Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (509)

Search Parameters:
Keywords = focused electron beam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1558 KB  
Review
Volume Electron Microscopy: Imaging Principles, Computational Advances and Applications in Multi-Scale Biological System
by Bowen Shi and Yanan Zhu
Crystals 2026, 16(1), 14; https://doi.org/10.3390/cryst16010014 - 24 Dec 2025
Viewed by 367
Abstract
Volume electron microscopy (Volume-EM) has transformed structural cell biology by enabling nanometre-resolution imaging across cellular and tissue scales. Serial-section TEM, Serial Block-Face Scanning Electron Microscopy (SBF-SEM), Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) and multi-beam SEM now routinely generate terabyte-scale volumes that capture [...] Read more.
Volume electron microscopy (Volume-EM) has transformed structural cell biology by enabling nanometre-resolution imaging across cellular and tissue scales. Serial-section TEM, Serial Block-Face Scanning Electron Microscopy (SBF-SEM), Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) and multi-beam SEM now routinely generate terabyte-scale volumes that capture organelles, synapses and neural circuits in three dimensions, while cryogenic Volume-EM extends this landscape by preserving vitrified, fully hydrated specimens in a near-native state. Together, these room-temperature and cryogenic modalities define a continuum of approaches that trade off volume, resolution, throughput and structural fidelity, and increasingly interface with correlative light microscopy and cryo-electron tomography. In parallel, advances in computation have turned Volume-EM into a data-intensive discipline. Multistage preprocessing pipelines for alignment, denoising, stitching and intensity normalisation feed into automated segmentation frameworks that combine convolutional neural networks, affinity-based supervoxel agglomeration, flood-filling networks and, more recently, diffusion-based generative restoration. Weakly supervised and self-supervised learning, multi-task objectives and human-AI co-training mitigate the scarcity of dense ground truth, while distributed storage and streaming inference architectures support segmentation and proofreading at the terascale and beyond. Open resources such as COSEM, MICRONS, OpenOrganelle and EMPIAR provide benchmark datasets, interoperable file formats and reference workflows that anchor method development and cross-laboratory comparison. In this review, we first outline the physical principles and imaging modes of conventional and cryogenic Volume-EM, then describe current best practices in data acquisition and preprocessing, and finally survey the emerging ecosystem of AI-driven segmentation and analysis. We highlight how cryo-Volume-EM expands the field towards native-state structural biology, and how multimodal integration with light microscopy, cryo-electron tomography (cryo-ET) and spatial omics is pushing Volume-EM from descriptive imaging towards predictive, mechanistic, cross-scale models of cell physiology, disease ultrastructure and neural circuit function. Full article
(This article belongs to the Special Issue Electron Microscopy Characterization of Soft Matter Materials)
Show Figures

