Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (510)

Search Parameters:
Keywords = footprint prediction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5505 KiB  
Article
Triaxial Response and Elastoplastic Constitutive Model for Artificially Cemented Granular Materials
by Xiaochun Yu, Yuchen Ye, Anyu Yang and Jie Yang
Buildings 2025, 15(15), 2721; https://doi.org/10.3390/buildings15152721 (registering DOI) - 1 Aug 2025
Abstract
Because artificially cemented granular (ACG) materials employ diverse combinations of aggregates and binders—including cemented soil, low-cement-content cemented sand and gravel (LCSG), and concrete—their stress–strain responses vary widely. In LCSG, the binder dosage is typically limited to 40–80 kg/m3 and the sand–gravel skeleton [...] Read more.
Because artificially cemented granular (ACG) materials employ diverse combinations of aggregates and binders—including cemented soil, low-cement-content cemented sand and gravel (LCSG), and concrete—their stress–strain responses vary widely. In LCSG, the binder dosage is typically limited to 40–80 kg/m3 and the sand–gravel skeleton is often obtained directly from on-site or nearby excavation spoil, endowing the material with a markedly lower embodied carbon footprint and strong alignment with current low-carbon, green-construction objectives. Yet, such heterogeneity makes a single material-specific constitutive model inadequate for predicting the mechanical behavior of other ACG variants, thereby constraining broader applications in dam construction and foundation reinforcement. This study systematically summarizes and analyzes the stress–strain and volumetric strain–axial strain characteristics of ACG materials under conventional triaxial conditions. Generalized hyperbolic and parabolic equations are employed to describe these two families of curves, and closed-form expressions are proposed for key mechanical indices—peak strength, elastic modulus, and shear dilation behavior. Building on generalized plasticity theory, we derive the plastic flow direction vector, loading direction vector, and plastic modulus, and develop a concise, transferable elastoplastic model suitable for the full spectrum of ACG materials. Validation against triaxial data for rock-fill materials, LCSG, and cemented coal–gangue backfill shows that the model reproduces the stress and deformation paths of each material class with high accuracy. Quantitative evaluation of the peak values indicates that the proposed constitutive model predicts peak deviatoric stress with an error of 1.36% and peak volumetric strain with an error of 3.78%. The corresponding coefficients of determination R2 between the predicted and measured values are 0.997 for peak stress and 0.987 for peak volumetric strain, demonstrating the excellent engineering accuracy of the proposed model. The results provide a unified theoretical basis for deploying ACG—particularly its low-cement, locally sourced variants—in low-carbon dam construction, foundation rehabilitation, and other sustainable civil engineering projects. Full article
(This article belongs to the Special Issue Low Carbon and Green Materials in Construction—3rd Edition)
Show Figures

Figure 1

26 pages, 3459 KiB  
Article
Compressive Behaviour of Sustainable Concrete-Filled Steel Tubes Using Waste Glass and Rubber Glove Fibres
by Zobaer Saleheen, Tatheer Zahra, Renga Rao Krishnamoorthy and Sabrina Fawzia
Buildings 2025, 15(15), 2708; https://doi.org/10.3390/buildings15152708 (registering DOI) - 31 Jul 2025
Abstract
To reduce the carbon footprint of the concrete industry and promote a circular economy, this study explores the reuse of waste materials such as glass powder (GP) and nitrile rubber (NR) fibres in concrete. However, the inclusion of these waste materials results in [...] Read more.
To reduce the carbon footprint of the concrete industry and promote a circular economy, this study explores the reuse of waste materials such as glass powder (GP) and nitrile rubber (NR) fibres in concrete. However, the inclusion of these waste materials results in lower compressive strength compared to conventional concrete, limiting their application to non-structural elements. To overcome this limitation, this study adopts the concept of confined concrete by developing concrete-filled steel tube (CFST) stub columns. In total, twelve concrete mix variations were developed, with and without steel tube confinement. GP was utilised at replacement levels of 10–30% by weight of cement, while NR fibres were introduced at 0.5% and 1% by volume of concrete. The findings demonstrate that the incorporation of GP and NR fibres leads to a reduction in compressive strength, with a compounded effect observed when both materials are combined. Steel confinement within CFST columns effectively mitigated the strength reductions, restoring up to 17% of the lost capacity and significantly improving ductility and energy absorption capacity. All CFST columns exhibited consistent local outward buckling failure mode, irrespective of the concrete mix variations. A comparison with predictions from existing design codes and empirical models revealed discrepancies, underscoring the need for refined design approaches for CFST columns incorporating sustainable concrete infill. This study contributes valuable insights into the development of eco-friendly, high-performance structural systems, highlighting the potential of CFST technology in facilitating the adoption of waste materials in the construction sector. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

