Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = foamed lightweight soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 7127 KB  
Article
Influence of Carbon–Magnesium Reactions on Strength, Resistivity, and Carbonation Behavior of Lightweight Carbonated Soil: Development of a Multi-Parameter Prediction Model
by Li Shao, Wangcheng Yu, Yi Li, Jing Ni, Xi Du, Chaochao Sun and Longlong Wei
Appl. Sci. 2025, 15(21), 11636; https://doi.org/10.3390/app152111636 - 31 Oct 2025
Viewed by 215
Abstract
The high carbon emissions associated with cement-based materials in lightweight foamed soils have become a significant environmental concern. In addition to this applied problem, there is also a scientific challenge: current studies of carbon–magnesium reactions in lightweight carbonated soils (LCSS) lack multiparameter predictive [...] Read more.
The high carbon emissions associated with cement-based materials in lightweight foamed soils have become a significant environmental concern. In addition to this applied problem, there is also a scientific challenge: current studies of carbon–magnesium reactions in lightweight carbonated soils (LCSS) lack multiparameter predictive models, which are essential for understanding the coupled effects of MgO dosage and CO2 foam content on material performance. This study addresses this gap by systematically investigating the influence of MgO and CO2 foam on the strength, resistivity, and carbonation behavior of LCSS. A multiparameter regression model was developed to predict these properties, and its statistical significance and predictive accuracy were verified. The results show that MgO dosage strongly promotes carbonation and strength development, while CO2 foam content primarily regulates porosity and carbonation degree. The established model provides reliable predictions of LCSS performance and offers a scientific basis for optimizing carbon–magnesium reactions in sustainable soil stabilization. Full article
Show Figures

Figure 1

28 pages, 11514 KB  
Article
Effects of Carbon–Magnesium Reactions on the Physical and Mechanical Properties of Lightweight Carbonated Stabilized Soil
by Li Shao, Wangcheng Yu, Qinglong You, Suran Wang, Xi Du, Bin He, Shichao Tao, Honghui Ding and Chao Bao
Buildings 2025, 15(19), 3571; https://doi.org/10.3390/buildings15193571 - 3 Oct 2025
Viewed by 566
Abstract
Global urbanization has led to massive generation of high-water-content waste slurry, creating serious environmental challenges. Conventional treatment methods are costly and unsustainable, while cement-based foamed lightweight soils typically exhibit low strength and limited CO2 sequestration. To address this issue, this study proposes [...] Read more.
Global urbanization has led to massive generation of high-water-content waste slurry, creating serious environmental challenges. Conventional treatment methods are costly and unsustainable, while cement-based foamed lightweight soils typically exhibit low strength and limited CO2 sequestration. To address this issue, this study proposes a novel stabilization pathway by integrating a MgO–mineral powder–carbide slag composite binder with CO2 foaming–carbonation. The approach enables simultaneous slurry lightweighting, strength enhancement, and CO2 fixation. A series of laboratory tests were conducted to evaluate flowability, density, compressive strength, and deformation characteristics of the carbonated lightweight stabilized slurry. Microstructural analyses, including SEM and XRD, were used to reveal the formation of carbonate phases and pore structures. The results showed that MgO content strongly promoted carbonation, leading to denser microstructures and higher strength, while mineral powder and carbide slag optimized workability and pore stability. Orthogonal testing indicated that a mix with 25% mineral powder, 12.5% MgO, and 7.5% carbide slag achieved the best performance, with unconfined compressive strength up to 0.48 MPa after carbonation. Compared with conventional cement- or GGBS-based foamed lightweight soils, the proposed system exhibits superior strength development, improved pore stability, and enhanced CO2 sequestration potential. These findings demonstrate the feasibility of recycling high-water-content waste slurry into value-added construction materials while contributing to carbon reduction targets. This study not only provides a sustainable solution for waste slurry management but also offers new insights into the integration of CO2 mineralization into geotechnical engineering practice. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 4327 KB  
Article
Optimal Mixing Design and Field Application Protocol of Lightweight-Foamed Soils with Waste Fishing Nets
by Gil-Lim Yoon, Sun-Bin Kim and Jinung Do
Appl. Sci. 2025, 15(18), 10207; https://doi.org/10.3390/app151810207 - 19 Sep 2025
Viewed by 353
Abstract
Lightweight-foamed soils are mixed soils with foam and cement to enhance the solidity and lightness of soils. Marine wastes, especially waste fishing nets, can be additives to reinforce the engineering properties of lightweight-foamed soils. In this paper, lightweight-foamed soils reinforced with waste fishing [...] Read more.
Lightweight-foamed soils are mixed soils with foam and cement to enhance the solidity and lightness of soils. Marine wastes, especially waste fishing nets, can be additives to reinforce the engineering properties of lightweight-foamed soils. In this paper, lightweight-foamed soils reinforced with waste fishing nets were investigated. Dredged soil and waste fishing nets were collected and pre-processed for testing. For optimization, the water content, foam ratio, cement ratio, net ratio, net conditions, and curing days were evaluated with respect to workability, unit weight, and strength. The variables were narrowed down based on the performance criteria. The results found that a water content of around 100%, cement ratio of 20%, foam ratio of 5%, and net ratio of 4% with shredded nets provide the best engineering performance of lightweight-foamed soils. The use of nets presented a superior increase in critical strength rather than an obvious increase in peak strength. A normalized factor was used to predict the required strength of lightweight-foamed soils. Finally, this study proposes field implementation methods in terms of the initial conditions of soils and optimal conditions of soils, resulting in the depletion of waste fishing nets. Full article
Show Figures

