Analysis of a Potentially Suitable Habitat for Solanum aculeatissimum in Southwest China Under Climate Change Scenarios
Abstract
1. Introduction
2. Results
2.1. Key Influence Factors
2.2. Contemporary Climate-Driven Habitat Suitability for Solanum aculeatissimum
2.3. Climate Change Impacts on Habitat Suitability for Solanum aculeatissimum
2.4. Contraction and Dilation Zone
2.5. Average Center-Point Shift
3. Discussion
3.1. Key Environmental Drivers of Solanum aculeatissimum Potential Distribution
3.1.1. Anthropogenic Factors
3.1.2. Climatic Drivers
3.2. Contraction–Expansion Range Dynamics
4. Materials and Methods
4.1. Data Sources
4.2. Data Processing
4.3. Calculation of Suitable Habitat Area
4.4. Suitability-Based Habitat Zoning
4.5. Definition of Contraction and Expansion Zones
4.6. Average Center Point Shift
5. Conclusions
- The human footprint and isothermality are the two most critical factors influencing the distribution of Solanum aculeatissimum. In contrast, geographical factors, such as altitude, aspect, and slope, have relatively limited effects on its distribution pattern;
- Based on the simulation and prediction of future climate conditions, Solanum aculeatissimum is likely to expand into high-latitude and high-altitude low-temperature regions within the study area; simultaneously, suitable habitats in low-latitude and low-altitude areas are expected to exhibit a contracting trend;
- Under future climate conditions, the centroid of Solanum aculeatissimum’s distribution in the study area generally demonstrates a northeastward migration trend; however, under specific climate scenarios, there may be partial southwestward retraction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Yu, M.; Li, J. Research Progress on Plant Invasion Mechanism. Bull. Biol. 2020, 55, 5–9. [Google Scholar]
- Andrewartha, H.G.; Birch, L.C. The Ecological Web: More on the Distribution and Abundance of Animals; University of Chicago Press: Chicago, IL, USA, 1984; ISBN 0-226-02033-9. [Google Scholar]
- Brown, J.H.; Stevens, G.C.; Kaufman, D.M. The Geographic Range: Size, Shape, Boundaries, and Internal Structure. Annu. Rev. Ecol. Syst. 1996, 27, 597–623. [Google Scholar] [CrossRef]
- Woodward, F.I. Climate and Plant Distribution; Cambridge University Press: Cambridge, UK, 1987; ISBN 978-0-521-28214-7. [Google Scholar]
- Kadkade, P.G.; Recinb, J.A.; Madrid, T.R. Studies on the Distribution of Glycoalkaloids in Solanum aculeatissimum. Planta Medica 1979, 37, 70–72. [Google Scholar] [CrossRef]
- Collonnier, C.; Fock, I.; Kashyap, V.; Rotino, G.L.; Daunay, M.C.; Lian, Y.; Mariska, I.K.; Rajam, M.V.; Servaes, A.; Ducreux, G.; et al. Applications of Biotechnology in Eggplant. Plant Cell Tissue Organ Cult. 2001, 65, 91–107. [Google Scholar] [CrossRef]
- Yin, M.; Du, G. Physiological and Biochemical Defense Response of Solanum Khasianum Under Stress of Verticillium Wilt. Southwest China J. Agric. Sci. 2020, 7, 781–787. [Google Scholar]
- Wu, X.; Gao, L. Study on the Alien Plants in Jiangxi Province, China. J. Biosaf. 2021, 30, 250–255. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Q. invasive Alien Weeds Species in Farmland and Forest in Sichuan Province. Southwest China J. Agric. Sci. 2008, 21, 852–858. [Google Scholar]
- Zhang, Q.; Li, D. Biological Trait of Alien invasive Plants in Yunnan Province. Guihaia 2018, 38, 269–280. [Google Scholar] [CrossRef]
- Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The Effect of Sample Size and Species Characteristics on Performance of Different Species Distribution Modeling Methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- Khanghah, S.S.; Moameri, M.; Ghorbani, A.; Mostafazadeh, R.; Biswas, A. Modeling Potential Habitats and Predicting Habitat Connectivity for Leucanthemum Vulgare Lam. in Northwestern Rangelands of Iran. Environ. Monit. Assess. 2022, 194, 109. [Google Scholar] [CrossRef]
