Optical Signal Attenuation through Smog in Controlled Laboratory Conditions
Abstract
:1. Introduction
2. FSO Analysis in Smog Channel
2.1. Smog
2.2. Characterization of Smog Attenuation
3. Experimental Setup
4. Result and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FSO | Free-Space Optics |
LOS | Line Of Sight |
PM | Particulate Matter |
OWC | Optical Wireless Communication |
EMI | Electromagnetic Interference |
ITU | International Telecommunication Union |
SNR | Signal-to-Noise Ratio |
BER | Bit Error Rate |
RF | Radio Frequency |
VOC | Volatile Organic Compound |
RH | Relative Humidity |
UV | Ultraviolet |
RMSE | Root Mean Square Error |
References
- Singhal, P.; Gupta, P.; Rana, P. Basic concept of free space optics communication (FSO): An overview. In Proceedings of the 2015 International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, India, 2–4 April 2015; pp. 439–442. [Google Scholar] [CrossRef]
- Celik, A.; Romdhane, I.; Kaddoum, G.; Eltawil, A.M. A Top-Down Survey on Optical Wireless Communications for the Internet of Things. IEEE Commun. Surv. Tutor. 2023, 25, 1–45. [Google Scholar] [CrossRef]
- Arya, S.; Chung, Y.H. A Comprehensive Survey on Optical Scattering Communications: Current Research, New Trends, and Future Vision. IEEE Commun. Surv. Tutor. 2023, 1. [Google Scholar] [CrossRef]
- Khalighi, M.A.; Uysal, M. Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Wei, B.; Shen, S.; Wang, G.; Zhang, H.; Tang, X.; Zhao, L. Applications of Free Space Optics in Terrestrial Backhaul. In Proceedings of the 2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM), Wuhan, China, 4–7 November 2023; pp. 1–4. [Google Scholar] [CrossRef]
- El-Mottaleb, S.A.A.; Mohamed, A.G.; Ahmed, H.Y.; Zeghid, M. Performance Enhancement of FSO communication system Under Rainy Weather Environment using a novel encryption technique. IEEE Access 2024, 12, 13729–13746. [Google Scholar] [CrossRef]
- Khallaf, H.S.; Hashima, S.; Rihan, M.; Mohamed, E.M.; Kasem, H.M. Quantifying Impact of Pointing Errors on Secrecy Performance of UAV-Based Relay-Assisted FSO Links. IEEE Internet Things J. 2024, 11, 2979–2989. [Google Scholar] [CrossRef]
- Ciaramella, E.; Arimoto, Y.; Contestabile, G.; Presi, M.; D’Errico, A.; Guarino, V.; Matsumoto, M. 1.28 terabit/s (32 × 40 Gbit/s) wdm transmission system for free space optical communications. IEEE J. Sel. Areas Commun. 2009, 27, 1639–1645. [Google Scholar] [CrossRef]
- Colvero, C.P.; Cordeiro, M.C.R.; von der Weid, J.P. FSO systems: Rain, drizzle, fog and haze attenuation at different optical windows propagation. In Proceedings of the 2007 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, Salvador, Brazil, 29 October–1 November 2007; pp. 563–568. [Google Scholar] [CrossRef]
- Hu, S.; Liu, H.; Zhao, L.; Bian, X. The Link Attenuation Model Based on Monte Carlo Simulation for Laser Transmission in Fog Channel. IEEE Photonics J. 2020, 12, 6100910. [Google Scholar] [CrossRef]
- El-Nayal, M.K.; Aly, M.M.; Fayed, H.A.; AbdelRassoul, R.A. Adaptive free space optic system based on visibility detector to overcome atmospheric attenuation. Results Phys. 2019, 14, 102392. [Google Scholar] [CrossRef]
- Aborisade, O.; Ojo, J.; Owolawi, P.; Adedayo, K. Prediction of Attenuation using Visibility variations and other Meteorological Parameters in George, Western Cape, South Africa. IOP Conf. Ser. Earth Environ. Sci. 2021, 665, 012053. [Google Scholar] [CrossRef]
- Verdugo, E.; Da Silva Mello, L.; Pereira Colvero, C.; Nebuloni, R. Estimation of Rain Attenuation in FSO Links based on Visibility Measurements. In Proceedings of the 2023 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, 26–31 March 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Djordjevic, I.B. Adaptive Modulation and Coding for Free-Space Optical Channels. J. Opt. Commun. Netw. 2010, 2, 221–229. [Google Scholar] [CrossRef]
- Khalid, H.; Muhammad, S.S.; Nistazakis, H.E.; Tombras, G.S. Performance Analysis of Hard-Switching Based Hybrid FSO/RF System over Turbulence Channels. Computation 2019, 7, 28. [Google Scholar] [CrossRef]
- Baiwa, R.; Verma, P. Performance Analysis of FSO System for Advanced Modulation Formats Under Different Weather Conditions. In Proceedings of the 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 14–15 June 2018; pp. 1490–1495. [Google Scholar] [CrossRef]
- Bajwa, R.; Verma, P. Effect of Different Atmospheric Conditions on the Performance of the FSO System at 1550 nm. In Proceedings of the 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 22–23 February 2018; pp. 390–395. [Google Scholar] [CrossRef]
- Amarasinghe, Y.; Zhang, W.; Zhang, R.; Mittleman, D.M.; Ma, J. Attenuation of Terahertz Waves by Wet Sn Ow, Dry Snow and Rain. In Proceedings of the 2020 IEEE International Conference on Plasma Science (ICOPS), Singapore, 6–10 December 2020; p. 216. [Google Scholar] [CrossRef]
