites in the Mixed Silage of Oats and Vetch in Alpine Pastures, and Their Regulatory Mechanisms Under Low Temperatures
by Shuangpeng Xu, Guoli Yin and Xiaojun Yu
Microorganisms 2025, 13(7), 1535; https://doi.org/10.3390/microorganisms13071535 - 30 Jun 2025
Viewed by 314
Abstract
Silage is an effective method for alleviating winter feed shortages, but the mechanisms by which the silage microorganisms and metabolites respond to a mixture of oats and vetch at low temperatures remain unclear. In this study, the quality, microorganisms, and metabolites of oats [...] Read more.
Silage is an effective method for alleviating winter feed shortages, but the mechanisms by which the silage microorganisms and metabolites respond to a mixture of oats and vetch at low temperatures remain unclear. In this study, the quality, microorganisms, and metabolites of oats mixed with vetch as a silage material, as well as after 90 days of silage, were analyzed. The traditional view holds that a decrease in microorganism diversity during silage indicates successful fermentation. However, in the present study, microorganism diversity was found to increase after silage under alpine and low-temperature conditions, with a significant rise in the abundance of microorganisms such as Levilactobacillus and Kazachstania. This phenomenon may be explained by the inhibition of rapid lactic acid bacteria proliferation by low temperatures, which allows for the survival of other cold-tolerant microorganisms and their involvement in metabolism. These microorganisms significantly increased the levels of metabolites such as l-methionine, l-glutamine, arachidonic acid, and linolenic acid in the mixed feeds, while simultaneously significantly decreasing the levels of metabolites such as l-leucine, l-arginine, l-asparagine, and glyceric acid. These metabolites possess antioxidant and anti-inflammatory properties that enhance the nutritional value of the feed and indirectly improve the immunity and performance of ruminants. This study comprehensively revealed the complex network of interactions between microorganisms and metabolites in the mixed forage of oats and vetch in alpine pastures and elucidated the regulatory mechanism of silage under low temperatures. The subsequent development of microorganism preparations for the targeted regulation of silage quality provides a theoretical foundation for producing high-quality silage in alpine pastures. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

12 pages, 8905 KiB  
Communication
First Recorded Evidence of Invasive Rodent Predation on a Critically Endangered Galápagos Petrel (Pterodroma phaeopygia) Nestling in the Galápagos Islands
by Isabela Tapia-Jaramillo, Joel Arica, Alejandra Espín, Víctor Carrión, Juan Pablo Mayorga, Christian Sevilla, Eliécer Cruz and Paola Sangolquí
Birds 2025, 6(3), 33; https://doi.org/10.3390/birds6030033 - 20 Jun 2025
Viewed by 575
Abstract
The Galápagos Petrel (Pterodroma phaeopygia) is a long-lived Critically Endangered seabird endemic to the Galápagos Islands and faces severe threats from invasive species, particularly rodents. Until now, evidence of rat predation on Galápagos Petrel nestlings has been largely indirect, inferred from [...] Read more.
The Galápagos Petrel (Pterodroma phaeopygia) is a long-lived Critically Endangered seabird endemic to the Galápagos Islands and faces severe threats from invasive species, particularly rodents. Until now, evidence of rat predation on Galápagos Petrel nestlings has been largely indirect, inferred from indirect evidence and predator control outcomes. Here, we present the first photographic documentation of a presumed black rat (Rattus rattus) preying on a Galápagos Petrel nestling, captured by a camera trap on private farmland on Santa Cruz Island. The predation event occurred during a period of parental absence, when the nestling was left unattended while adults foraged at sea. Notably, the parent Petrels continued returning to the nest for 91 days following nestling loss, suggesting strong nest fidelity and highlighting potential energetic costs associated with breeding failure. Our findings reveal critical vulnerabilities during the nestling-rearing phase and emphasize the urgent need to enhance rodent control efforts and protect nesting areas, particularly on farmland outside the Galápagos National Park boundaries. We conclude by providing targeted conservation recommendations to mitigate invasive predator impacts and improve breeding success for this emblematic and imperiled seabird. Full article
Show Figures

