Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = fog attenuation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4549 KiB  
Review
Research on Tbps and Kilometer-Range Transmission of Terahertz Signals
by Jianjun Yu and Jiali Chen
Micromachines 2025, 16(7), 828; https://doi.org/10.3390/mi16070828 - 20 Jul 2025
Viewed by 494
Abstract
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) [...] Read more.
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) (>120 dB/km) and atmospheric absorption. This review comprehensively summarizes our group′s advancements in overcoming fundamental challenges of long-distance THz communication. Through systematic photonic–electronic co-optimization, we report key enabling technologies including photonically assisted THz signal generation, polarization-multiplexed multiple-input multiple-output (MIMO) systems with maximal ratio combining (MRC), high-gain antenna–lens configurations, and InP amplifier systems for complex weather resilience. Critical experimental milestones encompass record-breaking 1.0488 Tbps throughput using probabilistically shaped 64QAM (PS-64QAM) in the 330–500 GHz band; 30.2 km D-band transmission (18 Gbps with 543.6 Gbps·km capacity–distance product); a 3 km fog-penetrating link at 312 GHz; and high-sensitivity SIMO-validated 100 Gbps satellite-terrestrial communication beyond 36,000 km. These findings demonstrate THz communication′s viability for 6G networks requiring extreme-capacity backhaul and ultra-long-haul connectivity. Full article
Show Figures

Figure 1

26 pages, 6803 KiB  
Article
Capacity Enhancement in Free-Space Optics Networks via Optimized Optical Code Division Multiple Access Image Transmission
by Somia A. Abd El-Mottaleb, Mehtab Singh, Hassan Yousif Ahmed, Median Zeghid and Maisara Mohyeldin Gasim Mohamed
Photonics 2025, 12(6), 571; https://doi.org/10.3390/photonics12060571 - 5 Jun 2025
Viewed by 419
Abstract
This paper presents a new high-speed RGB image transmission system over Free-Space Optics (FSO) channel employing Optical Code Division Multiple Access (OCDMA) with Permutation Vector (PV) codes. Four RGB images are transmitted simultaneously at 10 Gbps per image, achieving a total capacity of [...] Read more.
This paper presents a new high-speed RGB image transmission system over Free-Space Optics (FSO) channel employing Optical Code Division Multiple Access (OCDMA) with Permutation Vector (PV) codes. Four RGB images are transmitted simultaneously at 10 Gbps per image, achieving a total capacity of 40 Gbps. The system’s performance is evaluated under various atmospheric conditions, including three fog levels and real-world visibility data from Alexandria city, Egypt. Image Quality Assessment (IQA) metrics, including Signal-to-Noise Ratio (SNR), Root Mean Square Error (RMSE), Peak Signal-to-Noise Ratio (PSNR), correlation coefficients, and Structural Similarity Index Measure (SSIM), are evaluated for both unfiltered and median-filtered images. The results show significant degradation in image quality due to transmission distance and atmospheric attenuation. In Alexandria’s clear atmospheric conditions, the system achieves a maximum transmission range of 15 km with acceptable visual quality, while the range is reduced to 2.6 km, 1.6 km, and 1 km for Low Fog (LF), Medium Fog (MF), and Heavy Fog (HF), respectively. At these distances, the RGB images achieve minimum SNR, RMSE, and SSIM values of 7.27 dB, 47.66, and 0.20, respectively, with further improvements when applying median filtering. Full article
(This article belongs to the Special Issue Optical Wireless Communication in 5G and Beyond)
Show Figures