Figure 1

22 pages, 4462 KB  
Article
Dynamic Response and Energy Dissipation Mechanisms of Soil–Lightweight Foam Composite Protective Layers Under Impact Loading
by Jianping Gao, Le Liu, Xuefeng Mei, Dengfeng Li, Jianli Wu and Peng Cui
Coatings 2025, 15(9), 1074; https://doi.org/10.3390/coatings15091074 - 12 Sep 2025
Viewed by 824
Abstract
Engineering structures often face safety risks under impact or explosion loading, making the design of lightweight and efficient cushioning systems crucial. This study investigates the dynamic response and energy-dissipation characteristics of Expanded Polystyrene (EPS), Expanded Polyethylene (EPE), and soil–foam composite cushion layers under [...] Read more.
Engineering structures often face safety risks under impact or explosion loading, making the design of lightweight and efficient cushioning systems crucial. This study investigates the dynamic response and energy-dissipation characteristics of Expanded Polystyrene (EPS), Expanded Polyethylene (EPE), and soil–foam composite cushion layers under impact loading, using a Split Hopkinson Pressure Bar (SHPB) testing apparatus. The tests include pure foam layers (lengths ranging from 40 to 300 mm) and a soil–foam composite layer with a total length of 60 mm (soil/foam ratio 1:1 to 1:3), subjected to impact velocities of 9.9–15.4 m/s. The results show that the stress wave propagation velocity of EPE is 149.6 m/s, lower than that of EPS at 249.3 m/s. At higher velocities, the attenuation coefficient for the 40 mm EPE sample reaches as low as 0.22, while EPS is 0.31. Furthermore, the maximum energy absorption coefficient of EPE exceeds 98%, with better stability at high impact velocities. In composite cushion layers, both soil and foam collaborate in energy absorption, but an increased proportion of soil leads to a decrease in energy absorption efficiency and attenuation capacity. Under equivalent ratios, the soil–EPE combination performs better than the soil–EPS combination. By constructing a comprehensive evaluation system based on three indices: stress wave attenuation coefficient, energy absorption coefficient, and energy absorption density, this study quantifies the impact resistance performance of different cushioning layers, providing theoretical and parametric support for material selection in engineering design. Full article
Show Figures