Figure 1

24 pages, 2946 KiB  
Article
Individual Mechanical Energy Expenditure Regimens Vary Seasonally with Weather, Sex, Age and Body Condition in a Generalist Carnivore Population: Support for Inter-Individual Tactical Diversity
by Julius G. Bright Ross, Andrew Markham, Michael J. Noonan, Christina D. Buesching, Erin Connolly, Denise W. Pallett, Yadvinder Malhi, David W. Macdonald and Chris Newman
Animals 2025, 15(11), 1560; https://doi.org/10.3390/ani15111560 - 27 May 2025
Viewed by 643
Abstract
Diverse individual energy-budgeting tactics within wild populations provide resilience to natural fluctuations in food availability and expenditure costs. Although substantial heterogeneity in activity-related energy expenditure has been documented, few studies differentiate between responses to the environment and inter-individual differences stemming from life history, [...] Read more.
Diverse individual energy-budgeting tactics within wild populations provide resilience to natural fluctuations in food availability and expenditure costs. Although substantial heterogeneity in activity-related energy expenditure has been documented, few studies differentiate between responses to the environment and inter-individual differences stemming from life history, allometry, or somatic stores. Using tri-axial accelerometry, complemented by diet analysis, we investigated inter-individual within-season variation in overall dynamic body acceleration (ODBA; activity intensity measure) and “Activity” (above an ODBA threshold) in a high-density population of European badgers (Meles meles). Weather (including wind speed) affected ODBA and activity according to predictors of earthworm (food) availability and cooling potential. In spring, maximal ODBA expenditure at intermediate rainfall and temperature values suggested that badgers traded foraging success against thermoregulatory losses, where lower-condition badgers maintained higher spring ODBA irrespective of temperature while badgers in better body condition reduced ODBA at colder temperatures. Conversely, in summer, lower-condition badgers modulated ODBA according to temperature, likely in response to super-abundant food supply. Between 35% (spring, summer) and 57% (autumn) of residual total daily ODBA variance related to inter-individual differences unexplained by seasonal predictors, suggesting within-season tactical activity typologies. We propose that this heterogeneity among individual energy-expenditure profiles may contribute to population resilience under rapid environmental change. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

19 pages, 4024 KiB  
Article
Different Commercial Microbial Additives Influence Fermentation Quality and Microbial Community of King Grass Silage
by Xianjun Lai, Haiyan Wang, Rui Peng, Zihan Chen, Yuxin Xiang and Lang Yan
Fermentation 2025, 11(5), 264; https://doi.org/10.3390/fermentation11050264 - 7 May 2025
Viewed by 600
Abstract
The microbiota in forage silage plays a pivotal role in determining the fermentation quality. Identifying effective microbial additives is essential to help forage producers refine their search for functional inoculants and to support farmers in adopting them for practical ensiling. This study investigated [...] Read more.
The microbiota in forage silage plays a pivotal role in determining the fermentation quality. Identifying effective microbial additives is essential to help forage producers refine their search for functional inoculants and to support farmers in adopting them for practical ensiling. This study investigated microbial and metabolomic dynamics in king grass silages treated with six commercial inoculants dominated by Enterococcus faecium-like species, Bacillus velezensis, and Lactobacillus paraplantarum. The fermentation characteristics, viable microbial diversity, and metabolite profiles were compared between treated and untreated silages using 16S rDNA sequencing and metabolic profiling via LC-QTOF-MS, integrated with multi-omics correlation analyses. Additive-treated silages showed improved fermentation quality, simplified bacterial correlation networks, and distinct microbial successions and interactions. A total of 1523 metabolites were detected, with 56–84 significantly altered in each treated group compared to the control. Metabolites with antimicrobial, antioxidant, and cholesterol-lowering activities were more abundant in treated silages, especially organic acids, amino acids, and short-chain fatty acids. Inoculants distinctly influenced amino acid, energy, nucleotide, and vitamin metabolism during ensiling. This study advances our understanding of how commercial microbial additives reshape the bacterial community structure and function in silages and highlights promising lactic acid bacteria species contributing to silage quality through the production of bio-functional metabolites. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