14 pages, 2524 KiB  
Article
Habitat Suitability Evaluation of Chinese Red Panda in Daxiangling and Xiaoxiangling Mountains
by Jianwei Li, Wei Luo, Haipeng Zheng, Wenjing Li, Xi Yang, Ke He and Hong Zhou
Biology 2025, 14(8), 961; https://doi.org/10.3390/biology14080961 (registering DOI) - 31 Jul 2025
Viewed by 47
Abstract
The Chinese red panda (Ailurus styani) is a rare and endangered animal in China; the increase in global temperature and the interference of human activities have caused irreversible effects on the suitable habitat of wild red pandas and threatened their survival. [...] Read more.
The Chinese red panda (Ailurus styani) is a rare and endangered animal in China; the increase in global temperature and the interference of human activities have caused irreversible effects on the suitable habitat of wild red pandas and threatened their survival. Therefore, it is necessary to carry out scientific research and protection for Chinese red pandas. In this study, the MaxEnt model was used to predict and analyze the suitable habitats of Chinese red pandas in the large and small Xiangling Mountains. The results showed that the main ecological factors affecting the suitable habitat distribution of Chinese red pandas in the Daxiangling Mountains are the average slope (45.6%, slope), the distance from the main road (24.2%, road), and the average temperature in the coldest quarter (11%, bio11). The main ecological factors affecting the suitable habitat distribution of Chinese red pandas in the Xiaoxiangling Mountains are bamboo distribution (67.4%, bamboo), annual temperature range (20.7%, bio7), and the average intensity of human activities (8.7%, Human Footprint). The predicted suitable habitat area of the Daxiangling Mountains is 123.835 km2, and the predicted suitable habitat area of the Xiaoxiangling Mountains is 341.873 km2. The predicted suitable habitat area of the Daxiangling Mountains accounts for 43.45% of the total mountain area, and the predicted suitable habitat area of the Xiaoxiangling Mountains accounts for 71.38%. The suitable habitat area of the Xiaoxiangling Mountains is nearly three times that of the Daxiangling Mountains, and the proportion of suitable habitat area of the Xiaoxiangling Mountains is much higher than that of the Daxiangling Mountains. The suitable habitat of Chinese red pandas in the Daxiangling Mountains is mainly distributed in the southeast, and the habitat is coherent but fragmented. The suitable habitat of Chinese red panda in Xiaoxiangling Mountains is mainly distributed in the east, and the habitat is more coherent. The results of this study can provide a scientific basis for the protection of the population and habitat of Chinese red pandas in Sichuan. Full article
(This article belongs to the Section Zoology)
Show Figures