- Wang, Y. Application of Niche Models in the Risk Assessment of Invasive Alien Species; Hunan Agricultural University: Changsha, China, 2007. [Google Scholar]
- Luo, C.; Xu, W.; Zhou, Z.; Ouyang, Z.; Zhang, L. Habitat Prediction for Forest Musk, Deer (Moschus berezovskii) in Qinling Mountain Range Based on Niche Model. Acta Ecol. Sin. 2011, 31, 1221–1229. [Google Scholar]
- Fang, F.; Zhang, C.; Huang, H.; Li, Y.; Chen, J.; Yang, L.; Wei, S. Potential Distribution of Tausch’s Goatgrass (Aegilops tauschii) in Both China and the Rest of the World as Predicted by MaxEnt. Acta Prataculturae Sin. 2013, 22, 62–70. [Google Scholar]
- Simberloff, D.; Martin, J.-L.; Genovesi, P.; Maris, V.; Wardle, D.A.; Aronson, J.; Courchamp, F.; Galil, B.; García-Berthou, E.; Pascal, M.; et al. Impacts of Biological Invasions: What’s What and the Way Forward. Trends Ecol. Evol. 2013, 28, 58–66. [Google Scholar] [CrossRef]
- Catford, J.A.; Jansson, R.; Nilsson, C. Reducing Redundancy in Invasion Ecology by Integrating Hypotheses into a Single Theoretical Framework. Divers. Distrib. 2009, 15, 22–40. [Google Scholar] [CrossRef]
- Pyšek, P.; Jarošík, V.; Hulme, P.E.; Kühn, I.; Wild, J.; Arianoutsou, M.; Bacher, S.; Chiron, F.; Didžiulis, V.; Essl, F.; et al. Disentangling the Role of Environmental and Human Pressures on Biological Invasions across Europe. Proc. Natl. Acad. Sci. USA 2010, 107, 12157–12162. [Google Scholar] [CrossRef]
- Hulme, P.E.; Bacher, S.; Kenis, M.; Klotz, S.; Kühn, I.; Minchin, D.; Nentwig, W.; Olenin, S.; Panov, V.; Pergl, J.; et al. Grasping at the Routes of Biological Invasions: A Framework for Integrating Pathways into Policy. J. Appl. Ecol. 2008, 45, 403–414. [Google Scholar] [CrossRef]
- Maron, J.L.; Elmendorf, S.C.; Vilà, M. Contrasting plant physiological adaptation to climate in the native and introduced range of Hypericum perforatum. Evolution 2007, 61, 1912–1924. [Google Scholar] [CrossRef]
- Ordoñez, J.C.; Van Bodegom, P.M.; Witte, J.M.; Wright, I.J.; Reich, P.B.; Aerts, R. A Global Study of Relationships between Leaf Traits, Climate and Soil Measures of Nutrient Fertility. Glob. Ecol. Biogeogr. 2009, 18, 137–149. [Google Scholar] [CrossRef]
- Franks, S.J.; Sim, S.; Weis, A.E. Rapid Evolution of Flowering Time by an Annual Plant in Response to a Climate Fluctuation. Proc. Natl. Acad. Sci. USA 2007, 104, 1278–1282. [Google Scholar] [CrossRef]
- Nakazato, T.; Bogonovich, M.; Moyle, L.C. Environmental factors predict adaptive phenotypic differentiation within and between two wild Andean tomatoes. Evolution 2008, 62, 774–792. [Google Scholar] [CrossRef]
- Colautti, R.I.; Barrett, S.C.H. Rapid Adaptation to Climate Facilitates Range Expansion of an invasive Plant. Science 2013, 342, 364–366. [Google Scholar] [CrossRef] [PubMed]
- Moles, A.T.; Wallis, I.R.; Foley, W.J.; Warton, D.I.; Stegen, J.C.; Bisigato, A.J.; Cella-Pizarro, L.; Clark, C.J.; Cohen, P.S.; Cornwell, W.K.; et al. Putting Plant Resistance Traits on the Map: A Test of the Idea That Plants Are Better Defended at Lower Latitudes. New Phytol. 2011, 191, 777–788. [Google Scholar] [CrossRef]
- Colomer-Ventura, F.; Martínez-Vilalta, J.; Zuccarini, P.; Escolà, A.; Armengot, L.; Castells, E. Contemporary Evolution of an invasive Plant Is Associated with Climate but Not with Herbivory. Funct. Ecol. 2015, 29, 1475–1485. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Li, M.; AO, Z.-Q.; Yang, C. Potential Geographic Distribution and Climate Suitability of Three invasive Species of Solanaceae in China. J. South. Agric. 2019, 50, 81–89. [Google Scholar] [CrossRef]
- Climate Action Tracker: Warming Projections Global Update: November 2021; Climate Analytics & NewClimate Institute: Berlin, Germany, 2021.
