Eleventh International Foamy Virus Conference—Meeting Report
Abstract
:1. Introduction
2. Summary of Scientific Sessions
2.1. Foamy Virus Infection of Animal Hosts
2.1.1. Background and Review Talk
2.1.2. Summary of the Presentations
2.1.3. Perspectives
2.2. Cross-Species Transmission of Foamy Viruses to Humans
2.2.1. Background and Review Talk
2.2.2. Summary of the Presentations
2.2.3. Perspectives
2.3. Integration and Endogenous Foamy Viruses
2.3.1. Background and Review Talk
2.3.2. Summary of the Presentations
2.3.3. Perspectives
2.4. Foamy Virus Replication and Virus-Cell Interaction
2.4.1. Background and Review Talk
2.4.2. Summary of the Presentations
2.4.3. Perspectives
2.5. Immune Responses to Foamy Viruses
2.5.1. Background and Review Talk
2.5.2. Summary of the Presentations
2.5.3. Perspectives
2.6. Foamy Viruses as Vectors for Gene Therapy
2.6.1. Background and Review Talk
2.6.2. Summary of the Presentations
2.6.3. Perspectives
2.7. Foamy Virus Structural Studies
2.7.1. Summary of the Presentations
2.7.2. Perspectives
2.8. Foamy Viruses: Novel Full-Length Virus Sequences and Reagents
Summary of the Presentations
3. Conclusions
4. Affiliations of Attendees
Aiewsakun, Pakorn | [email protected] | University of Oxford, Oxford, UK |
Buseyne, Florence | [email protected] | Institut Pasteur, Paris, France |
Cao, Wenhu | [email protected] | German Cancer Research Center, Heidelberg, Germany |
Couteaudier, Mathilde | [email protected] | Institut Pasteur, Paris, France |
De Nys, Hélène | [email protected] | IRD, Montpellier, France |
Djuicy, Delia | [email protected] | Institut Pasteur, Paris/CIRFM Franceville, France/Gabon |
Gessain, Antoine | [email protected] | Institut Pasteur, Paris, France |
Hu, Xiaomei | [email protected] | Nankai University, Tianjin, China |
Khan, Arifa | [email protected] | CBER/FDA, Silver Spring, MD, USA |
Kubiś, Piotr | [email protected] | National Veterinary Research Institute, Pulawy, Poland |
Kuźmak, Jacek | [email protected] | National Veterinary Research Institute, Pulawy, Poland |
Lambert, Caroline | [email protected] | Institut Pasteur, Paris, France |
Lerner, Taga | [email protected] | German Cancer Research Center, Heidelberg, Germany |
Lesage, Pascale | [email protected] | Hôpital Saint-Louis, Paris, France |
Lindel, Fabian | [email protected] | Technische Universität Dresden, Germany |
Lindemann, Dirk | [email protected] | Technische Universität Dresden, Germany |
Löchelt, Martin | [email protected] | German Cancer Research Center, Heidelberg, Germany |
Materniak-Kornas, Magdalena | [email protected] | National Veterinary Research Institute, Pulawy, Poland |
Montange, Thomas | [email protected] | Institut Pasteur, Paris, France |
Qiao, Wentao | [email protected] | Nankai University, Tianjin, China |
Richard, Léa | [email protected] | Institut Pasteur, Paris, France |
Richter, Stefanie | [email protected] | Technische Universität Dresden, Germany |
Santos, André | [email protected] | Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil |
Simon, François | [email protected] | Hôpital Saint-Louis, Paris, France |
Soares, Marcelo | [email protected] | Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil |
Stoye, Jonathan | [email protected] | Francis Crick Institute, London, UK |
Sweeney, Nathan | [email protected] | Imperial College London, London, UK |
Taylor, Ian | [email protected] | Francis Crick Institute, London, UK |
Teferedegne, Belete | [email protected] | CBER/FDA, Silver spring, MD, USA |
Tobaly-Papiero, Joëlle | [email protected] | Hôpital Saint-Louis, Paris, France |
Wei, Guochao | [email protected] | German Cancer Research Center, Heidelberg, Germany |
Wöhrl, Birgitta | [email protected] | Universität Bayreuth, Bayreuth, Germany |
Xie, Yingpeng | [email protected] | Nankai University, Tianjin, China |