Figure 1

33 pages, 4350 KB  
Review
Laser Processing Methods in Precision Silicon Carbide Wafer Exfoliation: A Review
by Tuğrul Özel and Faik Derya Ince
J. Manuf. Mater. Process. 2026, 10(1), 2; https://doi.org/10.3390/jmmp10010002 - 19 Dec 2025
Viewed by 647
Abstract
The rapid advancement of high-performance electronics has intensified the demand for wide-bandgap semiconductor materials capable of operating under high-power and high-temperature conditions. Among these, silicon carbide (SiC) has emerged as a leading candidate due to its superior thermal conductivity, chemical stability, and mechanical [...] Read more.
The rapid advancement of high-performance electronics has intensified the demand for wide-bandgap semiconductor materials capable of operating under high-power and high-temperature conditions. Among these, silicon carbide (SiC) has emerged as a leading candidate due to its superior thermal conductivity, chemical stability, and mechanical strength. However, the high cost and complexity of SiC wafer fabrication, particularly in slicing and exfoliation, remain significant barriers to its widespread adoption. Conventional methods such as wire sawing suffer from considerable kerf loss, surface damage, and residual stress, reducing material yield and compromising wafer quality. Additionally, techniques like smart-cut ion implantation, though capable of enabling thin-layer transfer, are limited by long thermal annealing durations and implantation-induced defects. To overcome these limitations, ultrafast laser-based processing methods, including laser slicing and stealth dicing (SD), have gained prominence as non-contact, high-precision alternatives for SiC wafer exfoliation. This review presents the current state of the art and recent advances in laser-based precision SiC wafer exfoliation processes. Laser slicing involves focusing femtosecond or picosecond pulses at a controlled depth parallel to the beam path, creating internal damage layers that facilitate kerf-free wafer separation. In contrast, stealth dicing employs laser-induced damage tracks perpendicular to the laser propagation direction for chip separation. These techniques significantly reduce material waste and enable precise control over wafer thickness. The review also reports that recent studies have further elucidated the mechanisms of laser–SiC interaction, revealing that femtosecond pulses offer high machining accuracy due to localized energy deposition, while picosecond lasers provide greater processing efficiency through multipoint refocusing but at the cost of increased amorphous defect formation. The review identifies multiphoton ionization, internal phase explosion, and thermal diffusion key phenomena that play critical roles in microcrack formation and structural modification during precision SiC wafer laser processing. Typical ultrafast-laser operating ranges include pulse durations from 120–450 fs (and up to 10 ps), pulse energies spanning 5–50 µJ, focal depths of 100–350 µm below the surface, scan speeds ranging from 0.05–10 mm/s, and track pitches commonly between 5–20 µm. In addition, the review provides quantitative anchors including representative wafer thicknesses (250–350 µm), typical laser-induced crack or modified-layer depths (10–40 µm and extending up to 400–488 µm for deep subsurface focusing), and slicing efficiencies derived from multi-layer scanning. The review concludes that these advancements, combined with ongoing progress in ultrafast laser technology, represent research opportunities and challenges in transformative shifts in SiC wafer fabrication, offering pathways to high-throughput, low-damage, and cost-effective production. This review highlights the comparative advantages of laser-based methods, identifies the research gaps, and outlines the challenges and opportunities for future research in laser processing for semiconductor applications. Full article
Show Figures

Figure 1

15 pages, 2986 KB  
Review
A Tutorial on the Mechanism of Beam-Field Interactions in Virtual Cathode Oscillators
by Weihua Jiang
Plasma 2025, 8(4), 51; https://doi.org/10.3390/plasma8040051 - 13 Dec 2025
Viewed by 270
Abstract
This review article is the third of a three-article introductory series on virtual cathode oscillators. The first article has laid the theoretical ground for understanding the physical properties of the virtual cathode, and the second article has provided a numerical tool for studying [...] Read more.
This review article is the third of a three-article introductory series on virtual cathode oscillators. The first article has laid the theoretical ground for understanding the physical properties of the virtual cathode, and the second article has provided a numerical tool for studying virtual cathode oscillation. This third article focuses on the interaction between the electron beam and electromagnetic field. The virtual cathode oscillator has been studied for decades with the aim of developing it as high-power microwave source. The beam-field interaction has been one of the core issues that always perplexes both experimentalists and theorists. Using the physical model established in the first article and the numerical method described in the second article, this article is an attempt to answer some of the key questions based on a more comprehensive description of the device and its interaction process. This article is expected to serve as a reference for young researchers and students working on high-power microwaves and pulsed particle beams. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

14 pages, 4136 KB  
Article
Tuning Surface-Enhanced Raman Scattering (SERS) via Filling Fraction and Period in Gold-Coated Bullseye Gratings
by Ziqi Li, Yaming Cheng, Carlos Fernandes, Xiaolu Wang and Harry E. Ruda
Nanomaterials 2025, 15(24), 1863; https://doi.org/10.3390/nano15241863 - 11 Dec 2025
Viewed by 400
Abstract
Surface-enhanced Raman scattering (SERS) is a highly sensitive analytical technique capable of single-molecule detection, yet its performance strongly depends on the underlying plasmonic architecture. In this study, we developed a robust SERS platform based on long-range–ordered bullseye plasmonic nano-gratings with tunable period and [...] Read more.
Surface-enhanced Raman scattering (SERS) is a highly sensitive analytical technique capable of single-molecule detection, yet its performance strongly depends on the underlying plasmonic architecture. In this study, we developed a robust SERS platform based on long-range–ordered bullseye plasmonic nano-gratings with tunable period and filling fraction, fabricated via electron beam lithography and reactive ion etching and uniformly coated with a thin gold film. These concentric nanostructures support efficient surface plasmon resonance and radial SPP focusing, enabling intense electromagnetic field enhancement across the substrate. Using this platform, we achieved quantitative detection of Rhodamine 6G with enhancement factors of 105. Notably, our results reveal a previously unrecognized mechanistic insight: the geometric configuration producing the strongest local electric fields does not yield the highest SERS enhancement, due to misalignment between the dominant field orientation and the molecular polarizability tensor. This finding explains the non-monotonic dependence of SERS performance on grating geometry and introduces a new design principle in which both field strength and field–molecule alignment must be co-optimized. Overall, this work provides a mechanistic framework for rationally engineering plasmonic substrates for sensitive and quantitative molecular detection. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