Figure 1

16 pages, 2001 KB  
Article
Research on the Performance of Phosphorus-Building-Gypsum-Based Foamed Lightweight Soil in Road Reconstruction
by Wangchao Sun, Yuchen Cao, Fan Yang, Penghao Zhai, Chuizhong Kong and Fang Xu
Coatings 2025, 15(8), 970; https://doi.org/10.3390/coatings15080970 - 20 Aug 2025
Viewed by 759
Abstract
Current research on foamed lightweight soil primarily focuses on mechanical properties and durability, with few studies addressing its hydraulic characteristics and internal pore structure in road reconstruction applications. However, the material’s high porosity and low bulk density may significantly alter its mechanical properties [...] Read more.
Current research on foamed lightweight soil primarily focuses on mechanical properties and durability, with few studies addressing its hydraulic characteristics and internal pore structure in road reconstruction applications. However, the material’s high porosity and low bulk density may significantly alter its mechanical properties and durability under prolonged rainwater exposure, highlighting the importance of investigating its hydraulic characteristics and internal foam structure. Based on the analysis of water absorption and bulk density in phosphogypsum-based foamed lightweight soil, this study further discusses the material’s softening coefficient and internal pore structure through systematic data comparison. Experimental results demonstrate that the unconfined compressive strength (UCS) of both dry and water-soaked specimens increases linearly with dry density. Notably, soaked specimens with 0.5 g/cm3 dry density achieve compliant 7-day UCS values while displaying a steeper strength increase compared to dry specimens. A dry density of 0.64 g/cm3 ensures a softening coefficient exceeding 0.75, confirming the material’s suitability for humid environments. The material contains predominantly small pores (90% ≤ 0.2 mm diameter), with improved bubble distribution at the edges and higher upper porosity. Spherical pores (roundness 0.5–1) enhance mechanical properties, while phosphogypsum (optimal 10% dosage) effectively improves both strength and workability but requires corrosion control due to its hydration products. Full article
Show Figures

Figure 1

34 pages, 7092 KB  
Article
Research on the Influence of Engineered Cementitious Composite’s Water–Cement Ratio and Fiber Content on the Mechanical Performance of Foam Lightweight Soil
by Qingguo Yang, Yu Zhou, Ya Li, Kelin Chen, Wujing Yin and Yunhao Li
Buildings 2025, 15(9), 1479; https://doi.org/10.3390/buildings15091479 - 27 Apr 2025
Viewed by 1003
Abstract
This study explores the influence of the water–cement ratio and fiber content in engineered cementitious composite (ECC) on the mechanical characteristics of foamed lightweight soil (FLS) through experimental analysis. Two types of cementitious materials—ECC and ordinary Portland cement (OPC)—were utilized to create FLS [...] Read more.
This study explores the influence of the water–cement ratio and fiber content in engineered cementitious composite (ECC) on the mechanical characteristics of foamed lightweight soil (FLS) through experimental analysis. Two types of cementitious materials—ECC and ordinary Portland cement (OPC)—were utilized to create FLS specimens under identical parameters to examine their mechanical performance. Results indicate that ECC-FLS exhibits superior toughness, plasticity, and ductility compared to OPC-FLS, validating the potential of ECC as a high-performance material for FLS. To assess the influence of the ECC water–cement ratio, specimens were constructed with varying ratios at 0.2, 0.25, and 0.3, while maintaining other parameters as constant. The experimental results indicate that as the water–cement ratio of ECC increases, the flexural strength, compressive strength, flexural toughness, and compressive elastic modulus of the lightweight ECC-FLS gradually increase, exhibiting a better mechanical performance. Moreover, this study investigates the effect of basalt fiber content in ECC on the mechanical properties of FLS. While keeping other parameters constant, the volume content of basalt fibers varied at 0.1%, 0.3%, and 0.5%, respectively. The experimental results demonstrate that within the range of 0 to 0.5%, the mechanical properties of FLS improved with increasing fiber content. The fibers in ECC effectively enhanced the strength of FLS. In conclusion, the adoption of ECC and appropriate fiber content can significantly optimize the mechanical performance of FLS, endowing it with broader application prospects in engineering practices. ECC-FLS, characterized by excellent ductility and crack resistance, demonstrates versatile engineering applications. It is particularly suitable for soft soil foundations or regions prone to frequent geological activities, where it enhances the seismic resilience of subgrade structures. This material also serves as an ideal construction solution for underground utility tunnels, as well as for the repair and reconstruction of pavement and bridge decks. Notably, ECC-FLS enables the resource utilization of industrial solid wastes such as fly ash and slag, thereby contributing to carbon emission reduction and the realization of a circular economy. These attributes collectively position HDFLS as a sustainable and high-performance construction material with significant potential for promoting environmentally friendly infrastructure development. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 5038 KB  
Article
Mechanical Properties of Sustainable Foam Lightweight Soil at Varying Curing Temperatures and Its Early-Stage Quality Control
by Jie Zhu, Zhihua Zhang, Rongjun Zhang, Chen Yin, Dongrui Liu and Bailing Zhang
Sustainability 2025, 17(4), 1343; https://doi.org/10.3390/su17041343 - 7 Feb 2025
Cited by 1 | Viewed by 1091
Abstract
Sustainable foam lightweight soil (FLS) with the introduction of solid waste-based binders and dredged mud has shown high engineering and environmental value in expressway reconstruction and extension projects. Accelerated testing through high-temperature curing is considered a crucial method for early-stage assessment of sustainable [...] Read more.
Sustainable foam lightweight soil (FLS) with the introduction of solid waste-based binders and dredged mud has shown high engineering and environmental value in expressway reconstruction and extension projects. Accelerated testing through high-temperature curing is considered a crucial method for early-stage assessment of sustainable FLS construction quality. This study aims to explore the curing temperature effect on the strength development of the FLS with different mix proportions and the applicability of accelerated curing method. Strength tests were first conducted on kaolin clay-based FLS with three wet densities and three water contents under different curing temperatures (T), and the strength of the dredged mud-based FLS was also tested to broaden the applicability. Results indicate that higher T and increased wet density significantly enhance the strength of clay-based FLS at any curing age, while higher water content reduces it. The wet density and water content of the proposed FLS recommended in this study considering the strength and lightweight requirements are 800 kg/m3 and 100%, respectively. Moreover, the effectiveness of the accelerated aging method for clay-based FLS is demonstrated by the fact that no dramatic strength loss occurs due to foam expansion and collapse at elevated T of up to 50 °C. On this basis, a strength prediction model based on the concept of activation energy is proposed for both kaolin clay-based and dredged mud-based FLS considering the temperature effect. Changes in wet density have a minimal impact on model parameters, but variations in soil type and water content require updating these parameters to ensure prediction accuracy. Finally, an early quality control method is introduced for applying the sustainable FLS in field projects. Full article
Show Figures