Figure 1

22 pages, 14160 KiB  
Article
Commute Networks as a Signature of Urban Socioeconomic Performance: Evaluating Mobility Structures with Deep Learning Models
by Devashish Khulbe, Alexander Belyi and Stanislav Sobolevsky
Smart Cities 2025, 8(4), 125; https://doi.org/10.3390/smartcities8040125 - 29 Jul 2025
Viewed by 205
Abstract
Urban socioeconomic modeling has predominantly concentrated on extensive location and neighborhood-based features, relying on the localized population footprint. However, networks in urban systems are common, and many urban modeling methods do not account for network-based effects. Additionally, network-based research has explored a multitude [...] Read more.
Urban socioeconomic modeling has predominantly concentrated on extensive location and neighborhood-based features, relying on the localized population footprint. However, networks in urban systems are common, and many urban modeling methods do not account for network-based effects. Additionally, network-based research has explored a multitude of data from urban landscapes. However, achieving a comprehensive understanding of urban mobility proves challenging without exhaustive datasets. In this study, we propose using commute information records from the census as a reliable and comprehensive source to construct mobility networks across cities. Leveraging deep learning architectures, we employ these commute networks across U.S. metro areas for socioeconomic modeling. We show that mobility network structures provide significant predictive performance without considering any node features. Consequently, we use mobility networks to present a supervised learning framework to model a city’s socioeconomic indicator directly, combining Graph Neural Network and Vanilla Neural Network models to learn all parameters in a single learning pipeline. In experiments in 12 major U.S. cities, the proposed model achieves considerable explanatory performance and is able to outperform previous conventional machine learning models based on extensive regional-level features. Providing researchers with methods to incorporate network effects in urban modeling, this work also informs stakeholders of wider network-based effects in urban policymaking and planning. Full article
Show Figures

Figure 1

28 pages, 5698 KiB  
Article
Hybrid Metaheuristic Optimized Extreme Learning Machine for Sustainability Focused CO2 Emission Prediction Using Globalization-Driven Indicators
by Mahmoud Almsallti, Ahmad Bassam Alzubi and Oluwatayomi Rereloluwa Adegboye
Sustainability 2025, 17(15), 6783; https://doi.org/10.3390/su17156783 - 25 Jul 2025
Viewed by 186
Abstract
The escalating threat of climate change has intensified the global urgency to accurately predict carbon dioxide (CO2) emissions for sustainable development, particularly in developing economies experiencing rapid industrialization and globalization. Traditional Extreme Learning Machines (ELMs) offer rapid learning but often yield [...] Read more.
The escalating threat of climate change has intensified the global urgency to accurately predict carbon dioxide (CO2) emissions for sustainable development, particularly in developing economies experiencing rapid industrialization and globalization. Traditional Extreme Learning Machines (ELMs) offer rapid learning but often yield unstable performance due to random parameter initialization. This study introduces a novel hybrid model, Red-Billed Blue Magpie Optimizer-tuned ELM (RBMO-ELM) which harnesses the intelligent foraging behavior of red-billed blue magpies to optimize input-to-hidden layer weights and biases. The RBMO algorithm is first benchmarked on 15 functions from the CEC2015 test suite to validate its optimization effectiveness. Subsequently, RBMO-ELM is applied to predict Indonesia’s CO2 emissions using a multidimensional dataset that combines economic, technological, environmental, and globalization-driven indicators. Empirical results show that the RBMO-ELM significantly surpasses several state-of-the-art hybrid models in accuracy (higher R2) and convergence efficiency (lower error). A permutation-based feature importance analysis identifies social globalization, GDP, and ecological footprint as the strongest predictors underscoring the socio-economic influences on emission patterns. These findings offer both theoretical and practical implications that inform data-driven Artificial Intelligence (AI) and Machine Learning (ML) applications in environmental policy and support sustainable governance models. Full article
Show Figures

