Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (32,221)

Search Parameters:
Keywords = food products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1370 KiB  
Brief Report
Immunohistochemical Evaluation of Acetylcholinesterase-Positive Neurons in the Brain Cortex of Rats After Administration of Rebaudioside A
by Karol Rycerz, Krzysztof Balawender, Tommaso Cassano, Agnieszka Żuryń, Marcin B. Arciszewski, Jerzy Walocha and Agata Wawrzyniak
Brain Sci. 2025, 15(8), 845; https://doi.org/10.3390/brainsci15080845 (registering DOI) - 8 Aug 2025
Abstract
Objectives: The aim of this study was to investigate the effect of Rebaudioside A (RebA) on acetylcholinesterase (AChE) immunoreactivity in cortical neurons of the rat brain. RebA is a steviol glycoside commonly used in the production of sweeteners. Beyond its application as a [...] Read more.
Objectives: The aim of this study was to investigate the effect of Rebaudioside A (RebA) on acetylcholinesterase (AChE) immunoreactivity in cortical neurons of the rat brain. RebA is a steviol glycoside commonly used in the production of sweeteners. Beyond its application as a food additive for diabetes management, steviol glycosides have been shown to influence memory and learning processes. Methods: RebA was administered to rats at two concentrations (1 mg/mL and 2 mg/mL of water) over both short-term (15 days) and long-term (45 days) periods. Indirect immunohistochemical peroxidase–antiperoxidase staining was performed on histological frontal sections of the brain cortex. Results: Acetylcholinesterase-positive neurons were analyzed both morphologically and morphometrically. The results of the experiment revealed no significant morphological changes in AChE-immunopositive neurons, indicating an absence of neurotoxic effects associated with the sweetener in these neurons. However, the analysis demonstrated a reduction in AChE immunoreactivity, particularly after 45 days of treatment. Conclusions: These preliminary findings demonstrates that RebA affects the immunoreactivity of neurons positive for AChE. Given the observed effects, further studies should be implemented to investigate the exact influence of this dietary supplement on the cholinergic nervous system. Full article
Show Figures

Figure 1

23 pages, 362 KiB  
Article
Research on Sustainable Food Literacy Education Talent Cultivation
by Meng Lei Hu and Kuan Ting Chen
Sustainability 2025, 17(16), 7172; https://doi.org/10.3390/su17167172 (registering DOI) - 8 Aug 2025
Abstract
This research aims to develop a model for cultivating talents in sustainable food literacy education in Taiwan. The project adopts the professional and theoretical axes of the food industry, sustainable development, and food literacy. The research employs a mixed-method approach, combining qualitative and [...] Read more.
This research aims to develop a model for cultivating talents in sustainable food literacy education in Taiwan. The project adopts the professional and theoretical axes of the food industry, sustainable development, and food literacy. The research employs a mixed-method approach, combining qualitative and quantitative techniques, to construct sustainable food literacy assessment indicators for Taiwan. In the first year, through literature analysis and qualitative research, the core content of “sustainable food literacy” in Taiwan was extracted, resulting in four major dimensions with 24 indicator items. Then, using the Fuzzy Delphi method, the indicators were constructed, defining the core content and dimension indicators of sustainable food literacy, which include “sustainable agriculture and production”, “healthy diet and culture”, “green environmental protection and consumption”, and “food social responsibility and ethics”, encompassing a total of 20 indicators. In the second year, based on the dimensions identified in the first year, a sustainable food literacy curriculum was developed. A 10-week quasi-experimental teaching curriculum was conducted for students enrolled in the “Vegetable and Fruit Carving” elective course in two classes of the Department of Food and Beverage Management at Jingwen University of Science and Technology. By comparing the pre-test and post-test scores of students’ sustainable food literacy and their sustainable food works, as well as analyzing student learning portfolios and teacher reflections, it was shown that the curriculum developed in this research significantly enhanced students’ sustainable food literacy and their performance. The results of this two-year study can be used for the assessment of sustainable food literacy talents in Taiwan, contributing both academically and practically. Full article
11 pages, 638 KiB  
Communication
Millet in Bioregenerative Life Support Systems: Hypergravity Resilience and Predictive Yield Models
by Tatiana S. Aniskina, Arkady N. Kudritsky, Olga A. Shchuklina, Nikita E. Andreev and Ekaterina N. Baranova
Life 2025, 15(8), 1261; https://doi.org/10.3390/life15081261 (registering DOI) - 7 Aug 2025
Abstract
The prospects for long-distance space flights are becoming increasingly realistic, and one of the key factors for their implementation is the creation of sustainable systems for producing food on site. Therefore, the aim of our work is to assess the prospects for using [...] Read more.
The prospects for long-distance space flights are becoming increasingly realistic, and one of the key factors for their implementation is the creation of sustainable systems for producing food on site. Therefore, the aim of our work is to assess the prospects for using millet in biological life support systems and to create predictive models of yield components for automating plant cultivation control. The study found that stress from hypergravity (800 g, 1200 g, 2000 g, and 3000 g) in the early stages of millet germination does not affect seedlings or yield. In a closed system, millet yield reached 0.31 kg/m2, the weight of 1000 seeds was 8.61 g, and the yield index was 0.06. The paper describes 40 quantitative traits, including six leaf and trichome traits and nine grain traits from the lower, middle and upper parts of the inflorescence. The compiled predictive regression equations allow predicting the accumulation of biomass in seedlings on the 10th and 20th days of cultivation, as well as the weight of 1000 seeds, the number of productive inflorescences, the total above-ground mass, and the number and weight of grains per plant. These equations open up opportunities for the development of computer vision and high-speed plant phenotyping programs that will allow automatic correction of the plant cultivation process and modeling of the required yield. Predicting biomass yield will also be useful in assessing the load on the waste-free processing system for plant waste at planetary stations. Full article
(This article belongs to the Special Issue Physiological Responses of Plants Under Abiotic Stresses)
Show Figures