Figure 1

16 pages, 4358 KB  
Article
Experimental Study on the Flexural Performance of Geogrid-Reinforced Foamed Lightweight Soil
by Yinhe Li, Yong Liu, Hongbo Zhang, Ning An and Zuolin Fan
Buildings 2025, 15(3), 461; https://doi.org/10.3390/buildings15030461 - 2 Feb 2025
Cited by 1 | Viewed by 1087
Abstract
The flexural behavior of geogrid-reinforced foamed lightweight soil (GRFL soil) is investigated in this study using unconfined compressive and four-point bending tests. The effects of wet density and reinforcement layers on flexural performance are analyzed using load–displacement curves, damage patterns, load characteristics, unconfined [...] Read more.
The flexural behavior of geogrid-reinforced foamed lightweight soil (GRFL soil) is investigated in this study using unconfined compressive and four-point bending tests. The effects of wet density and reinforcement layers on flexural performance are analyzed using load–displacement curves, damage patterns, load characteristics, unconfined compressive strength, and flexural strength. A variance study demonstrates that increasing the wet density significantly increases unconfined compressive strength. Bond stress mechanisms enable geogrid integration, efficiently reroute stresses internally, and greatly increase flexural strength. With a maximum unconfined compressive strength of 3.16 MPa and a peak flexural strength increase of 166%, this reinforcement increases both strength and ductility by changing the damage pattern from brittle to ductile. The principal load is initially supported by the foamed lightweight soil, and in later phases, geogrids take over load-bearing responsibilities. Additionally, the work correlates the ratio of unconfined compressive to flexural strength with wet density and informs the development of predictive models for unconfined compressive strength as a function of reinforcing layers and wet density. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 5479 KB  
Article
Self-Foaming Expanded Ceramsites Prepared from Electrolytic Manganese Residue, Red Mud and Waste Soil
by Zhuowen Yang, Xuesong Lu, Jie Wang and Hongbo Tan
Materials 2025, 18(2), 356; https://doi.org/10.3390/ma18020356 - 14 Jan 2025
Cited by 4 | Viewed by 1115
Abstract
In this study, in order to solve the problems of resource utilization of electrolytic manganese residue and the destruction of natural resources by the over-exploitation of raw materials of traditional ceramics, electrolytic manganese residue (EMR), red mud (RM), and waste soil (WS) were [...] Read more.
In this study, in order to solve the problems of resource utilization of electrolytic manganese residue and the destruction of natural resources by the over-exploitation of raw materials of traditional ceramics, electrolytic manganese residue (EMR), red mud (RM), and waste soil (WS) were used to prepare self-foaming expanded ceramsite (SEC), and different firing temperatures and four groups with different mixing ratios of these three raw materials were considered. Water absorption, porosity, heavy metal ion leaching, and compressive strength in the cylinder of SEC were evaluated. The chemical composition and microscopic morphology of SEC were investigated by XRD and SEM. The mechanism behind the reaction among EMR, RM, and WS and self-foaming was discussed. The results showed that both the temperature and mixing ratio significantly influenced the basic performance of SEC. With the temperature lower than 1200 °C, sphere appearance could be maintained in all of these four groups; however, the density, porosity, and compressive strength in the cylinder seemed unacceptable. When the temperature rose up to 1220 °C, sphere appearance could be only found in the group whose mixing ratio of EMR, RM, and WS was 2:2.5:0.5. Under this condition, the excellent performance of SEC was observed, with a porosity of 46.7%, bulk density of 0.61 g/cm3, and 3 d compressive strength in a cylinder of 26.82 MPa. The mechanism behind the reaction among EMR, RM, and WS could be described: when the temperature is up to 1180 °C, an obvious chemical reaction took place, followed by the liquid phase being produced and the gas released by the decomposition of Fe2O3 in RM and gypsum in EMR. When the temperature is up to 1200 °C, the viscosity of the liquid phase and the rate of gas generation achieved the balance, and the liquid phase encapsulated the gas and anorthite (CaAl2Si2O8) began to grow slowly. As time passed, self-foaming expanded ceramsite was prepared. The results of this study are of great significance in the field of artificial lightweight aggregate and industrial solid waste resource utilization. Full article
Show Figures