Xu, Xiao | [email protected] | Nankai University, Tianjin, China |
Zamborlini, Alessia | [email protected] | Hôpital Saint-Louis, Paris, France |
Zhang, Suzhen | [email protected] | Nankai University, Tianjin, China |
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Materniak, M.; Kubiś, P.; Rola-Łuszczak, M.; Khan, S.A.; Buseyne, F.; Lindemann, D.; Löchelt, M.; Kuźmak, J. Tenth International Foamy Virus Conference 2014—Achievements and perspectives. Viruses 2015, 7, 1651–1666. [Google Scholar] [CrossRef] [PubMed]
- Han, G.Z.; Worobey, M. An endogenous foamy-like viral element in the Coelacanth genome. PLoS Pathog. 2012, 8, e1002790. [Google Scholar] [CrossRef] [PubMed]
- Murray, S.M.; Linial, M.L. Foamy virus infection in primates. J. Med. Primatol. 2006, 35, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Blasse, A.; Calvignac-Spencer, S.; Merkel, K.; Goffe, A.S.; Boesch, C.; Mundry, R.; Leendertz, F.H. Mother-offspring transmission and age-dependent accumulation of simian foamy virus in wild chimpanzees. J. Virol. 2013, 87, 5193–5204. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.S.; Kumar, D. Simian foamy virus infection by whole-blood transfer in rhesus macaques: Potential for transfusion transmission in humans. Transfusion 2006, 46, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
- Murray, S.M.; Picker, L.J.; Axthelm, M.K.; Fludkins, K.; Alpers, C.E.; Linial, M.L. Replication in a superficial epithelial cell niche explains the lack of pathogenicity of primate foamy virus infections. J. Virol. 2008, 82, 5981–5985. [Google Scholar] [CrossRef] [PubMed]
- Falcone, V.; Leupold, J.; Clotten, J.; Urbanyi, E.; Herchenroder, O.; Spatz, W.; Volk, B.; Bohm, N.; Toniolo, A.; Neumann-Haefelin, D.; et al. Sites of simian foamy virus persistence in naturally infected African green monkeys: Latent provirus is ubiquitous, whereas viral replication is restricted to the oral mucosa. Virology 1999, 257, 7–14. [Google Scholar] [CrossRef] [PubMed]
- German, A.C.; Harbour, D.A.; Helps, C.R.; Gruffydd-Jones, T.J. Is feline foamy virus really apathogenic? Vet. Immunol. Immunopathol. 2008, 123, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.; Galvin, T.A.; Williams, D.K.; Beren, J.; Bryant, M.A.; Khan, A.S. Influence of naturally occurring simian foamy viruses (SFVs) on SIV disease progression in the Rhesus Macaque (Macaca mulatta) model. Viruses 2013, 5, 1414–1430. [Google Scholar] [CrossRef] [PubMed]
- Gessain, A.; Rua, R.; Betsem, E.; Turpin, J.; Mahieux, R. HTLV-3/4 and simian foamy retroviruses in humans: Discovery, epidemiology, cross-species transmission and molecular virology. Virology 2013, 435, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Rua, R.; Betsem, E.; Montange, T.; Buseyne, F.; Gessain, A. In vivo cellular tropism of gorilla simian foamy virus in blood of infected humans. J. Virol. 2014, 88, 13429–13435. [Google Scholar] [CrossRef] [PubMed]
- Stenbak, C.R.; Craig, K.L.; Ivanov, S.B.; Wang, X.; Soliven, K.C.; Jackson, D.L.; Gutierrez, G.A.; Engel, G.; Jones-Engel, L.; Linial, M.L. New World simian foamy virus infectionsin vivo and in vitro. J. Virol. 2014, 88, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Richard, L.; Rua, R.; Betsem, E.; Mouinga-Ondeme, A.; Kazanji, M.; Leroy, E.; Njouom, R.; Buseyne, F.; Afonso, P.V.; Gessain, A. Cocirculation of two env molecular variants, of possible recombinant origin, in gorilla and chimpanzee simian foamy virus strains from Central Africa. J. Virol. 2015, 89, 12480–12491. [Google Scholar] [CrossRef] [PubMed]