Figure 1

26 pages, 5185 KiB  
Article
Seamless Integration of UOWC/MMF/FSO Systems Using Orbital Angular Momentum Beams for Enhanced Data Transmission
by Mehtab Singh, Somia A. Abd El-Mottaleb, Hassan Yousif Ahmed, Medien Zeghid and Abu Sufian A. Osman
Photonics 2025, 12(5), 499; https://doi.org/10.3390/photonics12050499 - 16 May 2025
Viewed by 406
Abstract
This work presents a high-speed hybrid communication system integrating Underwater Optical Wireless Communication (UOWC), Multimode Fiber (MMF), and Free-Space Optics (FSO) channels, leveraging Orbital Angular Momentum (OAM) beams for enhanced data transmission. A Photodetector, Remodulate, and Forward Relay (PRFR) is employed to enable [...] Read more.
This work presents a high-speed hybrid communication system integrating Underwater Optical Wireless Communication (UOWC), Multimode Fiber (MMF), and Free-Space Optics (FSO) channels, leveraging Orbital Angular Momentum (OAM) beams for enhanced data transmission. A Photodetector, Remodulate, and Forward Relay (PRFR) is employed to enable wavelength conversion from 532 nm for UOWC to 1550 nm for MMF and FSO links. Four distinct OAM beams, each supporting a 5 Gbps data rate, are utilized to evaluate the system’s performance under two scenarios. The first scenario investigates the effects of absorption and scattering in five water types on underwater transmission range, while maintaining fixed MMF length and FSO link. The second scenario examines varying FSO propagation distances under different fog conditions, with a consistent underwater link length. Results demonstrate that water and atmospheric attenuation significantly impact transmission range and received optical power. The proposed hybrid system ensures reliable data transmission with a maximum overall transmission distance of 1125 m (comprising a 25 m UOWC link in Pure Sea (PS) water, a 100 m MMF span, and a 1000 m FSO range in clear weather) in the first scenario. In the second scenario, under Light Fog (LF) conditions, the system achieves a longer reach of up to 2020 m (20 m UOWC link + 100 m MMF span + 1900 m FSO range), maintaining a BER ≤ 10−4 and a Q-factor around 4. This hybrid design is well suited for applications such as oceanographic research, offshore monitoring, and the Internet of Underwater Things (IoUT), enabling efficient data transfer between underwater nodes and surface stations. Full article
(This article belongs to the Special Issue Optical Wireless Communication in 5G and Beyond)
Show Figures

Figure 1

31 pages, 7090 KiB  
Article
Analysis of the Integrated Signal Design for Near-Space Communication, Navigation, and TT&C Based on K/Ka Frequency Bands
by Lvyang Ye, Shaojun Cao, Zhifei Gu, Deng Pan, Binhu Chen, Xuqian Wu, Kun Shen and Yangdong Yan
Atmosphere 2025, 16(5), 586; https://doi.org/10.3390/atmos16050586 - 13 May 2025
Viewed by 818
Abstract
With its unique environment and strategic value, the near space (NS) has become the focus of global scientific and technological, military, and commercial fields. Aiming at the problem of communication interruption when the aircraft re-enters the atmosphere, to ensure the needs of communication, [...] Read more.
With its unique environment and strategic value, the near space (NS) has become the focus of global scientific and technological, military, and commercial fields. Aiming at the problem of communication interruption when the aircraft re-enters the atmosphere, to ensure the needs of communication, navigation, and telemetry, tracking, and command (TT&C), this paper proposes an overall integration of communication, navigation, and TT&C (ICNT) signals scheme based on the K/Ka frequency band. Firstly, the K/Ka frequency band is selected according to the ITU frequency division, high-speed communication requirements, advantages of space-based over-the-horizon relay, overcoming the blackout problem, and the development trend of high frequencies. Secondly, the influence of the physical characteristics of the NS on ICNT is analyzed through simulation. The results show that when the K/Ka signal is transmitted in the NS, the path loss changes significantly with the elevation angle. The bottom layer loss at an elevation angle of 90° is between 143.5 and 150.5 dB, and the top layer loss is between 157.5 and 164.4 dB; the maximum attenuation of the bottom layer and the top layer at an elevation angle of 0° is close to 180 dB and 187 dB, respectively. In terms of rainfall attenuation, when a 30 GHz signal passes through a 100 km rain area under moderate rain conditions, the horizontal and vertical polarization losses reach 225 dB and 185 dB, respectively, and the rainfall attenuation increases with the increase in frequency. For gas absorption, the loss of water vapor is higher than that of oxygen molecules; when a 30 GHz signal is transmitted for 100 km, the loss of water vapor is 17 dB, while that of oxygen is 2 dB. The loss of clouds and fog is relatively small, less than 1 dB. Increasing the frequency and the antenna elevation angle can reduce the atmospheric scintillation. In addition, factors such as the plasma sheath and multipath also affect the signal propagation. In terms of modulation technology, the constant envelope signal shows an advantage in spectral efficiency; the new integrated signal obtained by integrating communication, navigation, and TT&C signals into a single K/Ka frequency point has excellent characteristics in the simulation of power spectral density (PSD) and autocorrelation function (ACF), verifying the feasibility of the scheme. The proposed ICNT scheme is expected to provide an innovative solution example for the communication, navigation, and TT&C requirements of NS vehicles during the re-entry phase. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

