Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = foamy virus vector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1037 KB  
Conference Report
Thirteenth International Foamy Virus Conference—Meeting Report
by Arifa S. Khan, Martin Löchelt, Florence Buseyne, Ottmar Herchenröder, Dirk Lindemann, William M. Switzer, André F. A. Santos and Marcelo A. Soares
Viruses 2025, 17(8), 1071; https://doi.org/10.3390/v17081071 - 31 Jul 2025
Viewed by 721
Abstract
The 13th International Foamy Virus (FV) Conference was held from 8 to 10 November 2023 at the BioParque/Zoological Garden in Rio de Janeiro, Brazil. This was the first conference on spumaretroviruses to be held in the Southern Hemisphere and in the unique environment [...] Read more.
The 13th International Foamy Virus (FV) Conference was held from 8 to 10 November 2023 at the BioParque/Zoological Garden in Rio de Janeiro, Brazil. This was the first conference on spumaretroviruses to be held in the Southern Hemisphere and in the unique environment of the rainforest. New developments and current perspectives in FV research were presented. Highlights of the conference included the structural biology of the envelope protein (Env) and insights into its function and evolution, epidemiologic identification of Amazonian indigenous people with a high prevalence of simian FV (SFV) infections, investigations of virus biology and genomics using synthetic FV DNAs, studies of humoral immune response, and development and applications of SFV vectors. The last day of the meeting was a special tour of the Centro de Primatologia do Rio de Janeiro, located northeast of Rio de Janeiro amidst the protected rainforest, where New World primate hosts of spumaretroviruses are rescued and studied. Our report summarizes the meeting highlights and outcomes for future discussions. Full article
(This article belongs to the Special Issue Spumaretroviruses: Research and Applications)
Show Figures

Figure 1

15 pages, 487 KB  
Review
In-Vivo Gene Therapy with Foamy Virus Vectors
by Yogendra Singh Rajawat, Olivier Humbert and Hans-Peter Kiem
Viruses 2019, 11(12), 1091; https://doi.org/10.3390/v11121091 - 23 Nov 2019
Cited by 19 | Viewed by 5206
Abstract
Foamy viruses (FVs) are nonpathogenic retroviruses that infect various animals including bovines, felines, nonhuman primates (NHPs), and can be transmitted to humans through zoonotic infection. Due to their non-pathogenic nature, broad tissue tropism and relatively safe integration profile, FVs have been engineered as [...] Read more.
Foamy viruses (FVs) are nonpathogenic retroviruses that infect various animals including bovines, felines, nonhuman primates (NHPs), and can be transmitted to humans through zoonotic infection. Due to their non-pathogenic nature, broad tissue tropism and relatively safe integration profile, FVs have been engineered as novel vectors (foamy virus vector, FVV) for stable gene transfer into different cells and tissues. FVVs have emerged as an alternative platform to contemporary viral vectors (e.g., adeno associated and lentiviral vectors) for experimental and therapeutic gene therapy of a variety of monogenetic diseases. Some of the important features of FVVs include the ability to efficiently transduce hematopoietic stem and progenitor cells (HSPCs) from humans, NHPs, canines and rodents. We have successfully used FVV for proof of concept studies to demonstrate safety and efficacy following in-vivo delivery in large animal models. In this review, we will comprehensively discuss FVV based in-vivo gene therapy approaches established in the X-linked severe combined immunodeficiency (SCID-X1) canine model. Full article
(This article belongs to the Special Issue Spumaretroviruses)
Show Figures