- Hare, S.; Gupta, S.S.; Valkov, E.; Engelman, A.; Cherepanov, P. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 2010, 464, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Maskell, D.P.; Renault, L.; Serrao, E.; Lesbats, P.; Matadeen, R.; Hare, S.; Lindemann, D.; Engelman, A.N.; Costa, A.; Cherepanov, P. Structural basis for retroviral integration into nucleosomes. Nature 2015, 523, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Bridier-Nahmias, A.; Tchalikian-Cosson, A.; Baller, J.A.; Menouni, R.; Fayol, H.; Flores, A.; Saib, A.; Werner, M.; Voytas, D.F.; Lesage, P. An RNA polymerase III subunit determines sites of retrotransposon integration. Science 2015, 348, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Zurnic, I.; Hütter, S.; Rzeha, U.; Stanke, N.; Reh, J.; Müllers, E.; Hamann, M.V.; Kern, T.; Gerresheim, G.K.; Lindel, F.; et al. Interactions of prototype foamy virus capsids with host cell polo-like kinases are important for efficient viral DNA integration. PLoS Pathog. 2016, 12, e1005860. [Google Scholar] [CrossRef] [PubMed]
- Aiewsakun, P.; Katzourakis, A. Time dependency of foamy virus evolutionary rate estimates. BMC Evol. Biol. 2015, 15, 119. [Google Scholar] [CrossRef] [PubMed]
- Aiewsakun, P.; Katzourakis, A. Time-dependent rate phenomenon in viruses. J. Virol. 2016, 90, 7184–7195. [Google Scholar] [CrossRef] [PubMed]
- Berka, U.; Hamann, M.V.; Lindemann, D. Early events in foamy virus–host interaction and intracellular trafficking. Viruses 2013, 5, 1055–1074. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.G.; Stenbak, C.R.; Linial, M.L. Foamy virus assembly with emphasis on pol encapsidation. Viruses 2013, 5, 886–900. [Google Scholar] [CrossRef] [PubMed]
- Hutter, S.; Zurnic, I.; Lindemann, D. Foamy virus budding and release. Viruses 2013, 5, 1075–1098. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.; Hipp, M.; Hugo, A.; Lei, J.; Liu, Y.; Kehl, T.; Hechler, T.; Löchelt, M. In vitro evolution of bovine foamy virus variants with enhanced cell-free virus titers and transmission. Viruses 2015, 7, 2907. [Google Scholar] [CrossRef] [PubMed]
- Picard-Maureau, M.; Jarmy, G.; Berg, A.; Rethwilm, A.; Lindemann, D. Foamy virus envelope glycoprotein-mediated entry involves a pH-dependent fusion process. J. Virol. 2003, 77, 4722–4730. [Google Scholar] [CrossRef] [PubMed]
- Stirnnagel, K.; Schupp, D.; Dupont, A.; Kudryavtsev, V.; Reh, J.; Mullers, E.; Lamb, D.C.; Lindemann, D. Differential pH-dependent cellular uptake pathways among foamy viruses elucidated using dual-colored fluorescent particles. Retrovirology 2012, 9, 71. [Google Scholar] [CrossRef] [PubMed]
- Schenk, T.; Enssle, J.; Fischer, N.; Rethwilm, A. Replication of a foamy virus mutant with a constitutively active U3 promoter and deleted accessory genes. J. Gen. Virol. 1999, 80, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
- Kincaid, R.P.; Chen, Y.; Cox, J.E.; Rethwilm, A.; Sullivan, C.S. Noncanonical microRNA (miRNA) biogenesis gives rise to retroviral mimics of lymphoproliferative and immunosuppressive host miRNAs. mBio 2014, 5, e00074. [Google Scholar] [CrossRef] [PubMed]
- Whisnant, A.W.; Kehl, T.; Bao, Q.Y.; Materniak, M.; Kuzmak, J.; Lochelt, M.; Cullen, B.R. Identification of novel, highly expressed retroviral microRNAs in cells infected by bovine foamy virus. J. Virol. 2014, 88, 4679–4686. [Google Scholar] [CrossRef] [PubMed]
- Soliven, K.; Wang, X.; Small, C.T.; Feeroz, M.M.; Lee, E.G.; Craig, K.L.; Hasan, K.; Engel, G.A.; Jones-Engel, L.; Matsen, F.A.T.; et al. Simian foamy virus infection of rhesus macaques in Bangladesh: Relationship of latent proviruses and transcriptionally active viruses. J. Virol. 2013, 87, 13628–13639. [Google Scholar] [CrossRef] [PubMed]