17 pages, 5879 KiB  
Article
Modeling and Performance Analysis of MDM−WDM FSO Link Using DP-QPSK Modulation Under Real Weather Conditions
by Tanmeet Kaur, Sanmukh Kaur and Muhammad Ijaz
Telecom 2025, 6(2), 29; https://doi.org/10.3390/telecom6020029 - 22 Apr 2025
Viewed by 671
Abstract
Free space optics (FSOs) is an emerging technology offering solutions for secure and high data rate transmission in dense urban areas, back haul link in telecommunication networks, and last mile access applications. It is important to investigate the performance of the FSO link [...] Read more.
Free space optics (FSOs) is an emerging technology offering solutions for secure and high data rate transmission in dense urban areas, back haul link in telecommunication networks, and last mile access applications. It is important to investigate the performance of the FSO link as a result of aggregate attenuation caused by different weather conditions in a region. In the present work, empirical models have been derived in terms of visibility, considering fog, haze, and cloud conditions of diverse geographical regions of Delhi, Washington, London, and Cape Town. Mean square error (MSE) and goodness of fit (R squared) have been employed as measures for estimating model performance. The dual polarization-quadrature phase shift keying (DP-QPSK) modulation technique has been employed with hybrid mode and the wave division multiplexing (MDM-WDM) scheme for analyzing the performance of the FSO link with two Laguerre Gaussian modes (LG00 and LG 01) at 5 different wavelengths from 1550 nm to 1554 nm. The performance of the system has been analyzed in terms of received power and signal to noise ratio with respect to the transmission range of the link. Minimum received power and SNR values of −52 dBm and −33 dB have been obtained over the observed transmission range as a result of multiple impairments. Random forest (RF), k-nearest neighbors (KNN), multi-layer perceptron (MLP), gradient boosting (GB), and machine learning (ML) techniques have also been employed for estimating the SNR of the received signal. The maximum R squared (0.99) and minimum MSE (0.11), MAE (0.25), and RMSE (0.33) values have been reported in the case of the GB model, compared to other ML techniques, resulting in the best fit model. Full article
Show Figures

Figure 1

36 pages, 4533 KiB  
Review
Impact of Critical Situations on Autonomous Vehicles and Strategies for Improvement
by Shahriar Austin Beigi and Byungkyu Brian Park
Future Transp. 2025, 5(2), 39; https://doi.org/10.3390/futuretransp5020039 - 1 Apr 2025
Viewed by 2025
Abstract
Recently, the development of autonomous vehicles (AVs) and intelligent driver assistance systems has drawn significant attention from the public. Despite these advancements, AVs may encounter critical situations in real-world scenarios that can lead to severe traffic accidents. This review paper investigated these critical [...] Read more.
Recently, the development of autonomous vehicles (AVs) and intelligent driver assistance systems has drawn significant attention from the public. Despite these advancements, AVs may encounter critical situations in real-world scenarios that can lead to severe traffic accidents. This review paper investigated these critical scenarios, categorizing them under weather conditions, environmental factors, and infrastructure challenges. Factors such as attenuation and scattering severely influence the performance of sensors and AVs, which can be affected by rain, snow, fog, and sandstorms. GPS and sensor signals can be disturbed in urban canyons and forested regions, which pose vehicle localization and navigation problems. Both roadway infrastructure issues, like inadequate signage and poor road conditions, are major challenges to AV sensors and navigation systems. This paper presented a survey of existing technologies and methods that can be used to overcome these challenges, evaluating their effectiveness, and reviewing current research to improve AVs’ robustness and dependability under such critical situations. This systematic review compares the current state of sensor technologies, fusion techniques, and adaptive algorithms to highlight advances and identify continuing challenges for the field. The method involved categorizing sensor robustness, infrastructure adaptation, and algorithmic improvement progress. The results show promise for advancements in dynamic infrastructure and V2I systems but pose challenges to overcoming sensor failures in extreme weather and on non-maintained roads. Such results highlight the need for interdisciplinary collaboration and real-world validation. Moreover, the review presents future research lines to improve how AVs overcome environmental and infrastructural adversities. This review concludes with actionable recommendations for upgrading physical and digital infrastructures, adaptive sensors, and algorithmic upgrades. Such research is important for AV technology to remain in the zone of advancement and stability. Full article
Show Figures