- World Energy Outlook 2021; International Energy Agency: Paris, France, 2021.
- Emissions Gap Report 2021: The Heat Is On—A World of Climate Promises Not Yet Delivered; United Nations Environment Programme: Nairobi, Kenya, 2021.
- Meinshausen, M.; Lewis, J.; McGlade, C.; Gütschow, J.; Nicholls, Z.; Burdon, R.; Cozzi, L.; Hackmann, B. Realization of Paris Agreement Pledges May Limit Warming Just below 2 °C. Nature 2022, 604, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, J.; Gégout, J.; Guisan, A.; Vittoz, P.; Wohlgemuth, T.; Zimmermann, N.E.; Dullinger, S.; Pauli, H.; Willner, W.; Svenning, J. Going against the Flow: Potential Mechanisms for Unexpected Downslope Range Shifts in a Warming Climate. Ecography 2010, 33, 295–303. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and Their Energy, Land Use, and Greenhouse Gas Emissions Implications: An Overview. Glob. Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A Toolbox for Comparative Studies of Environmental Niche Models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. MaxEnt Software for Modeling Species Niches and Distributions (Version 3.4.4). 2022. Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 1 January 2023).
- Nakazato, T.; Warren, D.L.; Moyle, L.C. Ecological and Geographic Modes of Species Divergence in Wild Tomatoes. Am. J. Bot. 2010, 97, 680–693. [Google Scholar] [CrossRef]
- Wang, H.; MA, W.; Jing, Z.; Jang, D.; Peng, Z.; Xu, Y.; Zhang, Y.; Kang, C. Ecological Suitability and Quality Regionalization of Atractylodes Lancea Based on MaxEnt and GIS. WORLD Chin. Med. 2023, 18, 1847. [Google Scholar] [CrossRef]
- Lei, Q. Study on Soil Quality Level and Product Quality Characteristics of Apocynum Venetum Cultivated Land in the Upper Yellow River Valley; Qinghai University: Xining, China, 2021. [Google Scholar]
- Saupe, E.E.; Barve, V.; Myers, C.E.; Soberón, J.; Barve, N.; Hensz, C.M.; Peterson, A.T.; Owens, H.L.; Lira-Noriega, A. Variation in Niche and Distribution Model Performance: The Need for a Priori Assessment of Key Causal Factors. Ecol. Model. 2012, 237–238, 11–22. [Google Scholar] [CrossRef]
- Kong, F.; Tang, L.; He, H.; Yang, F.; Tao, J.; Wang, W. Assessing the Impact of Climate Change on the Distribution of Osmanthus Fragrans Using Maxent. Env. Sci. Pollut. Res. 2021, 28, 34655–34663. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the Black Box: An Open-source Release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Y.; Jiang, X.; Chen, H.; Liu, M.; Wang, R. Potential Geographical Distribution of the Edangred Plant Isoetes under Human Activities Using MaxEnt and GARP. Glob. Ecol. Conserv. 2022, 38, e02186. [Google Scholar] [CrossRef]
Variables | Variable Descriptions |
---|---|
Bio2 | Mean diurnal range |
Bio3 | Isothermality |
Bio7 | Temperature annual range |
Bio15 | Precipitation seasonality |
Bio18 | Precipitation of warmest quarter |
Bio19 | Precipitation of coldest quarter |
Elevation | Elevation of the study area |
Slope | Elevation and gradient of the study area |
Exposure | Aspect of the slope in the study area |
Human Footprint | The intensity of human impact in the study area |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Deng, Z. Analysis of a Potentially Suitable Habitat for Solanum aculeatissimum in Southwest China Under Climate Change Scenarios. Plants 2025, 14, 1979. https://doi.org/10.3390/plants14131979
Sun S, Deng Z. Analysis of a Potentially Suitable Habitat for Solanum aculeatissimum in Southwest China Under Climate Change Scenarios. Plants. 2025; 14(13):1979. https://doi.org/10.3390/plants14131979
Chicago/Turabian StyleSun, Shengyue, and Zhongjian Deng. 2025. "Analysis of a Potentially Suitable Habitat for Solanum aculeatissimum in Southwest China Under Climate Change Scenarios" Plants 14, no. 13: 1979. https://doi.org/10.3390/plants14131979
APA StyleSun, S., & Deng, Z. (2025). Analysis of a Potentially Suitable Habitat for Solanum aculeatissimum in Southwest China Under Climate Change Scenarios. Plants, 14(13), 1979. https://doi.org/10.3390/plants14131979