Figure 1

12 pages, 260 KB  
Meeting Report
Twelfth International Foamy Virus Conference—Meeting Report
by Ottmar Herchenröder, Martin Löchelt, Florence Buseyne, Antoine Gessain, Marcelo A. Soares, Arifa S. Khan and Dirk Lindemann
Viruses 2019, 11(2), 134; https://doi.org/10.3390/v11020134 - 1 Feb 2019
Cited by 3 | Viewed by 4360
Abstract
The 12th International Foamy Virus Conference took place on 30–31 August 2018 at the Technische Universität Dresden, Dresden, Germany. The meeting included presentations on current research on non-human primate and non-primate foamy viruses (FVs; also called spumaretroviruses) as well as keynote talks on [...] Read more.
The 12th International Foamy Virus Conference took place on 30–31 August 2018 at the Technische Universität Dresden, Dresden, Germany. The meeting included presentations on current research on non-human primate and non-primate foamy viruses (FVs; also called spumaretroviruses) as well as keynote talks on related research areas in retroviruses. The taxonomy of foamy viruses was updated earlier this year to create five new genera in the subfamily, Spumaretrovirinae, based on their animal hosts. Research on viruses from different genera was presented on topics of potential relevance to human health, such as natural infections and cross-species transmission, replication, and viral-host interactions in particular with the immune system, dual retrovirus infections, virus structure and biology, and viral vectors for gene therapy. This article provides an overview of the current state-of-the-field, summarizes the meeting highlights, and presents some important questions that need to be addressed in the future. Full article
(This article belongs to the Special Issue Spumaretroviruses)
15 pages, 3499 KB  
Article
The Influence of Envelope C-Terminus Amino Acid Composition on the Ratio of Cell-Free to Cell-Cell Transmission for Bovine Foamy Virus
by Suzhen Zhang, Xiaojuan Liu, Zhibin Liang, Tiejun Bing, Wentao Qiao and Juan Tan
Viruses 2019, 11(2), 130; https://doi.org/10.3390/v11020130 - 31 Jan 2019
Cited by 25 | Viewed by 3497
Abstract
Foamy viruses (FVs) have extensive cell tropism in vitro, special replication features, and no clinical pathogenicity in naturally or experimentally infected animals, which distinguish them from orthoretroviruses. Among FVs, bovine foamy virus (BFV) has undetectable or extremely low levels of cell-free transmission in [...] Read more.
Foamy viruses (FVs) have extensive cell tropism in vitro, special replication features, and no clinical pathogenicity in naturally or experimentally infected animals, which distinguish them from orthoretroviruses. Among FVs, bovine foamy virus (BFV) has undetectable or extremely low levels of cell-free transmission in the supernatants of infected cells and mainly spreads by cell-to-cell transmission, which deters its use as a gene transfer vector. Here, using an in vitro virus evolution system, we successfully isolated high-titer cell-free BFV strains from the original cell-to-cell transmissible BFV3026 strain and further constructed an infectious cell-free BFV clone called pBS-BFV-Z1. Following sequence alignment with a cell-associated clone pBS-BFV-B, we identified a number of changes in the genome of pBS-BFV-Z1. Extensive mutagenesis analysis revealed that the C-terminus of envelope protein, especially the K898 residue, controls BFV cell-free transmission by enhancing cell-free virus entry but not the virus release capacity. Taken together, our data show the genetic determinants that regulate cell-to-cell and cell-free transmission of BFV. Full article
(This article belongs to the Special Issue Spumaretroviruses)
Show Figures

Figure 1

14 pages, 2158 KB  
Conference Report
Eleventh International Foamy Virus Conference—Meeting Report
by Florence Buseyne, Antoine Gessain, Marcelo A. Soares, André F. Santos, Magdalena Materniak-Kornas, Pascale Lesage, Alessia Zamborlini, Martin Löchelt, Wentao Qiao, Dirk Lindemann, Birgitta M. Wöhrl, Jonathan P. Stoye, Ian A. Taylor and Arifa S. Khan
Viruses 2016, 8(11), 318; https://doi.org/10.3390/v8110318 - 23 Nov 2016
Cited by 3 | Viewed by 5328
Abstract
The Eleventh International Foamy Virus Conference took place on 9–10 June 2016 at the Institut Pasteur, Paris, France. The meeting reviewed progress on foamy virus (FV) research, as well as related current topics in retrovirology. FVs are complex retroviruses that are widespread in [...] Read more.
The Eleventh International Foamy Virus Conference took place on 9–10 June 2016 at the Institut Pasteur, Paris, France. The meeting reviewed progress on foamy virus (FV) research, as well as related current topics in retrovirology. FVs are complex retroviruses that are widespread in several animal species. Several research topics on these viruses are relevant to human health: cross-species transmission and viral emergence, vectors for gene therapy, development of antiretroviral drugs, retroviral evolution and its influence on the human genome. In this article, we review the conference presentations on these viruses and highlight the major questions to be answered. Full article
18 pages, 5206 KB  
Review
Foamy Virus Protein—Nucleic Acid Interactions during Particle Morphogenesis
by Martin V. Hamann and Dirk Lindemann
Viruses 2016, 8(9), 243; https://doi.org/10.3390/v8090243 - 30 Aug 2016
Cited by 11 | Viewed by 8629
Abstract
Compared with orthoretroviruses, our understanding of the molecular and cellular replication mechanism of foamy viruses (FVs), a subfamily of retroviruses, is less advanced. The FV replication cycle differs in several key aspects from orthoretroviruses, which leaves established retroviral models debatable for FVs. Here, [...] Read more.
Compared with orthoretroviruses, our understanding of the molecular and cellular replication mechanism of foamy viruses (FVs), a subfamily of retroviruses, is less advanced. The FV replication cycle differs in several key aspects from orthoretroviruses, which leaves established retroviral models debatable for FVs. Here, we review the general aspect of the FV protein-nucleic acid interactions during virus morphogenesis. We provide a summary of the current knowledge of the FV genome structure and essential sequence motifs required for RNA encapsidation as well as Gag and Pol binding in combination with details about the Gag and Pol biosynthesis. This leads us to address open questions in FV RNA engagement, binding and packaging. Based on recent findings, we propose to shift the point of view from individual glycine-arginine-rich motifs having functions in RNA interactions towards envisioning the FV Gag C-terminus as a general RNA binding protein module. We encourage further investigating a potential new retroviral RNA packaging mechanism, which seems more complex in terms of the components that need to be gathered to form an infectious particle. Additional molecular insights into retroviral protein-nucleic acid interactions help us to develop safer, more specific and more efficient vectors in an era of booming genome engineering and gene therapy approaches. Full article
(This article belongs to the Special Issue RNA Packaging)
Show Figures