- Rua, R.; Lepelley, A.; Gessain, A.; Schwartz, O. Innate sensing of foamy viruses by human hematopoietic cells. J. Virol. 2012, 86, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Rua, R.; Gessain, A. Origin, evolution and innate immune control of simian foamy viruses in humans. Curr. Opin. Virol. 2015, 10, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Kehl, T.; Tan, J.; Materniak, M. Non-simian foamy viruses: Molecular virology, tropism and prevalence and zoonotic/interspecies transmission. Viruses 2013, 5, 2169–2209. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.K.; Khan, A.S. Role of neutralizing antibodies in controlling simian foamy virus transmission and infection. Transfusion 2010, 50, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Yap, M.W.; Colbeck, E.; Ellis, S.A.; Stoye, J.P. Evolution of the retroviral restriction gene Fv1: Inhibition of non-MLV retroviruses. PLoS Pathog. 2014, 10, e1003968. [Google Scholar] [CrossRef] [PubMed]
- Goldstone, D.C.; Walker, P.A.; Calder, L.J.; Coombs, P.J.; Kirkpatrick, J.; Ball, N.J.; Hilditch, L.; Yap, M.W.; Rosenthal, P.B.; Stoye, J.P.; et al. Structural studies of postentry restriction factors reveal antiparallel dimers that enable avid binding to the HIV-1 capsid lattice. Proc. Natl. Acad. Sci. USA 2014, 111, 9609–9614. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yang, W.; Liu, R.; Geng, Y.; Qiao, W.; Tan, J. N-Myc interactor inhibits prototype foamy virus by sequestering viral Tas protein in the cytoplasm. J. Virol. 2014, 88, 7036–7044. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.P.; Schnabel, V.; Swiersy, A.; Stirnnagel, K.; Lindemann, D. A small-molecule-controlled system for efficient pseudotyping of prototype foamy virus vectors. Mol. Ther. 2012, 20, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Hamann, M.V.; Stanke, N.; Muellers, E.; Stirnnagel, K.; Huetter, S.; Artegiani, B.; Alonso, S.B.; Calegari, F.; Lindemann, D. Efficient transient genetic manipulation in vitro andin vivo by prototype foamy virus-mediated nonviral RNA transfer. Mol. Ther. 2014, 22, 1460–1471. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, N.P.; Regan, C.; Liu, J.; Galleu, A.; Dazzi, F.; Lindemann, D.; Rupar, C.A.; McClure, M.O. Rapid and efficient stable gene transfer to mesenchymal stromal cells using a modified foamy virus vector. Mol. Ther. 2016, 24, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.R., Jr.; Tuschong, L.M.; Calvo, K.R.; Shive, H.R.; Burkholder, T.H.; Karlsson, E.K.; West, R.R.; Russell, D.W.; Hickstein, D.D. Long-term follow-up of foamy viral vector-mediated gene therapy for canine leukocyte adhesion deficiency. Mol. Ther. 2013, 21, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, T.; Adriani, M.; Jagadeesh, G.J.; Paine, A.; Candotti, F. Foamy virus vector-mediated gene correction of a mouse model of Wiskott-Aldrich syndrome. Mol. Ther. 2012, 20, 1270–1279. [Google Scholar] [CrossRef] [PubMed]
- Leo, B.; Schweimer, K.; Rosch, P.; Hartl, M.J.; Wöhrl, B.M. The solution structure of the prototype foamy virus RNase H domain indicates an important role of the basic loop in substrate binding. Retrovirology 2012, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Corona, A.; Schneider, A.; Schweimer, K.; Rosch, P.; Wöhrl, B.M.; Tramontano, E. Inhibition of foamy virus reverse transcriptase by human immunodeficiency virus type 1 RNase H inhibitors. Antimicrob. Agents Chemother. 2014, 58, 4086–4093. [Google Scholar] [CrossRef] [PubMed]
- Goldstone, D.C.; Flower, T.G.; Ball, N.J.; Sanz-Ramos, M.; Yap, M.W.; Ogrodowicz, R.W.; Stanke, N.; Reh, J.; Lindemann, D.; Stoye, J.P.; et al. A unique spumavirus Gag N-terminal domain with functional properties of orthoretroviral matrix and capsid. PLoS Pathog. 2013, 9, e1003376. [Google Scholar] [CrossRef] [PubMed]
- Lambert, C.; Rua, R.; Gessain, A.; Buseyne, F. A new sensitive indicator cell line reveals cross-transactivation of the viral LTR by gorilla and chimpanzee simian foamy viruses. Virology 2016, 496, 219–226. [Google Scholar] [CrossRef] [PubMed]
Exogenous FVs infect a wide range of mammals; the presence of endogenous FVs in the genome of several animal species suggest a possible ancient marine origin of theses retroviruses. |
Zoonotic transmission of simian FVs has been reported all over the world and is currently ongoing; Bites are strongly associated with these transmission events; Neither pathogenicity nor human-to-human transmission have yet been reported. |
The prototype foamy virus (PFV) integrase was the first retroviral integrase to be crystallized in complex with viral DNA; FV intasome interacts with nucleosomes. |
The replication strategy of FVs shares features with orthoretroviruses, hepadnaviruses, and other retroid elements; Molecular biology of FVs has been mostly studied in cell culture systems. Replication in natural or experimental animal models is poorly described and probably diverse. |
FVs induce type I interferons (IFNs), are susceptible to them and to type II IFNs, as well as to several restriction factors; with the exception of neutralizing antibodies against cell-free viral particles, adaptive immune responses are currently undescribed. |
Foamy virus vectors (FVV) have come of age; Well-characterized replication-deficient vectors are available; FVV are effective in small and large preclinical models of human diseases. |
3D structures of four FV proteins are known, namely the protease, RNAse H, integrase, and N-terminal Gag. |
What will be the next example of the early origins of FVs? |
What are the first cells to be infected in naïve hosts and how does FV spread within an organism before becoming latent? |
What are the anatomic sites of FV latent infection and active replication in vivo? |
What are mechanisms of FV persistence? |
What are the in vivo mechanisms of immune control of FV? |
Is there any pathogenic effect of FVs, per se or in the context of co-infection with other pathogens? |
What are the distribution and the magnitude of zoonotic infection in Africa, Asia, and America? |
Are there biological abnormalities and/or clinical symptoms associated with FV infection in humans? |
What are the roles of restriction factors on FV replication and transmissibility in the human infected hosts? |
For how long will the FV receptor remain unknown? |
When will the 3D structures of all FV proteins be available? |
Do FV entry and early steps of replication impact cell tropism and host–virus interaction? |
What are the respective roles of FV Gag and integrase in FV integration site selection? |
What are the viral and cellular factors controlling FV gene expression and recovery from latency? |
What are the role of FV-encoded microRNAs? |
When will the first foamy virus vector be used in a human gene therapy trial? |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buseyne, F.; Gessain, A.; Soares, M.A.; Santos, A.F.; Materniak-Kornas, M.; Lesage, P.; Zamborlini, A.; Löchelt, M.; Qiao, W.; Lindemann, D.; et al. Eleventh International Foamy Virus Conference—Meeting Report. Viruses 2016, 8, 318. https://doi.org/10.3390/v8110318
Buseyne F, Gessain A, Soares MA, Santos AF, Materniak-Kornas M, Lesage P, Zamborlini A, Löchelt M, Qiao W, Lindemann D, et al. Eleventh International Foamy Virus Conference—Meeting Report. Viruses. 2016; 8(11):318. https://doi.org/10.3390/v8110318
Chicago/Turabian StyleBuseyne, Florence, Antoine Gessain, Marcelo A. Soares, André F. Santos, Magdalena Materniak-Kornas, Pascale Lesage, Alessia Zamborlini, Martin Löchelt, Wentao Qiao, Dirk Lindemann, and et al. 2016. "Eleventh International Foamy Virus Conference—Meeting Report" Viruses 8, no. 11: 318. https://doi.org/10.3390/v8110318
APA StyleBuseyne, F., Gessain, A., Soares, M. A., Santos, A. F., Materniak-Kornas, M., Lesage, P., Zamborlini, A., Löchelt, M., Qiao, W., Lindemann, D., Wöhrl, B. M., Stoye, J. P., Taylor, I. A., & Khan, A. S. (2016). Eleventh International Foamy Virus Conference—Meeting Report. Viruses, 8(11), 318. https://doi.org/10.3390/v8110318