18 pages, 4114 KB  
Article
Point Defect Influence on Electrical Conductivity of Semiconducting Ferroelectric AlScN
by Xiaoman Zhang, Wangwang Xu, Bipin Bhattarai, Dominic A. Dalba, Dilan M. Gamachchi, Indeewari M. Karunarathne, Yue Yu, Nathan J. Pravda, Ruotian Gong, David Stalla, Chong Zu, W. J. Meng and Andrew C. Meng
Ceramics 2025, 8(4), 146; https://doi.org/10.3390/ceramics8040146 - 3 Dec 2025
Viewed by 725
Abstract
Aluminum scandium nitride (Al1−xScxN) is a promising ferroelectric material for non-volatile random-access memory devices and electromechanical sensors. However, adverse effects on polarization from electrical leakage are a significant concern for this material. We observed that the electrical conductivity of [...] Read more.
Aluminum scandium nitride (Al1−xScxN) is a promising ferroelectric material for non-volatile random-access memory devices and electromechanical sensors. However, adverse effects on polarization from electrical leakage are a significant concern for this material. We observed that the electrical conductivity of Al1−xScxN thin films grown on epitaxial TiN(111) buffered Si(111) follows an Arrhenius-type behavior versus the growth temperature, suggesting that point defect incorporation during growth influences the electronic properties of the film. Photoluminescence intensity shows an inverse correlation with growth temperature, which is consistent with increased non-radiative recombination from point defects. Further characterization using secondary ion mass spectrometry in a focused ion beam/scanning electron microscope shows a correlation between trace Ti concentrations in Al1−xScxN films and the growth temperature, further suggesting that extrinsic dopants or alloying components potentially contribute to the point defect chemistry to influence electrical transport. Investigation of the enthalpy of formation of nitrogen vacancies in Al1−xScxN using density functional theory yields values that are in line with electrical conductivity measurements. Additionally, the dependence of nitrogen-vacancy formation energy on proximity to Sc atoms suggests that variations in the local structure may contribute to the occurrence of point defects, which, in turn, can impact electrical leakage. Furthermore, we have demonstrated ferroelectric behavior through electrical measurements and piezoresponse force microscopy after dc bias poling of films in spite of electrical conductivity spanning several orders of magnitude. Although electrical leakage remains a challenge in Al1−xScxN, the material holds potential due to tunable electrical conductivity as a semiconducting ferroelectric material. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

13 pages, 7084 KB  
Article
Quantitative Analysis of Protein Fouling in Virus Removal Filtration Membranes Through Electron Tomography
by Mohammad A. Afzal, Kaitlyn P. Brickey, Enrique D. Gomez and Andrew L. Zydney
Membranes 2025, 15(12), 369; https://doi.org/10.3390/membranes15120369 - 2 Dec 2025
Viewed by 1150
Abstract
Protein fouling can significantly reduce the filtrate flux, capacity, and virus retention during processing of plasma- or mammalian cell-derived biopharmaceuticals through virus removal filters. We use focused ion beam (FIB) milling and scanning electron microscopy (SEM) to directly evaluate changes in 3D pore [...] Read more.
Protein fouling can significantly reduce the filtrate flux, capacity, and virus retention during processing of plasma- or mammalian cell-derived biopharmaceuticals through virus removal filters. We use focused ion beam (FIB) milling and scanning electron microscopy (SEM) to directly evaluate changes in 3D pore structure in a Viresolve® Pro membrane due to fouling by human serum immunoglobulin G. Protein fouling causes a significant reduction in the membrane porosity, which decreases by approximately 40% in the size-selective region near the exit of the highly asymmetric Viresolve® Pro membrane after the filter is fouled to 90% flux decline. There is a corresponding reduction in the number of small pores by more than a factor of two. Model simulations of flow and particle transport in the protein-fouled membrane are in good agreement with independent experimental measurements of the permeability and location of particle capture. Simulations show an upstream shift in the location of nanoparticle capture (away from the filter exit) by about 0.4 µm for the membrane fouled to 90% flux decline. This is due to pore constriction from protein deposition, highlighting how fouling redistributes flow paths within the membrane. These results demonstrate the capability of using FIB-SEM to directly evaluate the effects of protein fouling on the 3D pore structure in virus removal filters, providing important insights into how protein fouling alters the performance of these highly selective membranes. Full article
Show Figures