Figure 1

37 pages, 1895 KiB  
Review
A Review of Artificial Intelligence and Deep Learning Approaches for Resource Management in Smart Buildings
by Bibars Amangeldy, Timur Imankulov, Nurdaulet Tasmurzayev, Gulmira Dikhanbayeva and Yedil Nurakhov
Buildings 2025, 15(15), 2631; https://doi.org/10.3390/buildings15152631 - 25 Jul 2025
Viewed by 455
Abstract
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying [...] Read more.
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying inclusion criteria, 143 peer-reviewed studies published between January 2019 and April 2025 were analyzed. This review shows that AI-driven controllers—especially deep-reinforcement-learning agents—deliver median energy savings of 18–35% for HVAC and other major loads, consistently outperforming rule-based and model-predictive baselines. The evidence further reveals a rapid diversification of methods: graph-neural-network models now capture spatial interdependencies in dense sensor grids, federated-learning pilots address data-privacy constraints, and early integrations of large language models hint at natural-language analytics and control interfaces for heterogeneous IoT devices. Yet large-scale deployment remains hindered by fragmented and proprietary datasets, unresolved privacy and cybersecurity risks associated with continuous IoT telemetry, the growing carbon and compute footprints of ever-larger models, and poor interoperability among legacy equipment and modern edge nodes. The authors of researches therefore converges on several priorities: open, high-fidelity benchmarks that marry multivariate IoT sensor data with standardized metadata and occupant feedback; energy-aware, edge-optimized architectures that lower latency and power draw; privacy-centric learning frameworks that satisfy tightening regulations; hybrid physics-informed and explainable models that shorten commissioning time; and digital-twin platforms enriched by language-model reasoning to translate raw telemetry into actionable insights for facility managers and end users. Addressing these gaps will be pivotal to transforming isolated pilots into ubiquitous, trustworthy, and human-centered IoT ecosystems capable of delivering measurable gains in efficiency, resilience, and occupant wellbeing at scale. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

28 pages, 5780 KiB  
Article
Multiscale Modeling and Dynamic Mutational Profiling of Binding Energetics and Immune Escape for Class I Antibodies with SARS-CoV-2 Spike Protein: Dissecting Mechanisms of High Resistance to Viral Escape Against Emerging Variants
by Mohammed Alshahrani, Vedant Parikh, Brandon Foley and Gennady Verkhivker
Viruses 2025, 17(8), 1029; https://doi.org/10.3390/v17081029 - 23 Jul 2025
Viewed by 448
Abstract
The rapid evolution of SARS-CoV-2 has underscored the need for a detailed understanding of antibody binding mechanisms to combat immune evasion by emerging variants. In this study, we investigated the interactions between Class I neutralizing antibodies—BD55-1205, BD-604, OMI-42, P5S-1H1, and P5S-2B10—and the receptor-binding [...] Read more.
The rapid evolution of SARS-CoV-2 has underscored the need for a detailed understanding of antibody binding mechanisms to combat immune evasion by emerging variants. In this study, we investigated the interactions between Class I neutralizing antibodies—BD55-1205, BD-604, OMI-42, P5S-1H1, and P5S-2B10—and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein using multiscale modeling, which combined molecular simulations with the ensemble-based mutational scanning of the binding interfaces and binding free energy computations. A central theme emerging from this work is that the unique binding strength and resilience to immune escape of the BD55-1205 antibody are determined by leveraging a broad epitope footprint and distributed hotspot architecture, additionally supported by backbone-mediated specific interactions, which are less sensitive to amino acid substitutions and together enable exceptional tolerance to mutational escape. In contrast, BD-604 and OMI-42 exhibit localized binding modes with strong dependence on side-chain interactions, rendering them particularly vulnerable to escape mutations at K417N, L455M, F456L and A475V. Similarly, P5S-1H1 and P5S-2B10 display intermediate behavior—effective in some contexts but increasingly susceptible to antigenic drift due to narrower epitope coverage and concentrated hotspots. Our computational predictions show strong agreement with experimental deep mutational scanning data, validating the accuracy of the models and reinforcing the value of binding hotspot mapping in predicting antibody vulnerability. This work highlights that neutralization breadth and durability are not solely dictated by epitope location, but also by how binding energy is distributed across the interface. The results provide atomistic insight into mechanisms driving resilience to immune escape for broadly neutralizing antibodies targeting the ACE2 binding interface—which stems from cumulative effects of structural diversity in binding contacts, redundancy in interaction patterns and reduced vulnerability to mutation-prone positions. Full article
Show Figures