13 pages, 1223 KiB  
Article
Developmental Transfer of Microplastic Particles from Larval to Adult Stages of the Drone Fly Eristalis tenax
by Malik Abdulla, Jaimie C. Barnes, Oliver M. Poole, Karl R. Wotton and Eva Jimenez-Guri
Microplastics 2025, 4(2), 22; https://doi.org/10.3390/microplastics4020022 - 2 May 2025
Viewed by 556
Abstract
Plastic pollution has become a critical environmental issue, with vast amounts of plastic waste accumulating in aquatic and terrestrial ecosystems. Plastic pollution poses significant risks to biodiversity by introducing toxic chemicals and disrupting biological functions. The drone fly, Eristalis tenax, is perhaps [...] Read more.
Plastic pollution has become a critical environmental issue, with vast amounts of plastic waste accumulating in aquatic and terrestrial ecosystems. Plastic pollution poses significant risks to biodiversity by introducing toxic chemicals and disrupting biological functions. The drone fly, Eristalis tenax, is perhaps the most globally widespread hoverfly. This success is aided by its development as a rat-tailed maggot in a wide array of aquatic environments where it feeds on decaying organic matter. As an adult, E. tenax is a vital pollinator, visiting a wide range of crops and wild plants, and has been shown to vector pollen over hundreds of kilometres during seasonal migrations. Exposure to microplastics during larval stages has the potential to alter the provision of these ecosystem services and to provide a route for the long-distance vectoring of microplastics. To investigate this, we rear E. tenax in water contaminated with different concentrations of microplastic particles. We show that these plastics are retained in the gut from larval through to pupal to adult developmental stages. This contamination resulted in reductions of 33% and 60% in pupal and adult weight when exposed to the highest concentrations of microplastic particles but resulted in no detectable effects on mortality or developmental length. Our results demonstrate the potential for the vectoring of microplastics by this highly mobile species. However, the associated reductions in body size likely have profound consequences for movement capability in terms of foraging and migration and should be further investigated for their impact on ecosystem service provision. Full article
Show Figures

Figure 1

19 pages, 2437 KiB  
Article
Space and Time Dynamics of Honeybee (Apis mellifera L.)-Melliferous Resource Interactions Within a Foraging Area: A Case Study in the Banja Luka Region (Bosnia & Herzegovina)
by Samuel Laboisse, Michel Vaillant, Clovis Cazenave, Biljana Kelečević, Iris Chevalier and Ludovic Andres
Biology 2025, 14(4), 422; https://doi.org/10.3390/biology14040422 - 15 Apr 2025
Viewed by 649
Abstract
Interactions between honeybees and the environment are often difficult to achieve, particularly when the purpose is to optimize beekeeping production. The present study proposed to monitor the space-time variations of melliferous resources potentially exploited by colonies within a foraging area in Bosnia & [...] Read more.
Interactions between honeybees and the environment are often difficult to achieve, particularly when the purpose is to optimize beekeeping production. The present study proposed to monitor the space-time variations of melliferous resources potentially exploited by colonies within a foraging area in Bosnia & Herzegovina, characterized by contrasting landscapes. The combination of methods involving Geographical Information Systems, floristic monitoring, and modelling enabled honey production potential to be calculated for the entire foraging area. In particular, the location of taxa, their abundance, diversity, and phenology enabled us to determine the spatial distribution and temporal variation of production potential. Robinia pseudoacacia and Rubus sp. made a major contribution. This potential was highly contrasted, with distant areas from the apiary more attractive than closer ones, depending on the moment. Specific periods, such as June were particularly conducive to establishing a high potential. Forest and grassland played a major role in the temporal succession, mainly because of the area covered, but moments with lower potential were supported by specific land uses (orchards). Land uses with a small surface area, such as orchards, wasteland, and riparian zones had a high potential per unit area, and improving the production potential within a foraging area could involve increasing these specific surfaces. Full article
(This article belongs to the Special Issue Pollination Biology)
Show Figures

Figure 1

12 pages, 1117 KiB  
Review
An Overview of the Adverse Impacts of Old Combs on Honeybee Colonies and Recommended Beekeeping Management Strategies
by Qingxin Meng, Rong Huang, Shunhua Yang, Wutao Jiang, Yakai Tian and Kun Dong
Insects 2025, 16(4), 351; https://doi.org/10.3390/insects16040351 - 27 Mar 2025
Viewed by 3309
Abstract
The honeybee comb serves as the primary site for all essential colony activities, and its structural and functional integrity plays a crucial role in colony development. As combs age through successive brood-rearing cycles, their physicochemical properties undergo significant changes, which can negatively affect [...] Read more.
The honeybee comb serves as the primary site for all essential colony activities, and its structural and functional integrity plays a crucial role in colony development. As combs age through successive brood-rearing cycles, their physicochemical properties undergo significant changes, which can negatively affect colony health and productivity. This review synthesizes the current knowledge on the biological functions of combs, the aging process, and the negative impacts of old combs on cell structure, worker morphology, colony strength, and bee product quality. Additionally, it examines the adaptive strategies employed by honeybees and the recommended beekeeping management practices to mitigate these effects. Specifically, old combs undergo structural changes in cell dimensions and reduced spatial capacity, leading to the growth of smaller bees with diminished foraging and productivity. Furthermore, bee products, such as honey and beeswax, collected from old combs demonstrate compromised quality and higher levels of environmental contaminants. To counteract these challenges, colonies engage in hygienic behaviors, such as cell cleaning and comb rebuilding, while their enhanced immune and detoxification systems help mitigate comb-derived stressors. This review demonstrates that the systematic replacement of old brood combs is a critical management strategy to optimize bee health and ensure sustainable apiculture. Full article
Show Figures