Graphical abstract

22 pages, 2951 KB  
Article
Multivariate Monitoring and Evaluation of Dimensional Variability in Additive Manufacturing: A Comparative Study of EBM, FDM, and SLA
by Abdulrahman M. Al-Ahmari, Moath Alatefi and Wadea Ameen
Processes 2025, 13(12), 3825; https://doi.org/10.3390/pr13123825 - 26 Nov 2025
Viewed by 367
Abstract
This study evaluates AM dimensional performance using multivariate quality control methods. Three-dimensionally printed products include multivariate correlated quality characteristics (QCs) that should be evaluated together. Furthermore, the same 3D-printed product can be produced by various additive manufacturing techniques, necessitating a comparative analysis to [...] Read more.
This study evaluates AM dimensional performance using multivariate quality control methods. Three-dimensionally printed products include multivariate correlated quality characteristics (QCs) that should be evaluated together. Furthermore, the same 3D-printed product can be produced by various additive manufacturing techniques, necessitating a comparative analysis to figure out which process provides superior quality. This study evaluates three AM processes—electron beam melting (EBM), fused deposition Modeling (FDM), and stereolithography (SLA)—to assess their performance in multivariate quality control. The research methodology focuses on monitoring, evaluating, and comparing these three AM processes. A standardized benchmark specimen is designed and fabricated using each AM process. Seven critical dimensional QCs were identified, and their specification limits were established based on ISO standards. Data collection was conducted using a high-precision measurement technique. This study used an improved Multivariate Exponentially Weighted Moving Average (MEWMA) control chart for process monitoring to detect deviations. The subsequent process evaluation used Multivariate Process Capability Indices (MPCIs) to assess conformance to specification limits. Then, a sensitivity study was conducted to assess the variability within each AM process. The findings identify the QC that contributes most to variation in each AM process and show clear differences in dimensional performance among EBM, SLA, and FDM, supporting process selection for precision applications. Full article
(This article belongs to the Special Issue Process Engineering: Process Design, Control, and Optimization)
Show Figures

Figure 1

16 pages, 4909 KB  
Article
Effects of Surface Treatments on Innovative Additively Manufactured Scaffolds: Implications for Biocompatibility in Bone Tissue Engineering
by Qun Zhao, Florian Fischer, Maximilian Voshage, Lucas Jauer, Alexander Kopp, Maximilian Praster, Rald Victor Maria Groven, Johannes Henrich Schleifenbaum, Jörg Eschweiler, Philipp Kobbe, Eva Miriam Buhl, Frank Hildebrand, Elizabeth R. Balmayor and Johannes Greven
Life 2025, 15(11), 1755; https://doi.org/10.3390/life15111755 - 15 Nov 2025
Viewed by 483
Abstract
Purpose: The increasing demand for alternatives to autologous and resorbable bone grafts in the treatment of bone defects is driving research efforts. This study aims to evaluate the effects of different surface treatments on zinc-1%-magnesium (Zn-1Mg) alloy scaffolds on chondrocytes and osteoblasts, [...] Read more.
Purpose: The increasing demand for alternatives to autologous and resorbable bone grafts in the treatment of bone defects is driving research efforts. This study aims to evaluate the effects of different surface treatments on zinc-1%-magnesium (Zn-1Mg) alloy scaffolds on chondrocytes and osteoblasts, focusing on cytotoxicity, biocompatibility, and cell proliferation. Methods: Zn-1Mg alloy disks were manufactured additively by the powder bed fusion of metals using a laser beam (PBF-LB/M) and underwent different distinct surface treatments, including as-built treatment, sandblasting, Zn-1Mg-blasting, and electropolishing, respectively. Chondrocytes and osteoblasts were cultured separately on these additively manufactured Zn-1Mg alloy disks for 3, 7, and 14 days to assess biocompatibility and cellular growth. Cell viability, cytotoxicity, and proliferation were analyzed using DAPI staining, live/dead staining, fluorescence microscopy, and flow cytometry. Additionally, cellular morphology was investigated using Phalloidin/DAPI staining and scanning electron microscopy (SEM). Zn-1Mg scaffolds were also manufactured and subjected to the same surface treatments. All aforementioned experiments were repeated using Zn-1Mg scaffolds with co-cultured osteoblasts and chondrocytes. Results: All samples, irrespective of the surface treatment, showed similar effects compared to the reference surfaces in terms of cell viability, cytotoxicity, and proliferation for both chondrocytes and osteoblasts. SEM analysis revealed comparable cellular morphology across all scaffolds, with cells observed attaching and growing on all scaffold surfaces. This indicates that all scaffolds independent of different surface treatments exhibit good biocompatibility. Conclusions: The findings indicate that Zn-1Mg alloy samples with different surface treatments exhibit no significant differences in cytocompatibility with chondrocytes and osteoblasts. Zn-1Mg alloy scaffolds, composed of 99% zinc and 1% magnesium, demonstrate biocompatibility, with cells attaching and growing on all scaffold surfaces. These results suggest that Zn-1Mg alloy scaffolds manufactured additively by PBF-LB/M hold promise for use in resorbable bone graft applications. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