Graphical abstract

22 pages, 2112 KiB  
Article
Cultural Diversity and the Operational Performance of Airport Security Checkpoints: An Analysis of Energy Consumption and Passenger Flow
by Jacek Ryczyński, Artur Kierzkowski, Marta Nowakowska and Piotr Uchroński
Energies 2025, 18(14), 3853; https://doi.org/10.3390/en18143853 - 20 Jul 2025
Viewed by 293
Abstract
This paper examines the operational consequences and energy demands associated with the growing cultural diversity of air travellers at airport security checkpoints. The analysis focuses on how an increasing proportion of passengers requiring enhanced security screening, due to cultural, religious, or linguistic factors, [...] Read more.
This paper examines the operational consequences and energy demands associated with the growing cultural diversity of air travellers at airport security checkpoints. The analysis focuses on how an increasing proportion of passengers requiring enhanced security screening, due to cultural, religious, or linguistic factors, affects both system throughput and energy consumption. The methodology integrates synchronised measurement of passenger flow with real-time monitoring of electricity usage. Four operational scenarios, representing incremental shares (0–15%) of passengers subject to extended screening, were modelled. The findings indicate that a 15% increase in this passenger group leads to a statistically significant rise in average power consumption per device (3.5%), a total energy usage increase exceeding 4%, and an extension of average service time by 0.6%—the cumulative effect results in a substantial annual contribution to the airport’s carbon footprint. The results also reveal a higher frequency and intensity of power consumption peaks, emphasising the need for advanced infrastructure management. The study emphasises the significance of predictive analytics, dynamic resource allocation, and the implementation of energy-efficient technologies. Furthermore, systematic intercultural competency training is recommended for security staff. These insights provide a scientific basis for optimising airport security operations amid increasing passenger heterogeneity. Full article
Show Figures

Figure 1

20 pages, 3567 KiB  
Article
Cycle-Informed Triaxial Sensor for Smart and Sustainable Manufacturing
by Parisa Esmaili, Luca Martiri, Parvaneh Esmaili and Loredana Cristaldi
Sensors 2025, 25(14), 4431; https://doi.org/10.3390/s25144431 - 16 Jul 2025
Viewed by 238
Abstract
Advances in Industry 4.0 and the emergence of Industry 5.0 are driving the development of intelligent, sustainable manufacturing systems, where embedded sensing and real-time health diagnostics play a critical role. However, implementing robust predictive maintenance in production environments remains challenging due to the [...] Read more.
Advances in Industry 4.0 and the emergence of Industry 5.0 are driving the development of intelligent, sustainable manufacturing systems, where embedded sensing and real-time health diagnostics play a critical role. However, implementing robust predictive maintenance in production environments remains challenging due to the variability in machine operations and the lack of access to internal control data. This paper introduces a lightweight, embedded-compatible framework for health status signature extraction based on empirical mode decomposition (EMD), leveraging only data from a single triaxial accelerometer. The core of the proposed method is a cycle-synchronized segmentation strategy that uses accelerometer-derived velocity profiles and cross-correlation to align signals with machining cycles, eliminating the need for controller or encoder access. This ensures process-aware decomposition that preserves the operational context across diverse and dynamic machining conditions to address the inadequate segmentation of unstable process data that often fails to capture the full scope of the process, resulting in misinterpretation. The performance is evaluated on a challenging real-world manufacturing benchmark where the extracted intrinsic mode functions (IMFs) are analyzed in the frequency domain, including quantitative evaluation. As results show, the proposed method shows its effectiveness in detecting subtle degradations, following a low computational footprint, and its suitability for deployment in embedded predictive maintenance systems on brownfield or controller-limited machinery. Full article
Show Figures