Figure 1

20 pages, 8044 KB  
Article
Method for the Mixing Design and Physical Characterization of Air-Foamed Lightweight Clay Concrete: A Response to the Issue of Recycling Dredged Sediments
by Agnès Zambon, Zoubir Mehdi Sbartaï and Nadia Sayouri
Materials 2024, 17(24), 6248; https://doi.org/10.3390/ma17246248 - 20 Dec 2024
Cited by 1 | Viewed by 943
Abstract
From both economic and environmental points of view, the reuse of dredged sediments in the direct onsite casting of concrete represents a promising method for replacing sand. The aim of this study was to develop a cementitious material that (i) reuses the thin [...] Read more.
From both economic and environmental points of view, the reuse of dredged sediments in the direct onsite casting of concrete represents a promising method for replacing sand. The aim of this study was to develop a cementitious material that (i) reuses the thin particles of sediments; (ii) has a low density due to the incorporation of air foam in the material; and (iii) achieves a minimum mechanical strength of 0.5 MPa for embankment applications. This study focused on the characterization of a non-standard “concrete”, which is a mixture of a synthetic soil (80% montmorillonite and 20% calibrated sand) and cement. To reduce its density, air foam was incorporated into the material during the manufacturing process (air-foamed lightweight clay concrete—AFLCC). The study results highlight that a density around 1.2 (unit: g/cm3/1 g/cm3) can be obtained. This density reduction can be obtained with a certain degree of workability when the material is in a fresh state. To obtain this workability, a certain amount of water must be added; however, the addition of water has a significant impact on the compressive strength of the AFLCC. As such, a mathematical equation correlating the compressive strength, the density, and the percentage of cement is proposed in this study. The mechanical strength results of the AFLCC at different times, in conjunction with the Vicat results, show that the porosity created by the air foam has the effect of slowing down the hydration mechanism of the cement. The porosities obtained are consistent with the density results. The characteristic radii indicate large pore sizes for formulations with low fluidity in the fresh state when air bubbles are incorporated. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 5685 KB  
Article
Study on the Application of Foamed Lightweight Soil in Road Widening Project: A Numerical Insight
by Pu-Hao Li and Ke-Zhen Yan
Materials 2024, 17(22), 5432; https://doi.org/10.3390/ma17225432 - 7 Nov 2024
Viewed by 1185
Abstract
This paper introduces a novel retaining wall structure that integrates a traditional mechanically stabilized earth (MSE) retaining wall with foamed lightweight soil (FLS) as the fill material. To evaluate the performance of the structure, a numerical approach based on the finite difference method [...] Read more.
This paper introduces a novel retaining wall structure that integrates a traditional mechanically stabilized earth (MSE) retaining wall with foamed lightweight soil (FLS) as the fill material. To evaluate the performance of the structure, a numerical approach based on the finite difference method was employed. Firstly, numerical models were developed based on a centrifuge test model designed by previous researchers, and the results were compared with the measured data. The close agreement between the experimental values and simulations demonstrates the reliability and validity of the proposed numerical models. Subsequently, a series of parametric studies were conducted to reveal the effect of key parameters on the performance of the newly proposed retaining wall. Furthermore, this paper proposes a modified harmonic search algorithm (MHSA), which is based on the original harmonic search algorithm (OHSA), to optimize the design of the proposed retaining wall structure. The results indicate that the proposed retaining wall structure can effectively reduce the differential settlement between the existing road and the newly constructed road at a relatively lower cost. The MHSA can serve as a practical design guidebook for engineers and potential users, enabling rapid and efficient design. Full article
Show Figures