Figure 1

12 pages, 6255 KiB  
Article
Microphysical Characteristics of a Sea Fog Event with Precipitation Along the West Coast of the Yellow Sea in Summer
by Xiaoyu Shi, Li Yi, Suping Zhang, Xiaomeng Shi, Yingchen Liu, Yilin Liu, Xiaoyu Wang and Yuechao Jiang
Atmosphere 2025, 16(3), 308; https://doi.org/10.3390/atmos16030308 - 6 Mar 2025
Viewed by 647
Abstract
The microphysics and visibility (Vis) of a sea fog event with precipitation were measured at the Baguan Hill Meteorological Station (BGMS) (36.07° N, 120.33° E; 86 m above sea level) from 27 June to 28 June 2022. The duration of the fog process [...] Read more.
The microphysics and visibility (Vis) of a sea fog event with precipitation were measured at the Baguan Hill Meteorological Station (BGMS) (36.07° N, 120.33° E; 86 m above sea level) from 27 June to 28 June 2022. The duration of the fog process was 880 min. The mean value of the number concentration (Nd) was 190.62 cm−3, and the mean value of the liquid water content (LWC) was 0.026 g m−3. Small droplets contributed 81% to Nd and had a greater impact on visibility attenuation, while larger droplets accounted for 58% of the total LWC. The observed droplet size distribution (DSD) was better represented by the G-exponential distribution than by the Gamma distribution. Incorporating both Nd and LWC in Vis parameterization resulted in the best prediction performance. This work enhances understanding of sea fog microphysics in the west coast of Yellow Sea in summer and highlights the need for long-term observations. Full article
(This article belongs to the Special Issue Advance in Transportation Meteorology (2nd Edition))
Show Figures

Figure 1

22 pages, 6074 KiB  
Article
Research on the Attenuation Characteristics of LiDAR Transmission Energy in Different Atmospheric Environments
by Xiaoce Yang, Chunyang Wang and Xuelian Liu
Atmosphere 2025, 16(2), 210; https://doi.org/10.3390/atmos16020210 - 12 Feb 2025
Cited by 1 | Viewed by 1098
Abstract
LiDAR, as a novel detection system, has found extensive applications across diverse industries. However, when lasers propagate through the atmosphere, the energy undergoes significant attenuation due to various environmental factors, thereby impeding the performance of LiDAR systems. This paper focuses on analyzing the [...] Read more.
LiDAR, as a novel detection system, has found extensive applications across diverse industries. However, when lasers propagate through the atmosphere, the energy undergoes significant attenuation due to various environmental factors, thereby impeding the performance of LiDAR systems. This paper focuses on analyzing the distribution patterns of fog particles, haze particles, and typical aerosol particles within the atmospheric environment. By integrating Mie scattering theory, it delves into the absorption and scattering behaviors exhibited by different atmospheric constituents. Employing numerical simulation techniques, the attenuation characteristics of the 1064 nm working-wavelength laser under the influence of diverse particles are simulated and scrutinized. In conjunction with the LiDAR transmission equation, the attenuation law governing the transmission energy of the laser under varying atmospheric conditions is also analyzed. The results reveal that atmospheric pollutant particles such as fog particles, haze particles, dust particles, and bituminous coal particles all contribute to energy attenuation during laser transmission. Notably, bituminous coal particles induce the most severe attenuation. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