Figure 1

17 pages, 1010 KiB  
Article
Analysis of Footstep/Stride Length from Gait Patterns of Dynamic Footprints as a Parameter for Biological Profiling—A Preliminary Study
by Petra Švábová, Darina Falbová, Zuzana Kozáková, Mária Chovancová, Lenka Vorobeľová and Radoslav Beňuš
Forensic Sci. 2025, 5(3), 29; https://doi.org/10.3390/forensicsci5030029 - 9 Jul 2025
Viewed by 263
Abstract
In forensic sciences, particularly in forensic anthropology and podiatry, assessing a person’s stature helps create a biological profile that allows for more accurate identification. Background/Objectives: When considering dynamic footprints as part of the gait pattern, certain parameters such as stride length, step length, [...] Read more.
In forensic sciences, particularly in forensic anthropology and podiatry, assessing a person’s stature helps create a biological profile that allows for more accurate identification. Background/Objectives: When considering dynamic footprints as part of the gait pattern, certain parameters such as stride length, step length, gait width, and gait angle can be evaluated in relation to stature. The aim of this study was to assess footstep and stride length from the gait of dynamic footprints and determine if they correlate with stature and could be useful for biological profiling. Methods: Gait patterns from dynamic footprints and stature were determined in 114 females and 104 males aged 18 to 33 years. Results: All participants took the first step with their preferred foot, 56% with the right foot. Regarding step sequence, there were non-significant differences between the 4th and 5th footsteps in both sexes. Sex differences were significant in four of seven footsteps. Only a few steps significantly correlated in sequence with stature, and even these had low correlation coefficients (r = 0.295). In females, positive values of mean differences between actual and estimated stature predictions indicate that the equations tend to overestimate, whereas in a mixed sex group, most negative values of mean differences indicate underestimation. Conclusions: Given the weak correlations observed, footstep and stride length should not be considered reliable indicators for forensic stature estimation. These parameters are more suitable for biomechanical and anthropological research, while forensic applications should be considered supplementary and interpreted with caution. Full article
(This article belongs to the Special Issue Forensic Anthropology and Human Biological Variation)
Show Figures

Figure 1

32 pages, 58845 KiB  
Article
Using New York City’s Geographic Data in an Innovative Application of Generative Adversarial Networks (GANs) to Produce Cooling Comparisons of Urban Design
by Yuanyuan Li, Lina Zhao, Hao Zheng and Xiaozhou Yang
Land 2025, 14(7), 1393; https://doi.org/10.3390/land14071393 - 2 Jul 2025
Cited by 1 | Viewed by 498
Abstract
Urban blue–green space (UBGS) plays a critical role in mitigating the urban heat island (UHI) effect and reducing land surface temperatures (LSTs). However, existing research has not sufficiently explored the optimization of UBGS spatial configurations or their interactions with urban morphology. This study [...] Read more.
Urban blue–green space (UBGS) plays a critical role in mitigating the urban heat island (UHI) effect and reducing land surface temperatures (LSTs). However, existing research has not sufficiently explored the optimization of UBGS spatial configurations or their interactions with urban morphology. This study takes New York City as a case and systematically investigates small-scale urban cooling strategies by integrating multiple factors, including adjustments to the blue–green ratio, spatial layouts, vegetation composition, building density, building height, and layout typologies. We utilize multi-source geographic data, including LiDAR derived land cover, OpenStreetMap data, and building footprint data, together with LST data retrieved from Landsat imagery, to develop a prediction model based on generative adversarial networks (GANs). This model can rapidly generate visual LST predictions under various configuration scenarios. This study employs a combination of qualitative and quantitative metrics to evaluate the performance of different model stages, selecting the most accurate model as the final experimental framework. Furthermore, the experimental design strictly controls the study area and pixel allocation, combining manual and automated methods to ensure the comparability of different ratio configurations. The main findings indicate that a blue–green ratio of 3:7 maximizes cooling efficiency; a shrub-to-tree coverage ratio of 2:8 performs best, with tree-dominated configurations outperforming shrub-dominated ones; concentrated linear layouts achieve up to a 10.01% cooling effect; and taller buildings exhibit significantly stronger UBGS cooling performance, with super-tall areas achieving cooling effects approximately 31 percentage points higher than low-rise areas. Courtyard layouts enhance airflow and synergistic cooling effects, whereas compact designs limit the cooling potential of UBGS. This study proposes an innovative application of GANs to address a key research gap in the quantitative optimization of UBGS configurations and provides a methodological reference for sustainable microclimate planning at the neighborhood scale. Full article
Show Figures