Figure 1

24 pages, 4458 KiB  
Review
Selenium-Enriched Microorganisms: Metabolism, Production, and Applications
by Lin Luo, Xue Hou, Dandan Yi, Guangai Deng, Zhiyong Wang and Mu Peng
Microorganisms 2025, 13(8), 1849; https://doi.org/10.3390/microorganisms13081849 (registering DOI) - 7 Aug 2025
Abstract
Microorganisms, as abundant biological resources, offer significant potential in the development of selenium-enrichment technologies. Selenium-enriched microorganisms not only absorb, reduce, and accumulate selenium efficiently but also produce various selenium compounds without relying on synthetic chemical processes. In particular, nano-selenium produced by these microorganisms [...] Read more.
Microorganisms, as abundant biological resources, offer significant potential in the development of selenium-enrichment technologies. Selenium-enriched microorganisms not only absorb, reduce, and accumulate selenium efficiently but also produce various selenium compounds without relying on synthetic chemical processes. In particular, nano-selenium produced by these microorganisms during cultivation has garnered attention due to its unique physicochemical properties and biological activity, making it a promising raw material for functional foods and pharmaceutical products. This paper reviews selenium-enriched microorganisms, focusing on their classification, selenium metabolism, and transformation mechanisms. It explores how selenium is absorbed, reduced, and transformed within microbial cells, analyzing the biochemical processes by which inorganic selenium is converted into organic and nano-selenium forms. Finally, the broad applications of selenium-enriched microbial products in food, medicine, and agriculture are explored, including their roles in selenium-rich foods, nano-selenium materials, and disease prevention and treatment. Full article
(This article belongs to the Special Issue Exploring the Diversity of Microbial Applications)
Show Figures