Figure 1

14 pages, 6029 KiB  
Article
Investigation of the Impact of Soil Physicochemical Properties and Microbial Communities on the Successful Cultivation of Morchella in Greenhouses
by Xinhai Liu, Bo Yin, Liqiang Meng, Xiaoyu Zhao, Jialong Wang, Rui Liu, Lina Hu, Xiangxiang Wang, Yu Liu and Yinpeng Ma
Horticulturae 2025, 11(4), 356; https://doi.org/10.3390/horticulturae11040356 - 26 Mar 2025
Cited by 1 | Viewed by 856
Abstract
Morels (Morchella spp.) are medicinal and edible mushrooms, renowned for their distinctive taste and appearance. Due to the low yields and difficulty of foraging wild morels, artificial cultivation has significant economic value. Outdoor cultivation yields are influenced by factors such as weather [...] Read more.
Morels (Morchella spp.) are medicinal and edible mushrooms, renowned for their distinctive taste and appearance. Due to the low yields and difficulty of foraging wild morels, artificial cultivation has significant economic value. Outdoor cultivation yields are influenced by factors such as weather and diseases, which can result in crop instability or failure, thereby causing losses to farmers. Previous studies have typically concentrated on either the fungal or bacterial communities. In this study, we investigated the ecological relationships between morel growth and both the fungi and bacteria in soil, analyzed over multiple trophic levels. We investigated three soil types: soil in which morel death was observed (DM), soil in which no morels emerged (UM), and soil that is suitable for normal fruiting (NM). We used high-throughput ITS and 16S rDNA amplicon sequencing, alongside assessment of soil physicochemical properties, to investigate factors contributing to morel emergence and death. The results indicated that the richness and diversity of both fungal and bacterial communities in the normal fruiting soil (NM) were significantly higher than those in the non-fruiting soils (DM and UM). The bacterial community was primarily composed of Proteobacteria and Bacteroidota, while the fungal community was dominated by Ascomycota and Mucoromycota. Furthermore, Morchella was significantly enriched in NM, indicating that it had successfully colonized and could develop into fruiting bodies. The morel mycelium in NM effectively utilized external nutrient bags, enhancing the soil nitrogen and organic matter content while reducing the consumption of available phosphorus and potassium. LEfSe and random forest analyses identified Pedobacter and Massilia as biomarkers of NM, potentially associated with the symbiosis of Morchella, which may promote its growth. Furthermore, the construction of the fungal-bacterial co-occurrence network revealed that the NM soil exhibited a higher number of nodes and greater network stability, suggesting that its complex microbial community structure may play a crucial role in the successful cultivation of Morchella. Our results indicate that the failures in morel production were due to inadequate management practices. Elevated greenhouse temperatures may have promoted pathogen proliferation, hindering the effective utilization of external nutrient bags by morel mycelium. Consequently, the mycelium was unable to accumulate nutrients efficiently, leading to the inability of Morchella to fruit or resulting in developmental failures. This study offers valuable insights into the interactions between morel mycelium and soil microorganisms, elucidating the reasons for morel cultivation failure and suggesting strategies for optimizing morel cultivation. Full article
Show Figures

Figure 1

17 pages, 769 KiB  
Review
Assessing the Economic Viability of Sustainable Pasture and Rangeland Management Practices: A Review
by Monde Rapiya, Mthunzi Mndela, Wayne Truter and Abel Ramoelo
Agriculture 2025, 15(7), 690; https://doi.org/10.3390/agriculture15070690 - 25 Mar 2025
Cited by 1 | Viewed by 2005
Abstract
The livestock sector is crucial for global food security and economic development, particularly in developing nations, as it supports the livelihoods of approximately 1.3 billion people. However, with the global population expected to reach 9.2 billion by 2050, the sector must address increasing [...] Read more.
The livestock sector is crucial for global food security and economic development, particularly in developing nations, as it supports the livelihoods of approximately 1.3 billion people. However, with the global population expected to reach 9.2 billion by 2050, the sector must address increasing demand for livestock products while ensuring environmental sustainability. This study used the available literature to evaluate the economic viability of sustainable pasture and rangeland management practices to enhance livestock production. The key findings demonstrate that strategies such as rotational grazing and nitrogen fertilization can decrease winter feed costs by up to 40% while simultaneously improving pasture productivity and animal weight gains. Initial investments in these improved forage practices offer high internal rates of return, indicating their profitability. To guide sustainable pasture production and rangeland management, we propose a conceptual framework that balances cultivated pastures and natural rangelands. This framework assesses critical factors, including input costs, expected outputs (enhanced biodiversity and livestock production), and interventions to mitigate land degradation. For successful adoption of these practices, targeted policies are essential. Governments should develop financial support mechanisms for smallholder farmers, improve transportation infrastructure for efficient feed logistics, and provide technical assistance to educate producers on sustainable practices. Engaging stakeholders to align policies with local needs is also vital. By implementing these strategic interventions, the resilience of livestock systems can be strengthened, contributing to long-term sustainability and supporting food security and rural community well-being. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