21 pages, 2771 KB  
Article
EB Radiation Processing of HDPE/Rice Husk Ash Composites
by Maria Elizabeth Maués dos Santos, Traian Zaharescu, Júlio Harada, Dione Pereira de Castro and Leonardo Gondim de Andrade e Silva
J. Compos. Sci. 2025, 9(11), 601; https://doi.org/10.3390/jcs9110601 - 3 Nov 2025
Viewed by 678
Abstract
High-density polyethylene (HDPE) is a valuable material, but its application under certain operational conditions is limited by oxidation resistance. To mitigate this, rice husk ash (RHA), a silica-rich (~95%) byproduct, was incorporated as a reinforcing filler. This study evaluates the effect of electron [...] Read more.
High-density polyethylene (HDPE) is a valuable material, but its application under certain operational conditions is limited by oxidation resistance. To mitigate this, rice husk ash (RHA), a silica-rich (~95%) byproduct, was incorporated as a reinforcing filler. This study evaluates the effect of electron beam (EB) irradiation, at doses up to 100 kGy, on the properties of HDPE/RHA composites, focusing on mechanical performance and the polymer–filler interface. The results demonstrate that EB irradiation induces crosslinking and enhances interfacial interaction between the HDPE matrix and RHA filler. While the overall tensile strength of neat HDPE tended to decrease with irradiation dose (from 28.5 ± 1.2 MPa to 24.1 ± 1.5 MPa at 100 kGy), the optimization of dose and filler contents produced notable results: A maximum tensile strength of 29.0 ± 1.1 MPa was achieved in the composite containing 5 wt% RHA at 75 kGy. Furthermore, irradiation stabilized the material’s behavior, resolving the heterogeneous dispersion observed in non-irradiated samples with low RHA content. Regarding toughness, Izod’s impact resistance increased from 3.2 ± 0.2 kJ/m2 to 3.7 ± 0.3 kJ/m2 for the 10 wt% RHA composites irradiated at 50 kGy. Statistical analysis (ANOVA, p < 0.05) confirmed the significance of these changes. In conclusion, electron beam irradiation is an effective tool for optimizing the mechanical properties and performance uniformity of HDPE/RHA composites, making them promising candidates for applications requiring enhanced durability and consistency, such as food packaging. Full article
(This article belongs to the Special Issue Radiation Effects in Hybrid Polymer and Composites)
Show Figures