Figure 1

15 pages, 3707 KiB  
Article
Biodegradation of Both Ethanol and Acetaldehyde by Acetobacter ghanensis JN01
by Hongyan Liu, Jingjing Wang, Qianqian Xu, Xiaoyu Cao, Xinyue Du, Kun Lin and Hai Yan
Catalysts 2025, 15(8), 756; https://doi.org/10.3390/catal15080756 (registering DOI) - 7 Aug 2025
Abstract
Excessive alcohol consumption is associated with systemic health risks due to the production of acetaldehyde, a primary carcinogen that not only pollutes the environment but also endangers human health. In this study, a promising bacterial strain for biodegrading both ethanol and acetaldehyde was [...] Read more.
Excessive alcohol consumption is associated with systemic health risks due to the production of acetaldehyde, a primary carcinogen that not only pollutes the environment but also endangers human health. In this study, a promising bacterial strain for biodegrading both ethanol and acetaldehyde was successfully isolated from the traditional fermented food Jiaosu and identified as Acetobacter ghanensis JN01 based on average nucleotide identity (ANI) analysis. Initial ethanol of 1 g/L was completely biodegraded within 4 h, while initial acetaldehyde of 1 g/L was also rapidly removed at 2 or 1 h by whole cells or cell-free extracts (CEs) of JN01, respectively, which indicated that JN01 indeed has a strong ability in the biodegradation of both ethanol and acetaldehyde. Whole-genome sequencing revealed a 2.85 Mb draft genome of JN01 with 57.0% guanine–cytosine (GC) content and the key metabolic genes (adh1, adh2, and aldh) encoding involving alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), co-located with NADH dehydrogenase genes and ethanol-responsive regulatory motifs, supporting the metabolic pathway of transforming ethanol to acetaldehyde, and, subsequently, converting acetaldehyde to acetic acid. Furthermore, selected in vitro safety-related traits of JN01 were also assessed, which is very important in the development of microbial catalysts against both ethanol and acetaldehyde. Full article
(This article belongs to the Section Biocatalysis)
48 pages, 3035 KiB  
Review
A Review of Indian-Based Drones in the Agriculture Sector: Issues, Challenges, and Solutions
by Ranjit Singh and Saurabh Singh
Sensors 2025, 25(15), 4876; https://doi.org/10.3390/s25154876 (registering DOI) - 7 Aug 2025
Abstract
In the current era, Indian agriculture faces a significant demand for increased food production, which has led to the integration of advanced technologies to enhance efficiency and productivity. Drones have emerged as transformative tools for enhancing precision agriculture, reducing costs, and improving sustainability. [...] Read more.
In the current era, Indian agriculture faces a significant demand for increased food production, which has led to the integration of advanced technologies to enhance efficiency and productivity. Drones have emerged as transformative tools for enhancing precision agriculture, reducing costs, and improving sustainability. This study provides a comprehensive review of drone adoption in Indian agriculture by examining its effects on precision farming, crop monitoring, and pesticide application. This research evaluates technological advancements, regulatory frameworks, infrastructure, farmers’ perceptions, and the financial accessibility of drone technology in the Indian agricultural context. Key findings indicate that, while drone adoption enhances efficiency and sustainability, challenges such as high costs, lack of training, and regulatory barriers hinder widespread implementation. This paper also explores the growing market for agricultural drones in India, highlighting key industry players and projected market growth. Furthermore, it addresses regional differences in adoption rates and emphasizes the increasing social acceptance of drones among Indian farmers. To bridge the gap between potential and practice, the study proposes several policy and institutional recommendations, including government-led financial incentives, training programs, and public–private partnerships to facilitate drone integration. Moreover, this review article also highlights technological advancements, such as AI and IoT, in agriculture. Finally, open issues and future research directions for drones are discussed. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