26 pages, 7069 KiB  
Article
Impact of Weather Factors on Unmanned Aerial Vehicles’ Wireless Communications
by Lalan Mishra and Naima Kaabouch
Future Internet 2025, 17(1), 27; https://doi.org/10.3390/fi17010027 - 8 Jan 2025
Cited by 8 | Viewed by 2229
Abstract
As the applications of unmanned aerial vehicles (UAV) expand, reliable communication between UAVs and ground control stations is crucial for successful missions. However, adverse weather conditions caused by atmospheric gases, clouds, fog, rain, and turbulence pose challenges by degrading communication signals. Although, some [...] Read more.
As the applications of unmanned aerial vehicles (UAV) expand, reliable communication between UAVs and ground control stations is crucial for successful missions. However, adverse weather conditions caused by atmospheric gases, clouds, fog, rain, and turbulence pose challenges by degrading communication signals. Although, some recent studies have explored the nature of signal attenuation caused by atmospheric weather variations, studies that compare the attenuation from various weather conditions and analyze the effect on available bandwidth are missing. This work aimed to address this research gap by thoroughly investigating the impact of atmospheric weather conditions on the bandwidth available for UAV communications. Quantitative and qualitative performance analyses were performed for various weather conditions using metrics such as attenuation and the bit error rate of the received signals associated with different modulation schemes and frequencies, using a linearly segmented attenuation model. The results indicate that atmospheric gases and clouds/fog affect wireless signal propagation; however, the effect of rain on the propagation distances and operating frequencies considered in this study was the most severe. Based on the influence of power transmission, operating frequency, modulation schemes, distance, and adverse weather conditions on the bit error rate and bandwidth suboptimization, we propose an algorithm to select the maximum operating frequency for reliable UAV link operation. Full article
Show Figures

Figure 1

18 pages, 8934 KiB  
Article
A New NDSA (Normalized Differential Spectral Attenuation) Measurement Campaign for Estimating Water Vapor along a Radio Link
by Luca Facheris, Fabrizio Cuccoli, Ugo Cortesi, Samuele del Bianco, Marco Gai, Giovanni Macelloni and Francesco Montomoli
Remote Sens. 2024, 16(19), 3735; https://doi.org/10.3390/rs16193735 - 8 Oct 2024
Viewed by 1099
Abstract
The Normalized Differential Spectral Attenuation (NDSA) technique was proposed years ago as an active method for measuring integrated water vapor (IWV) along a Ku/K-band radio link immersed (totally or partially) in the troposphere. The approach is of the active kind, as it relies [...] Read more.
The Normalized Differential Spectral Attenuation (NDSA) technique was proposed years ago as an active method for measuring integrated water vapor (IWV) along a Ku/K-band radio link immersed (totally or partially) in the troposphere. The approach is of the active kind, as it relies on the transmission of a couple of sinusoidal signals, whose power is measured at the receiver, thus providing the differential attenuation measurements from which IWV estimates can be in turn derived. In 2018, a prototype instrument providing such differential attenuation measurements was completed and set up for a first measurement campaign aimed at demonstrating the NDSA method. By the end of June 2022, the instrument was profoundly modified and upgraded so that a second measurement campaign could be carried out from 1 August to 30 November 2022. The transmitter was placed on the top of Monte Gomito (44.1277°lat, 10.6434°lon, 1892 m a.s.l.) and the receiver on the roof of the Department of Information Engineering of the University of Florence (43.7985°lat, 11.2528°lon, 50 m a.s.l.). The resulting radio link length was 61.15 km. Four ground weather stations of the regional weather service were selected among those available. In this paper, we describe the upgraded instrument and present the outcomes of the new measurement campaign, whose purpose was mainly to compare the IWV estimates provided by the instrument with the ground sensor measurements of air temperature, air humidity, barometric pressure, and rainfall. In particular, we show that the temporal trends of the two IWV estimates are qualitatively consistent, and that the instrument is able to provide IWV estimates also in the presence of fog and rainfall. Conversely, a quantitative evaluation through comparison with IWV data from point weather station measurements appears challenging due to the significant spatial variability in temperature and relative humidity, even between couples of stations that are quite close to each other. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