Figure 1

20 pages, 912 KB  
Review
A Review of the Alanine Electron Paramagnetic Resonance Dosimetry Method as a Dose Verification Tool for Low-Dose Electron Beam Applications: Implications on Flash Radiotherapy
by Babedi Sebinanyane, Marta Walo, Gregory Campbell Hillhouse, Chamunorwa Oscar Kureba and Urszula Gryczka
Appl. Sci. 2025, 15(20), 10939; https://doi.org/10.3390/app152010939 - 11 Oct 2025
Viewed by 998
Abstract
Alanine dosimetry based on Electron Paramagnetic Resonance (EPR) spectroscopy has been a reliable reference and transfer dosimetry method in high-dose applications, valued for its high precision, accuracy and long-term stability. Additional characteristics, such as dose-rate independence up to 1010 Gy/s under electron [...] Read more.
Alanine dosimetry based on Electron Paramagnetic Resonance (EPR) spectroscopy has been a reliable reference and transfer dosimetry method in high-dose applications, valued for its high precision, accuracy and long-term stability. Additional characteristics, such as dose-rate independence up to 1010 Gy/s under electron beam (e-beam) irradiation, electron energy independence and tissue equivalence, position alanine EPR as a promising candidate to address dosimetric challenges arising in e-beam Flash Radiotherapy (RT), where radiation energy is delivered at Ultra-High Dose-Rates (UHDR) ≥ 40 Gy/s. At such dose-rates, reliable real-time monitoring dosimeters such as ionization chambers in conventional RT, suffer from ion recombination, compromising accuracy in dose determination. Several studies are currently focused on developing real-time beam monitoring systems dedicated specifically for e-beam Flash RT. This creates a need for standardized reference dosimetry methods to validate beam parameters determined by these systems under investigation. This review provides an overview of the potential and limitations of the alanine EPR dosimetry method for control, validation and verification of e-beam Flash RT beam parameters at doses less than 10 Gy, where the method has shown low sensitivity and increased uncertainty. It further discusses strategies to optimize alanine EPR measurements to enhance sensitivity and accuracy at these dose levels. Improved measurement procedures will ensure reliable and accurate e-beam Flash RT accelerator commissioning, performance checks, patient safety and treatment efficacy across all therapeutic dose ranges. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

10 pages, 1943 KB  
Article
Crosstalk Simulation of Magnets for Siam Photon Source II Storage Ring
by Warissara Tangyotkhajorn, Thongchai Leetha, Supachai Prawanta and Prapaiwan Sunwong
Particles 2025, 8(3), 80; https://doi.org/10.3390/particles8030080 - 13 Sep 2025
Viewed by 665
Abstract
During the detailed design of magnets for the storage ring of Siam Photon Source II (SPS-II), the influence of magnetic crosstalk between adjacent magnets in the compact Double Triple Bend Achromat (DTBA) lattice was investigated. Using Opera-3D magnetostatic simulation, six magnet pairs were [...] Read more.
During the detailed design of magnets for the storage ring of Siam Photon Source II (SPS-II), the influence of magnetic crosstalk between adjacent magnets in the compact Double Triple Bend Achromat (DTBA) lattice was investigated. Using Opera-3D magnetostatic simulation, six magnet pairs were analyzed to investigate the changes in magnetic field distribution along the electron trajectory and integrated magnetic field within each magnet aperture. The study employed polynomial and Fourier analyses to calculate multipole field components. Results indicate that magnetic crosstalk affects the field distribution in the region between magnets, particularly for the defocusing quadrupole and dipole magnets (QD2-D01) and the focusing quadrupole and octupole magnets (QF42-OF1) pairs, which have the pole-to-pole distances of 153.37 mm and 116.45 mm, respectively. Although these separations exceed the estimated fringe field regions, deviations of up to 1% in the main field components were observed. Notably, even an unpowered neighboring magnet contributes to magnetic field distortion due to the modified magnetic flux distribution. Crosstalk effects on the higher-order multipole fields are mostly within the acceptable limit, except for the extra quadrupole field from QD2 found in the dipole D01 magnet. This study highlights the effects of magnetic interference in tightly packed lattice and underscores the need to include a complete multipole field data with crosstalk consideration in the SPS-II lattice model in order to ensure an accurate beam dynamics simulation and predict the operating current adjustments for machine commissioning. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