21 pages, 2047 KiB  
Article
Sustainable Management of Fruit By-Products Through Design Thinking: Development of an Innovative Food Product
by Sylwia Sady, Alfred Błaszczyk, Bogdan Pachołek, Anna Muzykiewicz-Szymańska, Anna Nowak, Justyna Syguła-Cholewińska, Tomasz Sawoszczuk, Stanisław Popek, Małgorzata Krzywonos, Agnieszka Piekara and Dominika Jakubowska
Sustainability 2025, 17(15), 7164; https://doi.org/10.3390/su17157164 (registering DOI) - 7 Aug 2025
Abstract
Sustainable development and the circular economy have become key challenges in the modern food sector, calling for innovative solutions that reduce waste and promote the efficient use of resources. The aim of this study was to develop a functional food product by utilizing [...] Read more.
Sustainable development and the circular economy have become key challenges in the modern food sector, calling for innovative solutions that reduce waste and promote the efficient use of resources. The aim of this study was to develop a functional food product by utilizing by-products from chokeberry processing, thereby contributing to circularity in food systems. The integration of design thinking with fermentation of chokeberry pomace is presented in this study as an approach to developing value-added food ingredients. Qualitative consumer research (focus group interviews, n = 36) identified preferences and expectations regarding functional foods containing by-products. Conducted by an interdisciplinary team, the project followed five stages, involving both qualitative and quantitative research. Liquid surface fermentation was performed using Aspergillus niger, selected for its proven ability to enhance the antioxidant capacity and polyphenol content of plant matrices. The optimal process was 2-day fermentation under controlled pH conditions with glucose supplementation, which significantly enhanced the quality and nutritional value of the final product. Antioxidant activity (ABTS, FRAP, CUPRAC assays), total polyphenols, anthocyanins, and proanthocyanidins were determined, showing significant increases compared to non-fermented controls. The outcome was the development of a dried, fermented chokeberry pomace product that meets consumer expectations and fulfils sustainability goals through waste reduction and innovative reuse of fruit processing by-products. Full article
(This article belongs to the Special Issue Innovative Technologies in Food Engineering Towards Sustainability)
41 pages, 1488 KiB  
Review
Advances in Computational Fluid Dynamics of Mechanical Processes in Food Engineering: Mixing, Extrusion, Drying, and Process Optimization
by Arkadiusz Szpicer, Weronika Bińkowska, Adrian Stelmasiak, Iwona Wojtasik-Kalinowska, Anna Czajkowska, Sylwia Mierzejewska, Zdzisław Domiszewski, Tomasz Rydzkowski, Joanna Piepiórka-Stepuk and Andrzej Półtorak
Appl. Sci. 2025, 15(15), 8752; https://doi.org/10.3390/app15158752 (registering DOI) - 7 Aug 2025
Abstract
Mechanical processes such as mixing, extrusion, and drying are key operations in food engineering, with a significant impact on product quality and process efficiency. The increasing complexity of food materials—due to non-Newtonian properties, multiphase structures, and thermal–mechanical interactions—requires advanced modeling approaches for process [...] Read more.
Mechanical processes such as mixing, extrusion, and drying are key operations in food engineering, with a significant impact on product quality and process efficiency. The increasing complexity of food materials—due to non-Newtonian properties, multiphase structures, and thermal–mechanical interactions—requires advanced modeling approaches for process analysis and optimization. Computational Fluid Dynamics (CFD) has become a vital tool in this context. This review presents recent progress in the use of CFD for simulating key mechanical operations in food processing. Applications include the analysis of fluid flow, heat and mass transfer, and mechanical stresses, supporting improvements in mixing uniformity, energy efficiency during drying, and optimization of extrusion components (e.g., shaping dies). The potential for integrating CFD with complementary models for system-wide optimization is also discussed, including challenges related to scale-up and product consistency. Current limitations are outlined, and future research directions are proposed. Full article
Show Figures

Figure 1

14 pages, 514 KiB  
Case Report
Thallium Exposure Secondary to Commercial Kale Chip Consumption: California Case Highlights Opportunities for Improved Surveillance and Toxicological Understanding
by Asha Choudhury, Jefferson Fowles, Russell Bartlett, Mark D. Miller, Timur Durrani, Robert Harrison and Tracy Barreau
Int. J. Environ. Res. Public Health 2025, 22(8), 1235; https://doi.org/10.3390/ijerph22081235 (registering DOI) - 7 Aug 2025
Abstract
Background: Thallium is a metal that is ubiquitous in our natural environment. Despite its potential for high toxicity, thallium is understudied and not regulated in food. The California Department of Public Health was alerted to a household cluster of elevated urine thallium levels [...] Read more.
Background: Thallium is a metal that is ubiquitous in our natural environment. Despite its potential for high toxicity, thallium is understudied and not regulated in food. The California Department of Public Health was alerted to a household cluster of elevated urine thallium levels noted among a mother (peak 5.6 µg/g creatinine; adult reference: ≤0.4 µg/g creatinine) and her three young children (peak 10.5 µg/g creatinine; child reference: ≤0.8 µg/g creatinine). Objectives: This case report identifies questions raised after a public health investigation linked a household’s thallium exposure to a commercially available food product. We provide an overview of the public health investigation. We then explore concerns, such as gaps in toxicological data and limited surveillance of thallium in the food supply, which make management of individual and population exposure risks challenging. Methods: We highlight findings from a cross-agency investigation, including a household exposure survey, sampling of possible environmental and dietary exposures (ICP-MS analysis measured thallium in kale chips at 1.98 mg/kg and 2.15 mg/kg), and monitoring of symptoms and urine thallium levels after the source was removed. We use regulatory and research findings to describe the challenges and opportunities in characterizing the scale of thallium in our food supply and effects of dietary exposures on health. Discussion: Thallium can bioaccumulate in our food system, particularly in brassica vegetables like kale. Thallium concentration in foods can also be affected by manufacturing processes, such as dehydration. We have limited surveillance data nationally regarding this metal in our food supply. Dietary reviews internationally show increased thallium intake in toddlers. Limited information is available about low-dose or chronic exposures, particularly among children, although emerging evidence shows that there might be risks associated at lower levels than previously thought. Improved toxicological studies are needed to guide reference doses and food safety standards. Promising action towards enhanced monitoring of thallium is being pursued by food safety agencies internationally, and research is underway to deepen our understanding of thallium toxicity. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