- Whitten, G. The chemistry of smog formation: A review of current knowledge. Environ. Int. 1983, 9, 447–463. [Google Scholar] [CrossRef]
- Raza, W.; Saeed, S.; Saulat, H.; Gul, H.; Sarfraz, M.; Sonne, C.; Sohn, Z.H.; Brown, R.J.; Kim, K.H. A review on the deteriorating situation of smog and its preventive measures in Pakistan. J. Clean. Prod. 2021, 279, 123676. [Google Scholar] [CrossRef]
- McWhorter, T.M.; Shrestha, S. System for Monitoring Air Quality and Smog. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018; pp. 0415–0419. [Google Scholar] [CrossRef]
- Ijaz, M.; Ghassemlooy, Z.; Pesek, J.; Fiser, O.; Le Minh, H.; Bentley, E. Modeling of Fog and Smoke Attenuation in Free Space Optical Communications Link Under Controlled Laboratory Conditions. J. Light. Technol. 2013, 31, 1720–1726. [Google Scholar] [CrossRef]
- Liu, A.; Wang, H.; Cui, Y.; Shen, L.; Yin, Y.; Wu, Z.; Guo, S.; Shi, S.; Chen, K.; Zhu, B.; et al. Characteristics of Aerosol during a Severe Haze-Fog Episode in the Yangtze River Delta: Particle Size Distribution, Chemical Composition, and Optical Properties. Atmosphere 2020, 11, 56. [Google Scholar] [CrossRef]
- Ijaz, M.; Ghassemlooy, Z.; Perez, J.; Brazda, V.; Fiser, O. Enhancing the Atmospheric Visibility and Fog Attenuation Using a Controlled FSO Channel. IEEE Photonics Technol. Lett. 2013, 25, 1262–1265. [Google Scholar] [CrossRef]
- Ojo, J.; Olaitan, J.; Ojo, O. Characterization of fog-induced attenuation for optimizing optical propagation links in Nigeria. Results Opt. 2022, 9, 100279. [Google Scholar] [CrossRef]
- Khadapkar, K.P. A Study of a Smog-Fog-Smog Cycle and the Processing of PAH and Oxy-PAH by a Fog Cloud. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 2011. [Google Scholar]
- Ijaz, M.; Ghassemlooy, Z.; Rajbhandari, S.; Le Minh, H.; Perez, J.; Gholami, A. Comparison of 830 nm and 1550 nm based free space optical communications link under controlled fog conditions. In Proceedings of the 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Poznan, Poland, 18–20 July 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Muhammad, S.S.; Flecker, B.; Leitgeb, E.; Gebhart, M. Characterization of fog attenuation in terrestrial free space optical links. Opt. Eng. 2007, 46, 066001. [Google Scholar] [CrossRef]
- Mao, T.P.; Zhou, D.F.; Niu, Z.X. The calculation model of the attenuation due to clouds or fog and the analysis of its characteristic. In Proceedings of the 2004 Asia-Pacific Radio Science Conference, Qingdao, China, 24–27 August 2004; pp. 332–334. [Google Scholar] [CrossRef]
- Ijaz, M.; Ghassemlooy, Z.; Gholami, A.; Tang, X. Smoke attenuation in free space optical communication under laboratory controlled conditions. In Proceedings of the 7’th International Symposium on Telecommunications (IST’2014), Tehran, Iran, 9–11 September 2014; pp. 758–762. [Google Scholar] [CrossRef]
- Fatima, K.; Muhammad, S.S.; Leitgeb, E. Adaptive coded modulation for FSO links. In Proceedings of the 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Poznan, Poland, 18–20 July 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Imran, H.; Maqsood, Z.; Ullah, A.; Butt, N.Z. Effective Prediction of Transmission of Solar Irradiance through Dusty Solar Panels using Atmospheric Aerosol Data for Lahore, Pakistan. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 2889–2893. [Google Scholar] [CrossRef]
Parameters | Laser 1 | Laser 2 |
---|---|---|
Wavelength | 780 nm | 1550 nm |
Transmitted power | −3 dBm | 10 dBm |
Transmitter peak voltage | 50 mV | 30 mV |
Power stability | ±0.2 dB (typ.) | ±0.01 dB (typ.) |
Photodetector’s spectral range | 400–640 nm | 800–1700 nm |
Operating temperature | 0–40 °C | 15–35 °C |
Photodetector’s diameter | 9.7 mm | 9.7 mm |
Response time | <1 s | <1 s |
Wavelength (nm) | Visibility (km) | Attenuation (dB/km) | ||
---|---|---|---|---|
Smog | Smoke | Fog | ||
780 | 0.185 | 80 | 88 | 68 |
0.245 | 65 | 69 | 40 | |
1550 | 0.185 | 58 | 48 | 30 |
0.245 | 48 | 39 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid, H.; Sajid, S.M.; Cheema, M.I.; Leitgeb, E. Optical Signal Attenuation through Smog in Controlled Laboratory Conditions. Photonics 2024, 11, 172. https://doi.org/10.3390/photonics11020172
Khalid H, Sajid SM, Cheema MI, Leitgeb E. Optical Signal Attenuation through Smog in Controlled Laboratory Conditions. Photonics. 2024; 11(2):172. https://doi.org/10.3390/photonics11020172
Chicago/Turabian StyleKhalid, Hira, Sheikh Muhammad Sajid, Muhammad Imran Cheema, and Erich Leitgeb. 2024. "Optical Signal Attenuation through Smog in Controlled Laboratory Conditions" Photonics 11, no. 2: 172. https://doi.org/10.3390/photonics11020172
APA StyleKhalid, H., Sajid, S. M., Cheema, M. I., & Leitgeb, E. (2024). Optical Signal Attenuation through Smog in Controlled Laboratory Conditions. Photonics, 11(2), 172. https://doi.org/10.3390/photonics11020172