17 pages, 2868 KB  
Article
Study on the Influence of ZM Modifier on the Rheological Properties and Microstructural Characteristics of Asphalt
by Yining Wang, Zhen Zang and Wenyuan Xu
Coatings 2025, 15(9), 1069; https://doi.org/10.3390/coatings15091069 - 11 Sep 2025
Viewed by 505
Abstract
As traffic load continuously rises and climatic conditions increasingly vary, the performance of conventional base asphalt can no longer satisfy the needs of modern road engineering in low-temperature cracking resistance, high-temperature stability, and long-term durability. Therefore, the development of novel and efficient asphalt [...] Read more.
As traffic load continuously rises and climatic conditions increasingly vary, the performance of conventional base asphalt can no longer satisfy the needs of modern road engineering in low-temperature cracking resistance, high-temperature stability, and long-term durability. Therefore, the development of novel and efficient asphalt modifiers holds significant engineering value and practical importance. In this study, modified asphalt was prepared using varying dosages of ZM modifier (direct-injection asphalt mixture modified polymer additive). A series of experiments was executed to assess its influence on asphalt properties. First, fundamental property tests were implemented to determine the regulating effect of the ZM modifier on basic physical performances, like the softening point and penetration of the base asphalt. Penetration tests at different temperatures were performed to calculate the penetration index, thereby assessing the material’s temperature sensitivity. Subsequently, focusing on temperature as a key factor, tests on temperature sweep, and multiple stress creep recovery (MSCR) were implemented to delve into the deformation resistance and creep recovery behavior of the modified asphalt under high-temperature conditions. In addition, bending beam rheometer (BBR) experiments were introduced to attain stiffness modulus and creep rate indices, which were applied to appraise the low-temperature rheological performance. Aside from Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) was utilized to explore the mechanism by which the ZM modifier influences the asphalt’s functional group composition and microstructure. Our findings reveal that the ZM modifier significantly increases the asphalt’s softening point and penetration index, reduces penetration and temperature sensitivity, and enhances high-temperature stability. Under high-temperature conditions, the ZM modifier adjusts the viscoelastic balance of asphalt, hence enhancing its resistance to flow deformation and its capacity for creep recovery. In low-temperature environments, the modifier increases the stiffness modulus of asphalt and improves its crack resistance. FTIR analyses reveal that the ZM modifier does not introduce new functional groups, indicating a physical modification process. However, by enhancing the cross-linked structure and increasing the hydrocarbon content within the asphalt, it strengthens the adhesion between the asphalt and aggregates. Overall, the asphalt’s performance improvement positively relates to the dosage of the ZM modifier, providing both theoretical basis and experimental support for its application in road engineering. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

13 pages, 4472 KB  
Article
Design and Optimization of a Broadband Stripline Kicker for Low Beam Emittance Ring Accelerators
by Sakdinan Naeosuphap, Sarunyu Chaichuay, Siriwan Jummunt and Porntip Sudmuang
Particles 2025, 8(3), 78; https://doi.org/10.3390/particles8030078 - 29 Aug 2025
Viewed by 642
Abstract
The performance and beam quality of the new fourth-generation synchrotron light source with ultra-low emittance are highly susceptible to coupled-bunch instabilities. These instabilities arise from the interaction between the bunched electron beam and the surrounding vacuum chamber installations. To mitigate these effects, the [...] Read more.
The performance and beam quality of the new fourth-generation synchrotron light source with ultra-low emittance are highly susceptible to coupled-bunch instabilities. These instabilities arise from the interaction between the bunched electron beam and the surrounding vacuum chamber installations. To mitigate these effects, the installation of a transverse bunch-by-bunch feedback system is planned. This system will comprise a button-type beam position monitor (BPM) for beam signal detection, a digital feedback controller, a broadband power amplifier, and a broadband stripline kicker as the primary actuator. One of the critical challenges lies in the development of the stripline kicker, which must be optimized for high shunt impedance and wide bandwidth while minimizing beam-coupling impedance. This work focuses on the comprehensive design of the stripline kicker intended for transverse (horizontal and vertical) bunch-by-bunch feedback in the Siam Photon Source II (SPS-II) storage ring. The stripline kicker design also incorporates features to enable its use for beam excitation in the SPS-II tune measurement system. The optimization process involves analytical approximations and detailed numerical electromagnetic field analysis of the stripline’s 3D geometry, focusing on impedance matching, field homogeneity, power transmission, and beam-coupling impedance. The details of engineering design are discussed to ensure that it meets the fabrication possibilities and stringent requirements of the SPS-II accelerator. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