13 pages, 696 KiB  
Article
Grassland-Based Farming Systems Targeting Agroecology: Which Indicators Should Be Used for On-Farm Assessment?
by Elena Benedetti del Rio, Audrey Michaud, Gilles Brunschwig and Enrico Sturaro
Sustainability 2025, 17(6), 2720; https://doi.org/10.3390/su17062720 - 19 Mar 2025
Viewed by 548
Abstract
This study investigates grassland-based farming systems within the framework of agroecology (AE), focusing on the identification of relevant indicators for on-farm assessment. The purpose of this research is to test indicator compliance with AE at the farming system level in grassland farms, particularly [...] Read more.
This study investigates grassland-based farming systems within the framework of agroecology (AE), focusing on the identification of relevant indicators for on-farm assessment. The purpose of this research is to test indicator compliance with AE at the farming system level in grassland farms, particularly in High-Nature-Value (HNV) areas. Seventeen farms in France and Italy were selected for this study, and data were collected through semi-structured interviews. These interviews explored various indicators across environmental, economic, and social dimensions. Principal Component Analysis (PCA) was employed to analyze the quantitative indicators, while qualitative data offered insights into farm management and learning practices. The results highlighted the importance of forage self-sufficiency (livestock production dimension) and revenue (economic dimension) as key indicators of successful agroecological management. The study also found that increasing forage self-sufficiency was linked to higher farmer satisfaction, an indicator related to the social dimension. Additionally, qualitative data underscored the significance of self-sufficiency, workload management, and social interaction and continuous learning as critical elements in grassland-based farming. In conclusion, this research proposes self-sufficiency as an indicator that can facilitate the assessment of grassland-based systems, aiding in the broader adoption of agroecological practices in compliance with European policies. Full article
Show Figures

Figure 1

22 pages, 4137 KiB  
Article
Sandy Soil Quality and Soybean Productivity in Medium-Duration Agricultural Production Systems
by Leonardo de Lima Froio, Eduardo Augusto Pontes Pechoto, Moisés Vinícius Garcia Garruti, Deyvison de Asevedo Soares, Bianca Midori Souza Sekiya, Viviane Cristina Modesto, Nelson Câmara de Souza Júnior, Vitória Almeida Moreira Girardi, Naiane Antunes Alves Ribeiro, Aline Marchetti Silva Matos, Gelci Carlos Lupatini and Marcelo Andreotti
Agriculture 2025, 15(6), 589; https://doi.org/10.3390/agriculture15060589 - 10 Mar 2025
Cited by 1 | Viewed by 953
Abstract
The adoption of integrated production systems may be an alternative for improving soil health and increasing production. The aim of this study was to evaluate changes in soil fertility and microbial metabolism, as well as the impact on soybean productivity, in different conservation [...] Read more.
The adoption of integrated production systems may be an alternative for improving soil health and increasing production. The aim of this study was to evaluate changes in soil fertility and microbial metabolism, as well as the impact on soybean productivity, in different conservation systems in contrast to the conventional system, after four years of adopting integrated systems. The experimental design used was a randomized block design with seven treatments and three replications. The treatments included different species of forage grasses, the no-tillage soybean–maize system in succession, and conventional planting. It was found that after four years of using integrated systems, the changes in soil health were small, indicating that these effects are seen over the long term. Soil chemistry showed that the use of forage grasses is essential for improving fertility, with a focus on phosphorus, potassium, magnesium, sulfur, base sum, and cation exchange capacity, which is reflected in the high soybean productivity in treatments with forage grasses, especially the use of Paiaguás and Piatã grasses. Even with slow changes in soil health, adopting integrated systems is an important practice for tropical sandy soils, as visible improvements in fertility were observed, which are reflected in productivity gains. Full article
(This article belongs to the Special Issue Effects of Crop Management on Yields)
Show Figures

Figure 1

Back to TopTop