11 pages, 412 KiB  
Article
Changing Health Information on COVID-19 Vaccination in Asia
by Hiroko Costantini, Rosa Costantini and Rie Fuse
Journal. Media 2024, 5(2), 526-536; https://doi.org/10.3390/journalmedia5020035 - 29 Apr 2024
Cited by 1 | Viewed by 1749
Abstract
The informational domain related to COVID-19 reflects the degree of uncertainty and pace of evolution of the pandemic. This places a burden on peoples’ searches for information to guide their choices, importantly including for COVID-19 vaccines. Thus, it is important for health communications [...] Read more.
The informational domain related to COVID-19 reflects the degree of uncertainty and pace of evolution of the pandemic. This places a burden on peoples’ searches for information to guide their choices, importantly including for COVID-19 vaccines. Thus, it is important for health communications that support vaccination campaigns to attenuate vaccine hesitancy to be accessible, including in terms of readability, and adapted to the evolving pandemic. This paper aims to understand internet searches on COVID-19 vaccination, specifically the mix of sources and readability of the sources over a two-year period (2021–2023) in Singapore, Hong Kong, and the Philippines, for search results in English, as English is a main language for each of these locations. The sources accessed through online searches in June 2021 and May 2023 were categorized by type of source and whether they were from one of the focal locations or elsewhere. The readability of information from web-search results was assessed using a set of readability tests (Flesch–Kincaid Reading Ease, Flesch–Kincaid Grade Level, Gunning Fog Index, Coleman–Liau Index, and Simple Measure of Gobbledygook Grade level). Over the two-year period there was an increase in government sources and reduction in mass media sources with distinct local patterns. Local government sources increased in Singapore whereas foreign government and multi-lateral organization sources increased in Hong Kong, with the Philippines being an intermediate pattern. In contrast to the changing mix of sources, the readability tests indicate a low proportion of URLs scoring within recommended readability thresholds across locations and types of sources over the two years. Information on COVID-19 vaccine development and deployment is an important part of health communications that includes internet search. The paper contributes to understanding health communications during a pandemic, including mix of local and non-local sources and contingency on local social and health context. Full article
Show Figures

Figure 1

12 pages, 15814 KiB  
Article
Optical Signal Attenuation through Smog in Controlled Laboratory Conditions
by Hira Khalid, Sheikh Muhammad Sajid, Muhammad Imran Cheema and Erich Leitgeb
Photonics 2024, 11(2), 172; https://doi.org/10.3390/photonics11020172 - 12 Feb 2024
Cited by 4 | Viewed by 2245
Abstract
Free-space optical (FSO) communication is a line-of-sight (LOS) communication technology that uses light, typically lasers, to transmit data through the atmosphere. FSO can provide high data transfer rates, but factors like weather conditions can affect its performance. Like fog, smog also degrades the [...] Read more.
Free-space optical (FSO) communication is a line-of-sight (LOS) communication technology that uses light, typically lasers, to transmit data through the atmosphere. FSO can provide high data transfer rates, but factors like weather conditions can affect its performance. Like fog, smog also degrades the availability and reliability of FSO links, as the particulate matter (PM) present in smog scatters the light beam, causing perceptible attenuation. In this paper, we have investigated the attenuation of an optical signal under laboratory-controlled smog conditions, using both theoretical and experimental approaches. A 6 m long acrylic chamber is used to contain artificial smog and measure the optical attenuation through it. The experimental result shows that smog attenuation is approximately 1.705 times more than fog attenuation. The findings of this study offer valuable insights into the effects of smog on optical links and can contribute to the development and optimization of these systems in regions with high levels of smog. Full article
(This article belongs to the Special Issue New Advances in Optical Wireless Communication)
Show Figures

Figure 1

16 pages, 629 KiB  
Article
Path Difference Optimization of 5G Millimeter Wave Communication Networks in Malaysia
by Lee Loo Chuan, Mardeni Roslee, Chilakala Sudhamani, Athar Waseem, Anwar Faizd Osman and Mohamad Huzaimy Jusoh
Appl. Sci. 2023, 13(19), 10889; https://doi.org/10.3390/app131910889 - 30 Sep 2023
Cited by 3 | Viewed by 1975
Abstract
The development of intelligent transport systems, mobile cellular networks, microwave links, and vehicle communications has accelerated with the use of wireless connections as a communication channel in 5G wireless technology. Weather, including rain, fog, snow, sand, and dust, impacts wireless communication channels in [...] Read more.
The development of intelligent transport systems, mobile cellular networks, microwave links, and vehicle communications has accelerated with the use of wireless connections as a communication channel in 5G wireless technology. Weather, including rain, fog, snow, sand, and dust, impacts wireless communication channels in various ways. These effects are more pronounced at the high frequencies of millimeter-wave bands. Recently, the 5G network has made it possible to support a variety of applications with fast speeds and high-quality content. To facilitate the use of high-millimeter-wave frequencies, a recent study investigated how sand and dust affect the 5G communication channel. In this paper, we consider the impact of frequent and heavy rainfall on millimeter-wave propagation and cross-polarization of the wave at various points along the propagation path caused by rainfall in urban and highway scenarios in Malaysia. We estimate rainfall attenuation, path loss, and link margin at various millimeter-wave frequencies. From our simulation results, it is evident that rainfall attenuation, path loss, and link margin depend on the operating frequency, path difference, and rainfall rate. In this paper, we estimate and compare the optimal path difference values under urban and highway scenarios both with and without rainfall attenuation. Full article
Show Figures