Figure 1

23 pages, 1001 KB  
Review
Prospects for Foamy Viral Vector Anti-HIV Gene Therapy
by Arun K. Nalla and Grant D. Trobridge
Biomedicines 2016, 4(2), 8; https://doi.org/10.3390/biomedicines4020008 - 29 Mar 2016
Cited by 4 | Viewed by 7855
Abstract
Stem cell gene therapy approaches for Human Immunodeficiency Virus (HIV) infection have been explored in clinical trials and several anti-HIV genes delivered by retroviral vectors were shown to block HIV replication. However, gammaretroviral and lentiviral based retroviral vectors have limitations for delivery of [...] Read more.
Stem cell gene therapy approaches for Human Immunodeficiency Virus (HIV) infection have been explored in clinical trials and several anti-HIV genes delivered by retroviral vectors were shown to block HIV replication. However, gammaretroviral and lentiviral based retroviral vectors have limitations for delivery of anti-HIV genes into hematopoietic stem cells (HSC). Foamy virus vectors have several advantages including efficient delivery of transgenes into HSC in large animal models, and a potentially safer integration profile. This review focuses on novel anti-HIV transgenes and the potential of foamy virus vectors for HSC gene therapy of HIV. Full article
(This article belongs to the Special Issue Gene Therapy Strategies for HIV/AIDS)
Show Figures

Graphical abstract

16 pages, 497 KB  
Conference Report
Tenth International Foamy Virus Conference 2014–Achievements and Perspectives
by Magdalena Materniak, Piotr Kubiś, Marzena Rola–Łuszczak, Arifa S. Khan, Florence Buseyne, Dirk Lindemann, Martin Löchelt and Jacek Kuźmak
Viruses 2015, 7(4), 1651-1666; https://doi.org/10.3390/v7041651 - 31 Mar 2015
Cited by 5 | Viewed by 6789
Abstract
For the past two decades, scientists from around the world, working on different aspects of foamy virus (FV) research, have gathered in different research institutions almost every two years to present their recent results in formal talks, to discuss their ongoing studies informally, [...] Read more.
For the past two decades, scientists from around the world, working on different aspects of foamy virus (FV) research, have gathered in different research institutions almost every two years to present their recent results in formal talks, to discuss their ongoing studies informally, and to initiate fruitful collaborations. In this report we review the 2014 anniversary conference to share the meeting summary with the virology community and hope to arouse interest by other researchers to join this exciting field. The topics covered included epidemiology, virus molecular biology, and immunology of FV infection in non-human primates, cattle, and humans with zoonotic FV infections, as well as recent findings on endogenous FVs. Several topics focused on virus replication and interactions between viral and cellular proteins. Use of FV in biomedical research was highlighted with presentations on using FV vectors for gene therapy and FV proteins as scaffold for vaccine antigen presentation. On behalf of the FV community, this report also includes a short tribute to commemorate Prof. Axel Rethwilm, one of the leading experts in the field of retrovirology and foamy viruses, who passed away 29 July 2014. Full article
(This article belongs to the Section Animal Viruses)
16 pages, 477 KB  
Review
Foamy Virus Vectors for HIV Gene Therapy
by Miles E. Olszko and Grant D. Trobridge
Viruses 2013, 5(10), 2585-2600; https://doi.org/10.3390/v5102585 - 22 Oct 2013
Cited by 16 | Viewed by 8595
Abstract
Highly active antiretroviral therapy (HAART) has vastly improved outcomes for patients infected with HIV, yet it is a lifelong regimen that is expensive and has significant side effects. Retroviral gene therapy is a promising alternative treatment for HIV/AIDS; however, inefficient gene delivery to [...] Read more.
Highly active antiretroviral therapy (HAART) has vastly improved outcomes for patients infected with HIV, yet it is a lifelong regimen that is expensive and has significant side effects. Retroviral gene therapy is a promising alternative treatment for HIV/AIDS; however, inefficient gene delivery to hematopoietic stem cells (HSCs) has so far limited the efficacy of this approach. Foamy virus (FV) vectors are derived from non-pathogenic viruses that are not endemic to the human population. FV vectors have been used to deliver HIV-inhibiting transgenes to human HSCs, and they have several advantages relative to other retroviral vectors. These include an attractive safety profile, broad tropism, a large transgene capacity, and the ability to persist in quiescent cells. In addition, the titers of FV vectors are not reduced by anti-HIV transgenes that affect the production of lentivirus (LV) vectors. Thus FV vectors are very promising for anti-HIV gene therapy. This review covers the advantages of FV vectors and describes their preclinical development for anti-HIV gene therapy. Full article
(This article belongs to the Special Issue Gene Therapy for Retroviral Infections)
Show Figures