Figure 1

18 pages, 11466 KiB  
Article
Water Footprint Through an Analysis of Water Conservation Policy: Comparative Analysis of Water-Intensive and Water-Efficient Crops Using IoT-Driven ML Models
by Mahdi Moudi, Dan Xie, Lin Cao, Hehuai Zhang, Yunchu Zhang and Bahador Bahramimianrood
Water 2025, 17(13), 1964; https://doi.org/10.3390/w17131964 - 30 Jun 2025
Viewed by 431
Abstract
Although economic profitability and food security often outweigh water conservation priorities in arid and semi-arid regions, this study investigates irrigation practices by evaluating water footprint and economic feasibility through a comparative analysis of water-intensive and water-efficient crops. In this context, an optimal irrigation [...] Read more.
Although economic profitability and food security often outweigh water conservation priorities in arid and semi-arid regions, this study investigates irrigation practices by evaluating water footprint and economic feasibility through a comparative analysis of water-intensive and water-efficient crops. In this context, an optimal irrigation disparity framework integrated with Internet of Things (IoT) and Machine Learning (ML) mechanisms is proposed to evaluate the effectiveness of water conservation, thereby assessing the potential for enhancing economic profitability. IoT-enabled components are employed to monitor real-time environmental—soil moisture, temperature, and weather—conditions between March and November 2023. This data is processed using a hybrid modeling approach that integrates KNN, GBT, and LSTM algorithms to predict both the duration of cultivation and the water requirements. Finally, the predicted parameters are incorporated into a multi-objective framework aimed at minimizing the disparity in water allocation per net benefit. The final results indicate that saffron required substantially less water—ranging from (19.87 to 28.65 ∗ 106 m3)—compared to watermelon, which consumed (34.61 to 47.07 ∗ 106 m3), while achieving a higher average net profit (33 ∗ 109 IRR) relative to watermelon (31 ∗ 109 IRR). Moreover, saffron consistently approached optimal values across disparity-based objective functions, averaging (0.404). These findings emphasize the dual advantages of saffron as a value-added, water-efficient crop in achieving substantial water conservation while enhancing profitability, offering actionable insights for authorities to incentivize water-efficient crop adoption through subsidies, market mechanisms, or regulatory frameworks. These strategies operationalize technical insights into actionable pathways for balancing food security, economic growth, and environmental resilience. Full article
Show Figures

Figure 1

31 pages, 741 KiB  
Article
Inspiring from Galaxies to Green AI in Earth: Benchmarking Energy-Efficient Models for Galaxy Morphology Classification
by Vasileios Alevizos, Emmanouil V. Gkouvrikos, Ilias Georgousis, Sotiria Karipidou and George A. Papakostas
Algorithms 2025, 18(7), 399; https://doi.org/10.3390/a18070399 - 28 Jun 2025
Viewed by 319
Abstract
Recent advancements in space exploration have significantly increased the volume of astronomical data, heightening the demand for efficient analytical methods. Concurrently, the considerable energy consumption of machine learning (ML) has fostered the emergence of Green AI, emphasizing sustainable, energy-efficient computational practices. We introduce [...] Read more.
Recent advancements in space exploration have significantly increased the volume of astronomical data, heightening the demand for efficient analytical methods. Concurrently, the considerable energy consumption of machine learning (ML) has fostered the emergence of Green AI, emphasizing sustainable, energy-efficient computational practices. We introduce the first large-scale Green AI benchmark for galaxy morphology classification, evaluating over 30 machine learning architectures (classical, ensemble, deep, and hybrid) on CPU and GPU platforms using a balanced subset of the Galaxy Zoo dataset. Beyond traditional metrics (precision, recall, and F1-score), we quantify inference latency, energy consumption, and carbon-equivalent emissions to derive an integrated EcoScore that captures the trade-off between predictive performance and environmental impact. Our results reveal that a GPU-optimized multilayer perceptron achieves state-of-the-art accuracy of 98% while emitting 20× less CO2 than ensemble forests, which—despite comparable accuracy—incur substantially higher energy costs. We demonstrate that hardware–algorithm co-design, model sparsification, and careful hyperparameter tuning can reduce carbon footprints by over 90% with negligible loss in classification quality. These findings provide actionable guidelines for deploying energy-efficient, high-fidelity models in both ground-based data centers and onboard space observatories, paving the way for truly sustainable, large-scale astronomical data analysis. Full article
(This article belongs to the Special Issue Artificial Intelligence in Space Applications)
Show Figures