Figure 1

17 pages, 6243 KB  
Article
Influence of Foam Content and Concentration on the Physical and Mechanical Properties of Foam Concrete
by Sukanta Kumer Shill, Estela Oliari Garcez, Safat Al-Deen and Mahbube Subhani
Appl. Sci. 2024, 14(18), 8385; https://doi.org/10.3390/app14188385 - 18 Sep 2024
Cited by 4 | Viewed by 3293
Abstract
Foam concrete has been used in various real-life applications for decades. Simple manufacturing methods, lightweight, high flowability, easy transportability, and low cost make it a useful construction material. This study aims to develop foam concrete mixtures for various civil and geotechnical engineering applications, [...] Read more.
Foam concrete has been used in various real-life applications for decades. Simple manufacturing methods, lightweight, high flowability, easy transportability, and low cost make it a useful construction material. This study aims to develop foam concrete mixtures for various civil and geotechnical engineering applications, such as in-fill, wall backfill and soil replacement work. A blended binder mix containing cement, fly ash and silica fume was produced for this study. Its compressive strength performance was compared against conventional general purpose (GP) cement-based foam concrete. Polypropylene (PP) fibre was used for both mixtures and the effect of various percentages of foam content on the compressive strength was thoroughly investigated. Additionally, two types of foaming agents were used to examine their impact on density, strength and setting time. One foaming agent was conventional, whereas the second foaming agent type can be used to manufacture permeable foam concrete. Results indicate that an increase in foam content significantly decreases the strength; however, this reduction is higher in GP mixes than in blended mixes. Nevertheless, the GP mixes attained two times higher compressive strength than the blended mix’s compressive strengths at any foam content. It was also found that the foaming agent associated with creating permeable foam concrete lost its strength (reduced by more than half), even though the density is comparable. The compressive stress–deformation behaviour showed that densification occurs in foam concrete due to its low density, and fibres contributed significantly to crack bridging. These two effects resulted in a long plateau in the compressive stress–strain behaviour of the fibre-reinforced foam concrete. Full article
(This article belongs to the Special Issue Advances in Cement-Based Materials)
Show Figures

Figure 1

26 pages, 7620 KB  
Review
Properties, Treatment and Resource Utilization of Bauxite Tailings: A Review
by Yuansheng Peng, Zhongping Chen, Xiaohui Sun, Yuefu Zhou and Xiaoduo Ou
Sustainability 2024, 16(16), 6948; https://doi.org/10.3390/su16166948 - 14 Aug 2024
Cited by 4 | Viewed by 3943
Abstract
A substantial amount of bauxite tailings (BTs) at abandoned mine sites have been stored in waste reservoirs for long periods, leading to significant land occupation and environmental degradation. Although many studies of the resource utilization of BTs were conducted to address this challenge, [...] Read more.
A substantial amount of bauxite tailings (BTs) at abandoned mine sites have been stored in waste reservoirs for long periods, leading to significant land occupation and environmental degradation. Although many studies of the resource utilization of BTs were conducted to address this challenge, there is still a lack of efforts to systematically review the state of the art in BTs. In the present paper, a systematic literature review was carried out to summarize and analyze the properties, treatment, and resource utilization of BTs. Physical characteristics and the mineral and chemical composition of BTs are introduced. The efficacy of physical, chemical, and microbial treatment methods for BTs in terms of dehydration are outlined, and their respective benefits and limitations are discussed. Moreover, the extraction process of valuable elements (e.g., Si, Al, Fe, Li, Na, Nd, etc.) from BTs is examined, and the diverse applications of BTs in adsorption materials, ceramic materials, cementitious materials, lightweight aggregates, foamed mixture lightweight soil, among others, are studied. Finally, an efficient and smart treatment strategy for BTs was proposed. The findings of the present review provide a scientific basis and reference for future research focusing on the treatment and resource utilization of BTs. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