Figure 1

17 pages, 355 KB  
Review
Feline Foamy Virus-Based Vectors: Advantages of an Authentic Animal Model
by Weibin Liu, Janet Lei, Yang Liu, Dragana Slavkovic Lukic, Ann-Mareen Räthe, Qiuying Bao, Timo Kehl, Anne Bleiholder, Torsten Hechler and Martin Löchelt
Viruses 2013, 5(7), 1702-1718; https://doi.org/10.3390/v5071702 - 12 Jul 2013
Cited by 14 | Viewed by 8003
Abstract
New-generation retroviral vectors have potential applications in vaccination and gene therapy. Foamy viruses are particularly interesting as vectors, because they are not associated to any disease. Vector research is mainly based on primate foamy viruses (PFV), but cats are an alternative animal model, [...] Read more.
New-generation retroviral vectors have potential applications in vaccination and gene therapy. Foamy viruses are particularly interesting as vectors, because they are not associated to any disease. Vector research is mainly based on primate foamy viruses (PFV), but cats are an alternative animal model, due to their smaller size and the existence of a cognate feline foamy virus (FFV). The potential of replication-competent (RC) FFV vectors for vaccination and replication-deficient (RD) FFV-based vectors for gene delivery purposes has been studied over the past years. In this review, the key achievements and functional evaluation of the existing vectors from in vitro cell culture systems to out-bred cats will be described. The data presented here demonstrate the broad application spectrum of FFV-based vectors, especially in pathogen-specific prophylactic and therapeutic vaccination using RD vectors in cats and in classical gene delivery. In the cat-based system, FFV-based vectors provide an advantageous platform to evaluate and optimize the applicability, efficacy and safety of foamy virus (FV) vectors, especially the understudied aspect of FV cell and organ tropism. Full article
(This article belongs to the Special Issue Recent Progress in Foamy Virus (FV) Research)
Show Figures