Figure 1

21 pages, 6958 KiB  
Article
Analysis of a Potentially Suitable Habitat for Solanum aculeatissimum in Southwest China Under Climate Change Scenarios
by Shengyue Sun and Zhongjian Deng
Plants 2025, 14(13), 1979; https://doi.org/10.3390/plants14131979 - 28 Jun 2025
Viewed by 323
Abstract
Solanum aculeatissimum is a herbaceous to semi-woody perennial plant native to the Brazilian ecosystem. It has naturalized extensively in southwestern China, posing significant threats to local biodiversity. This study systematically screened and integrated 100 distribution records from authoritative databases, including the Chinese Virtual [...] Read more.
Solanum aculeatissimum is a herbaceous to semi-woody perennial plant native to the Brazilian ecosystem. It has naturalized extensively in southwestern China, posing significant threats to local biodiversity. This study systematically screened and integrated 100 distribution records from authoritative databases, including the Chinese Virtual Plant Specimen Database, the Global Biodiversity Information Facility, and Chinese Natural Museums. Additionally, 23 environmental variables were incorporated, comprising 19 bioclimatic factors from the World Climate Dataset, 3 topographic indicators, and the Human Footprint Index. The objectives of this research are as follows: (1) to simulate the plant’s current and future distribution (2050s/2070s) under CMIP6 scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5); (2) to quantify changes in the distribution range; and (3) to determine the migration trajectory using MaxEnt 3.4.4 software. The findings reveal that human pressure (contributing 79.7%) and isothermality (bioclimatic factor 3: 10.1%) are the primary driving forces shaping its distribution. The core suitable habitats are predominantly concentrated in the provinces of Yunnan, Guizhou, and Sichuan. By 2070, the distribution center shifts northeastward to Qujing City. Under the SSP5-8.5 scenario, the invasion front extends into southern Tibet, while retreat occurs in the lowlands of Honghe Prefecture. This study underscores the synergistic effects of socioeconomic development pathways and bioclimatic thresholds on invasive species’ biogeographical patterns, providing a robust predictive framework for adaptive management strategies. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

20 pages, 19840 KiB  
Article
A Comparison of Segmentation Methods for Semantic OctoMap Generation
by Marcin Czajka, Maciej Krupka, Daria Kubacka, Michał Remigiusz Janiszewski and Dominik Belter
Appl. Sci. 2025, 15(13), 7285; https://doi.org/10.3390/app15137285 - 27 Jun 2025
Viewed by 499
Abstract
Semantic mapping plays a critical role in enabling autonomous vehicles to understand and navigate complex environments. Instead of computationally demanding 3D segmentation of point clouds, we propose efficient segmentation on RGB images and projection of the corresponding LIDAR measurements on the semantic OctoMap. [...] Read more.
Semantic mapping plays a critical role in enabling autonomous vehicles to understand and navigate complex environments. Instead of computationally demanding 3D segmentation of point clouds, we propose efficient segmentation on RGB images and projection of the corresponding LIDAR measurements on the semantic OctoMap. This study presents a comparative evaluation of different semantic segmentation methods and examines the impact of input image resolution on the accuracy of 3D semantic environment reconstruction, inference time, and computational resource usage. The experiments were conducted using an ROS 2-based pipeline that combines RGB images and LiDAR point clouds. Semantic segmentation is performed using ONNX-exported deep neural networks, with class predictions projected onto corresponding 3D LiDAR data using calibrated extrinsic. The resulting semantically annotated point clouds are fused into a probabilistic 3D representation using an OctoMap, where each voxel stores both occupancy and semantic class information. Multiple encoder–decoder architectures with various backbone configurations are evaluated in terms of segmentation quality, latency, memory footprint, and GPU utilization. Furthermore, a comparison between high and low image resolutions is conducted to assess trade-offs between model accuracy and real-time applicability. Full article
Show Figures

Figure 1

Back to TopTop