26 pages, 1638 KiB  
Review
In Silico Modeling of Metabolic Pathways in Probiotic Microorganisms for Functional Food Biotechnology
by Baiken B. Baimakhanova, Amankeldi K. Sadanov, Irina A. Ratnikova, Gul B. Baimakhanova, Saltanat E. Orasymbet, Aigul A. Amitova, Gulzat S. Aitkaliyeva and Ardak B. Kakimova
Fermentation 2025, 11(8), 458; https://doi.org/10.3390/fermentation11080458 - 7 Aug 2025
Abstract
Recent advances in computational biology have provided powerful tools for analyzing, modeling, and optimizing probiotic microorganisms, thereby supporting their development as promising agents for improving human health. The essential role of the microbiota in regulating physiological processes and preventing disease has driven interest [...] Read more.
Recent advances in computational biology have provided powerful tools for analyzing, modeling, and optimizing probiotic microorganisms, thereby supporting their development as promising agents for improving human health. The essential role of the microbiota in regulating physiological processes and preventing disease has driven interest in the rational design of next-generation probiotics. This review highlights progress in in silico approaches for enhancing the functionality of probiotic strains. Particular attention is given to genome-scale metabolic models, advanced simulation algorithms, and AI-driven tools that provide deeper insight into microbial metabolism and enable precise probiotic optimization. The integration of these methods with multi-omics data has greatly improved our ability to predict strain behavior and design probiotics with specific health benefits. Special focus is placed on modeling probiotic–prebiotic interactions and host–microbiome dynamics, which are essential for the development of functional food products. Despite these achievements, key challenges remain, including limited model accuracy, difficulties in simulating complex host–microbe systems, and the absence of unified standards for validating in silico-optimized strains. Addressing these gaps requires the development of integrative modeling platforms and clear regulatory frameworks. This review provides a critical overview of current advances, identifies existing barriers, and outlines future directions for the application of computational strategies in probiotic research. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

15 pages, 1774 KiB  
Article
Study on the Effect of pH Modulation on Lactic Acid Production by Electro-Fermentation of Food Waste
by Nuohan Wang, Jianguo Liu, Yongsheng Li, Yuanyuan Ren, Xiaona Wang, Tianlong Zheng and Qunhui Wang
Sustainability 2025, 17(15), 7160; https://doi.org/10.3390/su17157160 - 7 Aug 2025
Abstract
Lactic acid (LA) synthesis through fermentation of food waste (FW) is an emerging techniques for utilizing perishable organic wastes with high value. Using food waste collected from a cafeteria as the substrate for fermentation, the current study was conducted by applying a micro [...] Read more.
Lactic acid (LA) synthesis through fermentation of food waste (FW) is an emerging techniques for utilizing perishable organic wastes with high value. Using food waste collected from a cafeteria as the substrate for fermentation, the current study was conducted by applying a micro electric field to the conventional LA fermentation process and performing open-ended electro-fermentation (EF) without sterilization and lactobacilli inoculation. Furthermore, the effects of pH adjustment on LA production were examined. The findings demonstrated that electrical stimulation enhances the electron transfer rate within the system, accelerates REDOX reactions, and thereby intensifies the lactic acid production process. The pH-regulated group produced LA and dissolved organic materials at considerably higher rates than the control group, which did not receive any pH modification. The maximum LA concentration and organic matter dissolution in the experimental group, where the pH was set to 7 every 12 h of fermentation, were 33.9 and 38.4 g/L, respectively. These values were 208 and 203% higher than those in the control group, indicating that the pH adjustment greatly aided the solubilization and hydrolysis of macromolecules. Among the several hydrolyzing bacteria (Actinobacteriota) that were enriched, Lactobacillus predominated, but Bifidobacterium also became a major genus in the neutral-acidic environment, and its abundance grew dramatically. This study provides a scientific basis for optimizing the LA process of FW. Full article
Show Figures