Figure 1

5 pages, 705 KB  
Article
Decrease of α-Chains in β-Thalassemia
by M. Papadaki and George Vassilopoulos
Thalass. Rep. 2013, 3(s1), e40; https://doi.org/10.4081/thal.2013.s1.e40 - 26 Mar 2013
Cited by 2 | Viewed by 1
Abstract
In the pathophysiology of β-thalassemia, globin chain imbalance plays a central role in predicting red blood cell (RBC) life span and disease severity. Strategies to improve globin chain imbalance are therefore a legitimate target in the management of this incurable genetic disorder. Classical [...] Read more.
In the pathophysiology of β-thalassemia, globin chain imbalance plays a central role in predicting red blood cell (RBC) life span and disease severity. Strategies to improve globin chain imbalance are therefore a legitimate target in the management of this incurable genetic disorder. Classical gene addition with the available retroviral vectors can alter one of the two variables while combined reduction of achains could provide a more potent therapeutic effect. We developed foamy virus (FV) vectors for the production of β-globin and vectors targeting the a-globin transcript using the shRNA technology. Using FVderived vectors, we expressed human anti-a-globin short hairpin RNAs, off a potent PolIII promoter (H1); of the 4 different shRNAs tested, α-globin mRNA reduction varied from 6.3 to 54% of the control CD34+ cells. Similarly, vectors developed for the mouse α-globin, resulted in a significant reduction (range 15-28% of the control) of aglobin in erythroid colonies of Lin- cells. To assay vector performance in vivo, we investigated the hematological parameters in thal3+/- mice transpalnted with FV-transduced Lin- cells, transduced with anti-alpha-globin shRNA. Despite low chimerism and low vector copy numbers (<0.5 per cell), we observed a 10% reduction in red cell distribution width, a marker for distorted erythropoiesis. We finally developed a combination FV vector expressing β-globin off a HS40 enhancer and anti-α-globin shRNA and tested its performance in human CD34+ cells from a thalassemic patient. Globin chain imbalance was ameliorated from a β/α ratio of 0.12 to the level of 0.5, clearly indicating a therapeutic benefit. Overall, shRNA control of α-globin excess is a feasible target but requires improvements since the RNAi effect is tough to predict and should ideally be combined with controllable elements. Full article
17 pages, 229 KB  
Review
Large Animal Models for Foamy Virus Vector Gene Therapy
by Grant D. Trobridge, Peter A. Horn, Brian C. Beard and Hans-Peter Kiem
Viruses 2012, 4(12), 3572-3588; https://doi.org/10.3390/v4123572 - 7 Dec 2012
Cited by 16 | Viewed by 8104
Abstract
Foamy virus (FV) vectors have shown great promise for hematopoietic stem cell (HSC) gene therapy. Their ability to efficiently deliver transgenes to multi-lineage long-term repopulating cells in large animal models suggests they will be effective for several human hematopoietic diseases. Here, we review [...] Read more.
Foamy virus (FV) vectors have shown great promise for hematopoietic stem cell (HSC) gene therapy. Their ability to efficiently deliver transgenes to multi-lineage long-term repopulating cells in large animal models suggests they will be effective for several human hematopoietic diseases. Here, we review FV vector studies in large animal models, including the use of FV vectors with the mutant O6-methylguanine-DNA methyltransferase, MGMTP140K to increase the number of genetically modified cells after transplantation. In these studies, FV vectors have mediated efficient gene transfer to polyclonal repopulating cells using short ex vivo transduction protocols designed to minimize the negative effects of ex vivo culture on stem cell engraftment. In this regard, FV vectors appear superior to gammaretroviral vectors, which require longer ex vivo culture to effect efficient transduction. FV vectors have also compared favorably with lentiviral vectors when directly compared in the dog model. FV vectors have corrected leukocyte adhesion deficiency and pyruvate kinase deficiency in the dog large animal model. FV vectors also appear safer than gammaretroviral vectors based on a reduced frequency of integrants near promoters and also near proto-oncogenes in canine repopulating cells. Together, these studies suggest that FV vectors should be highly effective for several human hematopoietic diseases, including those that will require relatively high percentages of gene-modified cells to achieve clinical benefit. Full article
(This article belongs to the Special Issue Recent Progress in Foamy Virus (FV) Research)
Show Figures

Figure 1

25 pages, 750 KB  
Review
Foamy Virus Biology and Its Application for Vector Development
by Dirk Lindemann and Axel Rethwilm
Viruses 2011, 3(5), 561-585; https://doi.org/10.3390/v3050561 - 11 May 2011
Cited by 83 | Viewed by 12291
Abstract
Spuma- or foamy viruses (FV), endemic in most non-human primates, cats, cattle and horses, comprise a special type of retrovirus that has developed a replication strategy combining features of both retroviruses and hepadnaviruses. Unique features of FVs include an apparent apathogenicity in natural [...] Read more.
Spuma- or foamy viruses (FV), endemic in most non-human primates, cats, cattle and horses, comprise a special type of retrovirus that has developed a replication strategy combining features of both retroviruses and hepadnaviruses. Unique features of FVs include an apparent apathogenicity in natural hosts as well as zoonotically infected humans, a reverse transcription of the packaged viral RNA genome late during viral replication resulting in an infectious DNA genome in released FV particles and a special particle release strategy depending capsid and glycoprotein coexpression and specific interaction between both components. In addition, particular features with respect to the integration profile into the host genomic DNA discriminate FV from orthoretroviruses. It appears that some inherent properties of FV vectors set them favorably apart from orthoretroviral vectors and ask for additional basic research on the viruses as well as on the application in Gene Therapy. This review will summarize the current knowledge of FV biology and the development as a gene transfer system. Full article
(This article belongs to the Special Issue Retroviral Vectors)
Show Figures

Figure 1

Back to TopTop