Figure 1

12 pages, 741 KiB  
Article
Multi-Channel Visibility Distribution Measurement via Optical Imaging
by Lingye Chen, Yuyang Shui, Libang Chen, Ming Li, Jinhua Chu, Xia Shen, Yikun Liu and Jianying Zhou
Photonics 2023, 10(8), 945; https://doi.org/10.3390/photonics10080945 - 18 Aug 2023
Cited by 3 | Viewed by 1758
Abstract
Calibration of the imaging environment is an important step in computational imaging research, as it provides an assessment of the imaging capabilities of an imaging system. Visibility is an important quantity reflecting the transparency of the atmosphere. Currently, transmissometers and optical scatterometers are [...] Read more.
Calibration of the imaging environment is an important step in computational imaging research, as it provides an assessment of the imaging capabilities of an imaging system. Visibility is an important quantity reflecting the transparency of the atmosphere. Currently, transmissometers and optical scatterometers are the primary methods for visibility measurement. Transmissometers measure visibility along a single direction between the transmitter and receiver but encounter challenges in achieving optical alignment under long baseline conditions. Optical scatterometers measure the visibility within a localized area since they collect only a small volume of air. Hence, both transmissometers and optical scatterometers have limitations in accurately representing the visibility distribution of an inhomogeneous atmosphere. In this work, a multi-channel visibility distribution measurement via the optical imaging method is proposed and validated in a standard fog chamber. By calibrating the attenuation of infrared LED arrays, the visibility distribution over the entire field of view can be calculated based on the atmospheric visibility model. Due to the large angle of divergence of the LED, the need for optical alignment is eliminated. In further discussion, the key factors affecting the accuracy of visibility measurement are analyzed, and the results show that increasing the measurement baseline, increasing the dynamic range of the detector, and eliminating background light can effectively improve the accuracy of visibility measurement. Full article
(This article belongs to the Special Issue Computational Optical Imaging and Its Applications)
Show Figures

Figure 1

25 pages, 4770 KiB  
Article
A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors
by Arsalan Haider, Marcell Pigniczki, Shotaro Koyama, Michael H. Köhler, Lukas Haas, Maximilian Fink, Michael Schardt, Koji Nagase, Thomas Zeh, Abdulkadir Eryildirim, Tim Poguntke, Hideo Inoue, Martin Jakobi and Alexander W. Koch
Sensors 2023, 23(15), 6891; https://doi.org/10.3390/s23156891 - 3 Aug 2023
Cited by 12 | Viewed by 9080
Abstract
In this work, we introduce a novel approach to model the rain and fog effect on the light detection and ranging (LiDAR) sensor performance for the simulation-based testing of LiDAR systems. The proposed methodology allows for the simulation of the rain and fog [...] Read more.
In this work, we introduce a novel approach to model the rain and fog effect on the light detection and ranging (LiDAR) sensor performance for the simulation-based testing of LiDAR systems. The proposed methodology allows for the simulation of the rain and fog effect using the rigorous applications of the Mie scattering theory on the time domain for transient and point cloud levels for spatial analyses. The time domain analysis permits us to benchmark the virtual LiDAR signal attenuation and signal-to-noise ratio (SNR) caused by rain and fog droplets. In addition, the detection rate (DR), false detection rate (FDR), and distance error derror of the virtual LiDAR sensor due to rain and fog droplets are evaluated on the point cloud level. The mean absolute percentage error (MAPE) is used to quantify the simulation and real measurement results on the time domain and point cloud levels for the rain and fog droplets. The results of the simulation and real measurements match well on the time domain and point cloud levels if the simulated and real rain distributions are the same. The real and virtual LiDAR sensor performance degrades more under the influence of fog droplets than in rain. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2023)
Show Figures

Figure 1

Back to TopTop