Graphical abstract

21 pages, 961 KiB  
Article
A Mixed-Method Assessment of Drivers and Barriers for Substituting Dairy with Plant-Based Alternatives by Danish Adults
by Beatriz Philippi Rosane, Lise Tjørring, Annika Ley, Derek Victor Byrne, Barbara Vad Andersen, Susanne Gjedsted Bügel and Sophie Wennerscheid
Foods 2025, 14(15), 2755; https://doi.org/10.3390/foods14152755 - 7 Aug 2025
Abstract
The market for plant-based alternatives to animal foods has increased rapidly in the past decade, mainly due to consumer demand. Little evidence is available regarding nutritional impacts, drivers, and barriers to using these products as substitutes for animal foods in real-life conditions. This [...] Read more.
The market for plant-based alternatives to animal foods has increased rapidly in the past decade, mainly due to consumer demand. Little evidence is available regarding nutritional impacts, drivers, and barriers to using these products as substitutes for animal foods in real-life conditions. This pilot study followed 16 Danish adults (30 ± 11 years old; 11 females) for 4 weeks with substituting milk, cheese, and yogurt with plant-based analogues to dairy (PBADs) and assessed their drivers and barriers to applying the intervention with a mixed-method approach. PBADs are constantly compared to their animal counterparts, both regarding product characteristics, such as price and sensory properties, as well as cultural roles and subjective memories. The mixed methods showed dairy attachment, price, and taste were the main barriers to consuming PBAD, while changes in life and social circles were drivers (qualitative data). As for the liking of PBADs, plant-based yoghurt was the preferred intervention product (73.5/100, p < 0.05), followed by plant-based drinks (65.9/100), while plant-based cheese was the lowest rated (47.9/100, p < 0.05). As for dietary changes, a lower average intake of sugars, saturated fatty acids, cholesterol, calcium, phosphorus, and zinc was observed after the intervention. Additionally, this study describes the attachment of the study population to milk and dairy products. It shows that choosing dairy is beyond nourishment but is connected to tradition, culture, pleasure, memories, and a sense of belonging. In contrast, there is no history or attachment to PBADs. Full article
Show Figures

Figure 1

15 pages, 3139 KiB  
Review
From Agro-Industrial Waste to Natural Hydrogels: A Sustainable Alternative to Reduce Water Use in Agriculture
by César F. Alonso-Cuevas, Nathiely Ramírez-Guzmán, Liliana Serna-Cock, Marcelo Guancha-Chalapud, Jorge A. Aguirre-Joya, David R. Aguillón-Gutiérrez, Alejandro Claudio-Rizo and Cristian Torres-León
Gels 2025, 11(8), 616; https://doi.org/10.3390/gels11080616 - 7 Aug 2025
Abstract
The increasing demand for food necessitates that agri-food systems adopt innovative techniques to enhance food production while optimizing the use of limited resources, such as water. In agriculture, hydrogels are being increasingly used to enhance water retention and reduce irrigation requirements. However, most [...] Read more.
The increasing demand for food necessitates that agri-food systems adopt innovative techniques to enhance food production while optimizing the use of limited resources, such as water. In agriculture, hydrogels are being increasingly used to enhance water retention and reduce irrigation requirements. However, most of these materials are based on synthetic polymers that are not biodegradable. This raises serious environmental and health concerns, highlighting the urgent need for sustainable, biodegradable alternatives. Biomass-derived from agro-industrial waste presents a substantial potential for producing hydrogels, which can effectively function as water collectors and suppliers for crops. This review article provides a comprehensive overview of recent advancements in the application of agro-industrial waste for the formulation of hydrogels. Additionally, it offers a critical analysis of the development of hydrogels utilizing natural and compostable materials. Agro-industrial and food waste, which are rich in hemicellulose and cellulose, have been utilized to enhance the mechanical properties and water absorption capacity of hydrogels. These biomaterials hold significant potential for the development of effective hydrogels in agricultural applications; they can be either hybrid or natural materials that exhibit efficacy in enhancing seed germination, improving water retention capabilities, and facilitating the controlled release of fertilizers. Natural hydrogels derived from agro-industrial waste present a sustainable technological alternative that is environmentally benign. Full article
Show Figures

Graphical abstract

10 pages, 210 KiB  
Article
Determining the Persistence of Xylazine and Ketamine in Cattle Tissue Following a Simulated Rendering Process
by Scott A. Fritz, Michael D. Kleinhenz, Steve M. Ensley, Patrick J. Gorden, Yuntao Zhang, Johann F. Coetzee and Michael D. Apley
Vet. Sci. 2025, 12(8), 740; https://doi.org/10.3390/vetsci12080740 - 7 Aug 2025
Abstract
Humane euthanasia is an endpoint for production animals succumbing to disease or trauma. Euthanasia performed with barbiturates or other anesthetic/sedative drugs observes zero withdrawal time, and drug residues may remain in tissues. Carcasses may be submitted for rendering, and rendered products can be [...] Read more.
Humane euthanasia is an endpoint for production animals succumbing to disease or trauma. Euthanasia performed with barbiturates or other anesthetic/sedative drugs observes zero withdrawal time, and drug residues may remain in tissues. Carcasses may be submitted for rendering, and rendered products can be used to manufacture pet foods. The purpose of this study was to determine the concentration of two drugs, xylazine and ketamine, that may be used during the euthanasia process of food animals and to determine the fate of these drugs following a simulated rendering process using a commercial autoclave. Twelve cattle were administered xylazine or xylazine and ketamine prior to euthanasia via penetrating captive bolt, and samples of muscle, fat, liver, and kidney were collected. The tissue samples were analyzed by LC-MS/MS, both raw and following rendering. The parent compounds xylazine and ketamine were detected in all tissues, both before and after rendering. The highest concentrations were found in rendered kidney for both drugs, and the lowest in rendered and raw fat for xylazine and ketamine, respectively. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
11 pages, 1066 KiB  
Article
Extraction and Spray Drying-Based Encapsulation of Anthocyanin Pigments from Jabuticaba Sabará Peel (Myrciaria jaboticaba (Vell.) O. Berg)
by Fernanda B. Pauletto, Renata Hentz, Carolina E. Demaman Oro, Caroline Borgmann, Sabrina Camargo, Rogério M. Dallago, Rogério L. Cansian, Marcus V. Tres, Eunice Valduga and Natalia Paroul
Processes 2025, 13(8), 2490; https://doi.org/10.3390/pr13082490 - 7 Aug 2025
Abstract
Jabuticaba (Myrciaria jaboticaba (Vell.) O. Berg) peel is a native Brazilian fruit by-product recognized for its high anthocyanin (ANC) content and strong antioxidant potential, making it a valuable natural source for food applications. This study aimed to optimize the extraction and spray [...] Read more.
Jabuticaba (Myrciaria jaboticaba (Vell.) O. Berg) peel is a native Brazilian fruit by-product recognized for its high anthocyanin (ANC) content and strong antioxidant potential, making it a valuable natural source for food applications. This study aimed to optimize the extraction and spray drying-based encapsulation of ANCs from the peels of Sabará jabuticaba. Extraction was performed using ethanol acidified with HCl (6 M) under varying conditions of pH (1.0–3.0), temperature (14–50 °C), and solvent volume (100–250 mL). The highest anthocyanin yield (328.13 mg/100 g dry basis) was achieved at pH 1.0, 50 °C, and 250 mL solvent volume. For encapsulation, gum arabic and maltodextrin were used as wall materials at different mass ratios (1:1, 1:2, 1:3, 1:4, 2:1, 3:1, and 4:1 w/w). The 1:2 ratio (gum arabic/maltodextrin) resulted in the highest retention of anthocyanins (315.37 mg/100 g dry basis), with encapsulation efficiency of approximately 96%, low water activity (0.27), and reduced moisture content (3.6%). These characteristics are essential for ensuring product stability during storage. The optimized anthocyanin-rich microparticles present promising potential for application as natural colorants and functional ingredients in food formulations or as antioxidant carriers in pharmaceutical products. Full article
(This article belongs to the Special Issue Extraction, Separation, and Purification of Bioactive Compounds)
Show Figures

Figure 1

Back to TopTop