36 pages, 23263 KB  
Article
RL-TweetGen: A Socio-Technical Framework for Engagement-Optimized Short Text Generation in Digital Commerce Using Large Language Models and Reinforcement Learning
by Chitrakala S and Pavithra S S
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 218; https://doi.org/10.3390/jtaer20030218 - 26 Aug 2025
Viewed by 1819
Abstract
In the rapidly evolving landscape of digital marketing and electronic commerce, short-form content—particularly on platforms like Twitter (now X)—has become pivotal for real-time branding, community engagement, and product promotion. The rise of Non-Fungible Tokens (NFTs) and Web3 ecosystems further underscores the need for [...] Read more.
In the rapidly evolving landscape of digital marketing and electronic commerce, short-form content—particularly on platforms like Twitter (now X)—has become pivotal for real-time branding, community engagement, and product promotion. The rise of Non-Fungible Tokens (NFTs) and Web3 ecosystems further underscores the need for domain-specific, engagement-oriented social media content. However, automating the generation of such content while balancing linguistic quality, semantic relevance, and audience engagement remains a substantial challenge. To address this, we propose RL-TweetGen, a socio-technical framework that integrates instruction-tuned large language models (LLMs) with reinforcement learning (RL) to generate concise, impactful, and engagement-optimized tweets. The framework incorporates a structured pipeline comprising domain-specific data curation, semantic classification, and intent-aware prompt engineering, and leverages Parameter-Efficient Fine-Tuning (PEFT) with LoRA for scalable model adaptation. We fine-tuned and evaluated three LLMs—LLaMA-3.1-8B, Mistral-7B Instruct, and DeepSeek 7B Chat—guided by a hybrid reward function that blends XGBoost-predicted engagement scores with expert-in-the-loop feedback. To enhance lexical diversity and contextual alignment, we implemented advanced decoding strategies, including Tailored Beam Search, Enhanced Top-p Sampling, and Contextual Temperature Scaling. A case study focused on NFT-related tweet generation demonstrated the practical effectiveness of RL-TweetGen. Experimental results showed that Mistral-7B achieved the highest lexical fluency (BLEU: 0.2285), LLaMA-3.1 exhibited superior semantic precision (BERT-F1: 0.8155), while DeepSeek 7B provided balanced performance. Overall, RL-TweetGen presents a scalable and adaptive solution for marketers, content strategists, and Web3 platforms seeking to automate and optimize social media engagement. The framework advances the role of generative AI in digital commerce by aligning content generation with platform dynamics, user preferences, and marketing goals. Full article
Show Figures

Figure 1

19 pages, 654 KB  
Review
Targeted Radiotherapy in Primary Cutaneous Lymphomas: Precision, Efficacy, and Evolving Strategies
by Piotr Sobolewski, Mateusz Koper, Piotr Ciechanowicz and Irena Walecka
Cancers 2025, 17(17), 2722; https://doi.org/10.3390/cancers17172722 - 22 Aug 2025
Cited by 1 | Viewed by 1504
Abstract
Primary cutaneous lymphomas (PCLs), including cutaneous T-cell lymphomas (CTCL) and primary cutaneous B-cell lymphomas (PCBCL), are a diverse group of non-Hodgkin lymphomas that primarily affect the skin. Radiotherapy (RT) plays a pivotal role in the treatment of these lymphomas, particularly for localized disease, [...] Read more.
Primary cutaneous lymphomas (PCLs), including cutaneous T-cell lymphomas (CTCL) and primary cutaneous B-cell lymphomas (PCBCL), are a diverse group of non-Hodgkin lymphomas that primarily affect the skin. Radiotherapy (RT) plays a pivotal role in the treatment of these lymphomas, particularly for localized disease, due to its ability to deliver precise, skin-directed treatment. Mycosis fungoides (MF) and Sézary syndrome (SS), the most common subtypes of CTCL, often require skin-directed therapies such as electron beam therapy and superficial brachytherapy to manage localized lesions. Electron beam therapy, including total skin electron beam therapy (TSEBT), has been utilized for decades, offering high response rates but with the risk of cumulative skin toxicity. Recently, low-dose radiotherapy (LDRT) has gained attention as an effective alternative that reduces toxicity while maintaining durable responses. Superficial brachytherapy is another modality that delivers radiation through custom molds, allowing for homogeneous dosing over complex anatomical areas like the face. Both teleradiotherapy and brachytherapy have demonstrated high complete response rates, with low recurrence rates observed when higher doses are used. In the context of primary cutaneous B-cell lymphomas, such as primary cutaneous marginal zone lymphoma (PCMZL) and primary cutaneous follicle center lymphoma (PCFCL), radiotherapy also offers excellent local control, particularly for indolent subtypes. However, more aggressive subtypes, such as diffuse large B-cell lymphoma, leg type (PCDLBCL-LT), may require systemic therapies in addition to radiation. Overall, teleradiotherapy and brachytherapy are essential components of the therapeutic arsenal for primary cutaneous lymphomas, offering effective disease control with manageable toxicity, while ongoing research focuses on optimizing treatment strategies and exploring novel combinations with systemic therapies. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

Back to TopTop