10 pages, 1732 KB  
Article
Features of Processes for Preparation and Performance of Foamed Lightweight Soil with Steel Slag Micronized Powder and Granulated Blast Furnace Slag
by Hao Liu, Jixin Li, Qiqing He, Zhixiong Yang, Longfan Peng, Yuan Li and Gaoke Zhang
Processes 2024, 12(4), 678; https://doi.org/10.3390/pr12040678 - 28 Mar 2024
Cited by 4 | Viewed by 1589
Abstract
Steel slag micronized powder, granulated blast furnace slag, and cement were used as cementitious materials to prepare a foamed lightweight soil for roadbed filling to reduce the settlement and additional stress of the foundation and to solve the environmental problems caused by the [...] Read more.
Steel slag micronized powder, granulated blast furnace slag, and cement were used as cementitious materials to prepare a foamed lightweight soil for roadbed filling to reduce the settlement and additional stress of the foundation and to solve the environmental problems caused by the storage of large amounts of steel slag. However, the instability of steel slag and the multi-angular nature of its surface limit the resource utilization of steel slag. Currently, concrete technology is unable to achieve a large amount of steel slag. Therefore, it is necessary to deeply explore the influence of steel slag content and the specific surface area of steel slag on the working performance, compressive strength, durability, and micro-mechanism of foam light soil. Through the modification of steel slag and the improvement of the production process, the preparation of foam light soil with a large amount of steel slag can be realized. In this study, the foamed lightweight soil with 1.0 Mpa was prepared by cementitious materials composed of 40% cement and 60% multi-mixture of steel slag micronized powder and granulated blast furnace slag. The study of SEM images and BET demonstrated that the larger specific surface area of steel slag powder was more conducive to improving the durability of the foamed lightweight soil. Meanwhile, XRD analyses confirmed that the reactions of f-CaO and f-MgO in steel slag were slowly released in the porous foamed lightweight soil system, which compensated for the shrinkage properties of porous materials. When the SSMP content was 0%, the shrinkage rate was 2.34 × 10−3, while when the SSMP content was 60%, the shrinkage rate was only 0.54 × 10−3. Furthermore, our study of the hydration process of samples indicated that the strong alkalinity of steel slag micronized powder hydration was helpful to stimulate the potential activity of the slag powder, which was beneficial to the improvement of the compressive strength of foamed lightweight soil. Thus, this study provides a valuable idea for reducing the settlement and additional stress of the original foundation and for solving the environmental problems caused by a large amount of steel slag storage. Full article
Show Figures

Figure 1

20 pages, 8270 KB  
Article
Numerical Analysis of Differential Settlement in Road Due to Widening Considering Different Reinforcement Techniques
by Shaista Jabeen Abbasi, Xiaolin Weng and Muhammad Jawed Iqbal
Appl. Sci. 2024, 14(5), 1740; https://doi.org/10.3390/app14051740 - 21 Feb 2024
Cited by 3 | Viewed by 3772
Abstract
Embankment and pavement widening of an existing road is a viable option to cope with increased traffic volume. One of the common challenges in road expansion is the occurrence of differential settlement between the old and the new portions. This article pertains to [...] Read more.
Embankment and pavement widening of an existing road is a viable option to cope with increased traffic volume. One of the common challenges in road expansion is the occurrence of differential settlement between the old and the new portions. This article pertains to the field case study of the National Highway-120, where pavement distresses developed in the weak sections of the highway following the operation of traffic within a few months. Field monitoring and geotechnical tests, including the requisite in situ as well as laboratory tests, were conducted on soil specimens from the study area, followed by the performance of a numerical analysis using the two-dimensional finite element software Abaqus CAE 2021 to investigate the weak section of the road. Different techniques such as geogrid reinforcement, installation of cement–fly-ash–gravel (CFG) piles, and lightweight foamed concrete (LWFC) embankment fill were used to analyze the reduction in differential settlement between the old and the widened portions. Among the applied reinforcement techniques, the use of LWFC as embankment fill in the widened portion was determined to be most effective in minimizing the differential settlement in the weak section of the highway. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop