Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (104)

Search Parameters:
Keywords = flux footprint

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 14469 KiB  
Article
The Downscaled GOME-2 SIF Based on Machine Learning Enhances the Correlation with Ecosystem Productivity
by Chenyu Hu, Pinhua Xie, Zhaokun Hu, Ang Li and Haoxuan Feng
Remote Sens. 2025, 17(15), 2642; https://doi.org/10.3390/rs17152642 - 30 Jul 2025
Viewed by 227
Abstract
Sun-induced chlorophyll fluorescence (SIF) is an important indicator of vegetation photosynthesis. While remote sensing enables large-scale monitoring of SIF, existing products face the challenge of trade-offs between temporal and spatial resolutions, limiting their applications. To select the optimal model for SIF data downscaling, [...] Read more.
Sun-induced chlorophyll fluorescence (SIF) is an important indicator of vegetation photosynthesis. While remote sensing enables large-scale monitoring of SIF, existing products face the challenge of trade-offs between temporal and spatial resolutions, limiting their applications. To select the optimal model for SIF data downscaling, we used a consistent dataset combined with vegetation physiological and meteorological parameters to evaluate four different regression methods in this study. The XGBoost model demonstrated the best performance during cross-validation (R2 = 0.84, RMSE = 0.137 mW/m2/nm/sr) and was, therefore, selected to downscale GOME-2 SIF data. The resulting high-resolution SIF product (HRSIF) has a temporal resolution of 8 days and a spatial resolution of 0.05° × 0.05°. The downscaled product shows high fidelity to the original coarse SIF data when aggregated (correlation = 0.76). The reliability of the product was ensured through cross-validation with ground-based and satellite observations. Moreover, the finer spatial resolution of HRSIF better matches the footprint of eddy covariance flux towers, leading to a significant improvement in the correlation with tower-based gross primary productivity (GPP). Specifically, in the mixed forest vegetation type with the best performance, the R2 increased from 0.66 to 0.85, representing an increase of 28%. This higher-precision product will support more effective ecosystem monitoring and research. Full article
Show Figures

Figure 1

28 pages, 3108 KiB  
Article
Unlocking the Benefits of Hybrid and Standalone Pervaporation for Sustainable Isopropanol Dehydration with HybSi® AR Membranes
by Mohammed Nazeer Khan, Elmar Boorsma, Pieter Vandezande, Ilse Lammerink, Rob de Lange, Anita Buekenhoudt and Miet Van Dael
Membranes 2025, 15(8), 224; https://doi.org/10.3390/membranes15080224 - 26 Jul 2025
Viewed by 505
Abstract
This study presents the first combined techno-economic and environmental analysis of IPA dehydration using HybSi® membranes across three configurations, offering a low-emission alternative to conventional azeotropic distillation. The processes are simulated in Aspen Plus, and include two hybrid separation processes (i.e., distillation–pervaporation [...] Read more.
This study presents the first combined techno-economic and environmental analysis of IPA dehydration using HybSi® membranes across three configurations, offering a low-emission alternative to conventional azeotropic distillation. The processes are simulated in Aspen Plus, and include two hybrid separation processes (i.e., distillation–pervaporation and distillation–pervaporation–distillation) and one standalone pervaporation process. The pervaporation module uses data from experiments that were performed using HybSi® AR membranes at 130 °C and two vacuum pressures (20 and 50 mbar). The separation processes were systematically compared using a comprehensive set of performance indicators covering technical, economic, and environmental aspects. A new cost-efficiency metric, COPCO, is introduced, alongside updated modeling under 2024 market conditions. The isopropanol recovery and water selectivity were >99.5% and >98.7%, respectively, in all pervaporation-based processes. It was found that the hybrid distillation–pervaporation process resulted in a 42% reduction in the levelized cost of the benchmark azeotropic distillation process, while standalone pervaporation resulted in a 38% reduction. The CO2 footprint was also reduced significantly in all cases, up to 86% in the case of standalone pervaporation compared to azeotropic distillation. The COPCO analysis revealed that the distillation–pervaporation configuration offers the highest cost-efficiency among the evaluated systems. Sensitivity analysis revealed that feed flow rate, average water flux, membrane module price, membrane lifetime, and steam price significantly impact the levelized cost. Lower vacuum pressure and feed water near the azeotropic composition enhance economic performance. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

17 pages, 7728 KiB  
Article
Comparative Effects of Nitrogen Fertigation and Granular Fertilizer Application on Pepper Yield and Soil GHGs Emissions
by Antonio Manco, Matteo Giaccone, Luca Vitale, Giuseppe Maglione, Maria Riccardi, Bruno Di Matteo, Andrea Esposito, Vincenzo Magliulo and Anna Tedeschi
Horticulturae 2025, 11(6), 708; https://doi.org/10.3390/horticulturae11060708 - 19 Jun 2025
Viewed by 738
Abstract
Quantitative greenhouse gas (GHG) budgets for Mediterranean pepper cultivation are still missing, limiting evidence-based nitrogen management. Furthermore, mitigation value of fertigation respect to granular fertilization in vegetable systems remains uncertain. This study therefore compared the GHG footprint and productivity of ‘papaccella’ pepper under [...] Read more.
Quantitative greenhouse gas (GHG) budgets for Mediterranean pepper cultivation are still missing, limiting evidence-based nitrogen management. Furthermore, mitigation value of fertigation respect to granular fertilization in vegetable systems remains uncertain. This study therefore compared the GHG footprint and productivity of ‘papaccella’ pepper under two nitrogen fertilization methods: granular fertilization versus low-frequency fertigation with urea, each supplying about 63 kg N ha−1. Eight automated static chambers coupled to a cavity ring-down spectrometer monitored soil CO2 and N2O fluxes throughout the season. Cumulative emissions did not differ between treatments (CO2: 811 ± 6 g m−2 vs. 881 ± 4 g m−2; N2O: 0.038 ± 0.008 g m−2 vs. 0.041 ± 0.015 g m−2, fertigation vs. granular), and marketable yield remained at ~11 t ha−1, leaving product-scaled global warming potential (GWP) unchanged. Although representing less than 2% of measured fluxes, “hot moments,” burst emissions exceeding four standard deviations (SD) from the mean, accounted for up to 4% of seasonal CO2 and 19% of N2O. Fertigation doubled the frequency of these events but reduced their peak magnitude, whereas granular application produced fewer but more extreme bursts (>11 SD). Results showed that fertigation did not mitigate GHGs emission nor improve productivity for Mediterranean pepper, mainly due to the low application frequency and the use of a urea fertilizer. Moreover, we can highlight that in horticultural systems, omitting ‘hot moments’ leads to systematic underestimation of emissions. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Graphical abstract

11 pages, 1305 KiB  
Article
Replacing Peat with Biochar: Can Adding Biochar to Peat Moss Reduce Carbon Dioxide Fluxes?
by John Leopard, Ajay Sharma, Adam Maggard, Chen Ding, Richard Cristan and Jason Vogel
Sustainability 2025, 17(9), 4139; https://doi.org/10.3390/su17094139 - 3 May 2025
Viewed by 2308
Abstract
Replacing peat with biochar in nursery growing media could help offset carbon emissions and reduce environmental degradation caused by mining wetlands for peat. However, the effects of replacing peat with biochar on CO2 emissions are little known. In this study, we measured [...] Read more.
Replacing peat with biochar in nursery growing media could help offset carbon emissions and reduce environmental degradation caused by mining wetlands for peat. However, the effects of replacing peat with biochar on CO2 emissions are little known. In this study, we measured CO2 flux rates in growing media with varying proportions of biochar (0%, 25%, 50%, 75%, and 100% levels) as a replacement for peat. Overall, we found that higher biochar levels (≥75%) in growing media resulted in a reduction in CO2 fluxes compared to pure peat (0% biochar), approaching near-zero emissions. In contrast, lower biochar levels (≤25%) had little to no effect on CO2 fluxes. When the growing media was fertigated or irrigated, we observed a decrease in CO2 fluxes in mixes containing 25%, 50%, and 75% biochar, though this effect was absent in mixes that were pure peat or pure biochar, suggesting that irrigation and fertilization regimes could be strategized to enhance biochar’s carbon emission impacts. Our study offers insights into the development of sustainable growing media to reduce the carbon footprint of horticulture and forestry nursery production systems and may help balance productivity with environmental conservation. Full article
Show Figures

Figure 1

23 pages, 5566 KiB  
Article
The Impact of Beach Wrack on Greenhouse Gas Emissions from Coastal Soils
by Olga Nesterova, Mariia Bovsun, Andrei Egorin, Andrey Yatsuk, Dmitry Kravchenko, Irina Lisina, Igor Stepochkin and Anastasia Brikmans
Climate 2025, 13(5), 91; https://doi.org/10.3390/cli13050091 - 30 Apr 2025
Viewed by 571
Abstract
The existing management strategies of macrophyte beach wrack are not always environmentally sound. In this study, we tried to assess the impact of the presence or absence of macrophyte beach wrack on the CO2 flux and the possibility of creating an environmentally [...] Read more.
The existing management strategies of macrophyte beach wrack are not always environmentally sound. In this study, we tried to assess the impact of the presence or absence of macrophyte beach wrack on the CO2 flux and the possibility of creating an environmentally sound recycling of macrophyte beach wrack based on their removal from the beach and processing into biochar. The study was conducted on the coast of the Sea of Japan in the bay of Kievka. The Picarro G4301 portable laser gas analyzer was used to measure CO2 fluxes in areas with and without macrophyte beach wrack. The CO2 flux was 23 times higher at plots with macrophyte beach wrack, compared with plots without macrophyte beach wrack. In the plots after manual removal of the macrophyte beach wrack, on average, there was a 1.6-fold decrease in flow values compared to the plots with the macrophyte beach wrack. Considering the frequency of emissions in the study area, which is associated with frequent cyclones and storms, it is possible to organize the systematic cleaning of macrophyte beach wrack for the production of biochar. Creating projects based on the conversion of macrophyte beach wrack into biochar can have both environmental and economic benefits. The environmental benefits include the reduction of CO2 flux at plots after manual removal of macrophyte beach wrack; the long-term storage of carbon from macrophyte beach wrack biomass in the form of biochar; and the reduction of CO2 flux from soils (carbon sequestration) with the correct technology of introducing biochar into the soil. However, for a more accurate assessment, monitoring seasonal measurements and economic calculations of the entire technological chain of production, risks, and footprint are necessary. Full article
(This article belongs to the Special Issue Coastal Hazards under Climate Change)
Show Figures

Figure 1

15 pages, 2513 KiB  
Article
Analysis of Flux Contribution Area in a Peatland of the Permafrost Zone in the Greater Khingan Mountains
by Jizhe Lian, Li Sun, Yongsi Wang, Xianwei Wang and Yu Du
Atmosphere 2025, 16(4), 452; https://doi.org/10.3390/atmos16040452 - 14 Apr 2025
Viewed by 401
Abstract
Flux contribution area analysis is a valuable method for identifying greenhouse gas flux sources and their spatiotemporal variations. Flux footprint models are commonly applied to determine the origin of flux observations and estimate the location, size, and relative contributions of different flux source [...] Read more.
Flux contribution area analysis is a valuable method for identifying greenhouse gas flux sources and their spatiotemporal variations. Flux footprint models are commonly applied to determine the origin of flux observations and estimate the location, size, and relative contributions of different flux source regions. Based on eddy covariance observation data, this study utilized the Kljun model and ART Footprint Tool to analyze the source area dynamics of peatland CO2 fluxes in the permafrost region of the Greater Khingan Mountains, examining the distribution characteristics of flux contribution areas across different seasons, and atmospheric conditions, while also assessing the influence of vegetation types on these areas. The results indicated that: (1) due to regional climate conditions and terrain, the predominant wind direction in all seasons was northeast-southwest, aligning with the main flux contribution direction; (2) when the flux contribution area reached 90%, the maximum source area distances under the stable and unstable atmospheric conditions were 393.3 and 185.6 m, respectively, with the range and distance of flux contribution areas being significantly larger under stable conditions; and (3) the peatland vegetation primarily consisted of trees, tall shrubs, dwarf shrubs, sedges, and mosses, among which shrub communities dominating flux contribution areas (55.6–59.1%) contribute the most to the flux contribution areas, followed by sedges (16.7–17.7%) and mosses (18.6–19.9%), while the influence of trees (0.4–0.6%) was minimal. Full article
(This article belongs to the Special Issue Research About Permafrost–Atmosphere Interactions (2nd Edition))
Show Figures

Figure 1

30 pages, 10749 KiB  
Article
Three-Dimensional Ecological Footprint Assessment of Cropland in Typical Grain-Producing Regions Based on Carbon Footprint Improvement
by Peipei Pan, Xiaowen Yuan, Yanan Jiang, Yuan Wang, Xinyun Wang and Yongqiang Cao
Land 2025, 14(4), 852; https://doi.org/10.3390/land14040852 - 14 Apr 2025
Viewed by 514
Abstract
The challenges of limited cropland resources and ecological degradation in grain-producing areas were addressed in this study within the broader context of China’s ecological civilization and dual carbon goals. An integrated framework was employed, applying the three-dimensional ecological footprint (EF3d) model, [...] Read more.
The challenges of limited cropland resources and ecological degradation in grain-producing areas were addressed in this study within the broader context of China’s ecological civilization and dual carbon goals. An integrated framework was employed, applying the three-dimensional ecological footprint (EF3d) model, enhanced by carbon footprint improvement, to assess cropland at the provincial, municipal, and county levels. The analysis indicated a rise in both carbon absorption and emissions, resulting in a carbon surplus. Since 1984, chemical fertilizers have been identified as the predominant source of carbon emissions. Carbon absorption was found to vary distinctly among the four crops. Additionally, carbon fluxes displayed notable spatial and temporal variability. The ecological deficit persisted, showing distinct spatial clustering. Moreover, the cropland ecological footprint breadth (EFsize) was found to exhibit a pattern of decrease–increase–decrease, while cropland occupation remained high. The ecological footprint depth (EFdepth) consistently surpassed the threshold of 1. Spatially, the distribution pattern of cropland EFsize was opposite to that of EFdepth; the centroid of per capita cropland EFdepth underwent a significant spatial shift. The cropland EF3d was observed to experience a downward trend, with considerable regional disparities. Furthermore, unsustainable use of cropland was observed across multiple scales. This research provides an empirical foundation for promoting advancing ecological agriculture and sustainable cropland use practices. Full article
Show Figures

Figure 1

18 pages, 2009 KiB  
Article
The Measurement of Hemp Concrete Thermal and Moisture Properties for an Effective Building Construction Proposal in Region of Slovakia (Central Europe)
by Richard Hrčka, Patrik Štompf, Stanislav Jochim, Marek Eduard Mikuš and Milan Iskra
Materials 2025, 18(7), 1651; https://doi.org/10.3390/ma18071651 - 3 Apr 2025
Viewed by 1373
Abstract
The construction industry is facing an increased demand to adopt sustainable green building materials to minimize the carbon footprint. Hemp concrete is a green building material not only because of its low embodied carbon but also because of its ability to regulate heat [...] Read more.
The construction industry is facing an increased demand to adopt sustainable green building materials to minimize the carbon footprint. Hemp concrete is a green building material not only because of its low embodied carbon but also because of its ability to regulate heat and relative humidity. Its thermal characteristics are often viewed as favorable for reducing the energy used to heat or cool indoor buildings. The current research is focused on the properties of hemp concrete from Slovak manufacturers which can be effectively used in construction as a replacement for conventional building materials and can also be effectively applied in building renovations. The basic thermal properties of hemp concrete, i.e., specific heat capacity, thermal conductivity, effusivity, thermal diffusivity, and lag time, were determined. The determination of all properties is dependent on the knowledge of heat fluxes at the surface and the density of samples. The insulation ability was expressed with a thermal conductivity of 0.099 W·m−1·K−1. The accumulation was expressed with a specific heat of 1540 J·kg−1·K−1 and density of 322 kg·m−3 in the air environment temperature of 22 °C and relative humidity of 50%. To assess moisture properties, the moisture content and the speed of molecules during diffusion and lag time, based on the thickness of the hemp concrete samples, were measured. The speed of water molecules during diffusion in hemp concrete was 8.6 × 10−7 m·s−1. The study shows that hemp concrete has interesting hydrothermal properties for use as an insulation layer in envelope structures. Thus, this material can be used effectively in the construction field in order to meet the requirements of the current standards, which aim to reduce energy and environmental impacts. Full article
Show Figures

Figure 1

18 pages, 3668 KiB  
Article
Hybrid Adsorption–Microfiltration Process for the Pretreatment of Sulfide-Containing Seawater: A Promising Strategy to Mitigate Membrane Fouling
by Ludi Song, Chengyi Dai, Zifei Chai, Mengzhe Cai, Huazhang Li, Sifan Wu, Lin Zhang, Yaqin Wu and Haitao Zhu
Membranes 2025, 15(4), 100; https://doi.org/10.3390/membranes15040100 - 31 Mar 2025
Viewed by 770
Abstract
The presence of dissolved sulfides in feed seawater causes severe elemental sulfur fouling in the reverse osmosis (RO) process. However, current pretreatment methods suffer from large footprint, high energy consumption, and limitations in effluent quality. In this study, adsorption and microfiltration are merged [...] Read more.
The presence of dissolved sulfides in feed seawater causes severe elemental sulfur fouling in the reverse osmosis (RO) process. However, current pretreatment methods suffer from large footprint, high energy consumption, and limitations in effluent quality. In this study, adsorption and microfiltration are merged into a single process for the pretreatment of sulfide-containing seawater. Powdered activated carbon (PAC) was selected for its superior adsorption capacity (14.6-fold) and faster kinetics (3.9-fold) for sulfide removal compared to granular activated carbon. The high surface area and multiple pore structures of PAC facilitate surface and intraparticle diffusion, as well as anion–π conjugation likely occur between PAC and sulfide. Polypropylene microporous membranes, capable of tolerating high PAC dosages, were used in the hybrid process. Long-term pilot tests demonstrated that the effluent (turbidity < 1 NTU and SDI15 ≈ 2.50) met the quality requirements for RO unit feedwater, achieving 100% sulfide removal efficiency over 101 h, with no risk of PAC leakage throughout the entire operation process. The formation of a loose, porous PAC cake layer alleviates membrane fouling and enhances the retention and adsorption of metal(loid)s and sulfide. Moreover, the low permeate flux of the polymeric membranes significantly mitigates filter cake formation. The hybrid system adapts to variations in feedwater quality, making it highly suitable for desalination plants with limited space and budget. These findings offer valuable insights and practical guidance for advancing seawater desalination pretreatment. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

12 pages, 21558 KiB  
Article
Ceramic Nanofiltration Membranes: Creating Nanopores by Calcination of Atmospheric-Pressure Molecular Layer Deposition Grown Titanicone Layers
by Harpreet Sondhi, Mingliang Chen, Michiel Pieter Nijboer, Arian Nijmeijer, Fred Roozeboom, Mikhael Bechelany, Alexey Kovalgin and Mieke Luiten-Olieman
Membranes 2025, 15(3), 86; https://doi.org/10.3390/membranes15030086 - 8 Mar 2025
Viewed by 1733
Abstract
Ceramic membrane technology, whether applied as a stand-alone separation technology or in combination with energy-intensive approaches like distillation, is a promising solution for lower energy alternatives with minimal carbon footprints. To improve the separation of solutes in the nanofiltration range from industrial wastewater [...] Read more.
Ceramic membrane technology, whether applied as a stand-alone separation technology or in combination with energy-intensive approaches like distillation, is a promising solution for lower energy alternatives with minimal carbon footprints. To improve the separation of solutes in the nanofiltration range from industrial wastewater streams, ceramic nanofiltration (NF) membranes with reproducible sub-nanometre pore sizes are required. To achieve this, the emerging technique of molecular layer deposition (MLD) is employed to develop ceramic NF membranes, and its efficiency and versatility make it a powerful tool for preparing uniform nanoscale high-porosity membranes. Our work, which involved vapor-phase titanium tetrachloride as a precursor and ethylene glycol as a co-reactant, followed by calcination in air at 350 °C, resulted in NF membranes with pore sizes (radii) around ~0.8 ± 0.1 nm and a demineralized water permeability of 13 ± 1 L·m−2·h−1·bar−1.The high-water flux with >90% rejection of polyethylene glycol molecules with a molecular size larger than 380 ± 6 Dalton indicates the efficiency of the MLD technique in membrane functionalization and size-selective separation processes, and its potential for industrial applications. Full article
Show Figures

Figure 1

22 pages, 2696 KiB  
Article
Benchmarking a Single-Stage REFLUX Flotation Cell Against a Multi-Stage Industrial Copper Concentrator and Lab-Scale Mechanical Cell
by Siân Parkes, Peipei Wang and Kevin P. Galvin
Minerals 2025, 15(3), 266; https://doi.org/10.3390/min15030266 - 3 Mar 2025
Cited by 1 | Viewed by 922
Abstract
A low-grade copper ore from an Australian mine was processed under continuous steady state conditions using the REFLUX Flotation Cell (RFC), and the performance was quantified with reference to a batch mechanical cell and the plant circuit, at the plant [...] Read more.
A low-grade copper ore from an Australian mine was processed under continuous steady state conditions using the REFLUX Flotation Cell (RFC), and the performance was quantified with reference to a batch mechanical cell and the plant circuit, at the plant feed concentration. In the RFC, the variation in the copper grade and the recovery were determined using feed fluxes ranging from 0.5 to 3.0 cm/s, with a strong positive bias flux to achieve cleaning. The RFC experiments showed an increasing product grade with increasing feed flux, increasing to 23% copper in a single stage. The result exceeded the grade of 14% produced by a laboratory-scale, two-stage mechanical cell and was comparable to the multi-stage plant circuit. The RFC recoveries increased with increasing feed flux, peaking at 81.7% for a feed flux of 2.0 cm/s before declining. Moreover, for equivalent copper recovery, the laboratory-scale RFC throughput performance was more than five times higher than for the rougher circuit of the industrial plant. It is noted the RFC product grade was nearly three times higher than for the rougher cells. For similar recoveries and product grades, the RFC throughput was about eight times higher than that observed for the rougher and cleaner circuits of the industrial plant. This work demonstrates the potential for the process footprint to be significantly minimised. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

9 pages, 1655 KiB  
Article
CO2 Footprint of Kiwi Fruits Deduced from Field Measurements and Cultivation Energy Data
by Zoi-Panagiota Kryona, Georgios-Archimidis Tsalidis, Glykeria Loupa and Spyridon Rapsomanikis
Atmosphere 2024, 15(11), 1355; https://doi.org/10.3390/atmos15111355 - 11 Nov 2024
Viewed by 1122
Abstract
The unequivocal understanding of the planetary-global climate change has rendered the apportionment of sources and sinks of greenhouse gases in the terrestrial domain, an urgent priority. In the present study, the micrometeorological method of “dynamic gradient fluxes” coupled with the Monin–Obukhov similarity theory, [...] Read more.
The unequivocal understanding of the planetary-global climate change has rendered the apportionment of sources and sinks of greenhouse gases in the terrestrial domain, an urgent priority. In the present study, the micrometeorological method of “dynamic gradient fluxes” coupled with the Monin–Obukhov similarity theory, was utilised for the determination of net ecosystem exchange of carbon dioxide (CO2) from a kiwi plantation. This annual net exchange, in conjunction with the energy and fertiliser equivalent CO2 used, established the CO2 footprint of the produce. For the year 2023, the CO2 Net Ecosystem Exchange (NEE) is −16.20 tonnes per hectare per year (CO2 uptake by the plantation). The cultivation processes used throughout the year consumed +2.96 tonnes per hectare per year, and after deduction of this value from the NEE, the result is in a net CO2 sink for the kiwi plantation of −13.24 tonnes per hectare per year. It is hence obvious that, under these conditions, the kiwi plantations in Greece can be net CO2 sinks. This result is of increasing importance since the country is the fourth largest producer of kiwi globally, with production increasing in later years. Full article
(This article belongs to the Special Issue Development in Atmospheric Dispersion Modelling)
Show Figures

Figure 1

12 pages, 2786 KiB  
Article
Case Study: Impact Analysis of Roof-Top Green Infrastructure on Urban System Sustainability in San José, CA
by Indumathi Jeyachandran and Juneseok Lee
Sustainability 2024, 16(22), 9781; https://doi.org/10.3390/su16229781 - 9 Nov 2024
Cited by 1 | Viewed by 2313
Abstract
This paper presents results from a case study focusing on analyzing impacts of Green Infrastructure (GI) on sensible and latent heat fluxes, urban microclimate and the subsequent water–energy nexus components of an urban infrastructure system. The case study, focusing on the campus of [...] Read more.
This paper presents results from a case study focusing on analyzing impacts of Green Infrastructure (GI) on sensible and latent heat fluxes, urban microclimate and the subsequent water–energy nexus components of an urban infrastructure system. The case study, focusing on the campus of a public university in San José, CA, aimed to quantify the pre- and post-conditions for a hypothetical GI implementation, which is in support of San José State University’s (SJSU) robust sustainability initiatives, which are also aligned with Silicon Valley’s broader strategic goals. The results revealed that a reduction of 0.3 °C in the average daily peak maximum temperature on campus could be achieved by the GI implementation. Air-conditioning related energy use was projected to decrease by 1.28%, monthly water use by 7052 m3, and it would result in an estimated reduction of approximately 2800 kWh in the water–energy nexus. In addition to lowering the campus’s carbon footprint, GI therefore offers significant economic and environmental benefits in terms of reductions in the urban air temperature, energy usage and water demand. This study provides valuable information for policy makers and low impact development water infrastructure managers considering GI implementation. Full article
Show Figures

Figure 1

20 pages, 1446 KiB  
Article
Combining the Eddy Covariance Method and Dry Matter Intake Measurements for Enteric Methane Emission Estimation from Grazing Dairy Cows
by Marie-Sophie R. Eismann, Hendrik P. J. Smit, Arne Poyda, Ralf Loges, Christof Kluß and Friedhelm Taube
Atmosphere 2024, 15(11), 1269; https://doi.org/10.3390/atmos15111269 - 24 Oct 2024
Cited by 1 | Viewed by 1723
Abstract
Effective greenhouse gas mitigation strategies in the agricultural sector are crucial for reducing emissions. Methane (CH4) emissions associated with agriculture are predominantly the result of enteric fermentation from ruminant production systems. Accurate measurement of these emissions is essential for assessing environmental [...] Read more.
Effective greenhouse gas mitigation strategies in the agricultural sector are crucial for reducing emissions. Methane (CH4) emissions associated with agriculture are predominantly the result of enteric fermentation from ruminant production systems. Accurate measurement of these emissions is essential for assessing environmental impacts and developing effective mitigation strategies. The eddy covariance (EC) method is widely used to measure trace gas and energy fluxes and has since also been adapted to measure enteric CH4 emissions from grazing ruminants effectively. This study combined EC measurements of CH4 emissions from pasture-based Jersey cows with milk production, feed intake data and CH4 prediction equations during four measurement campaigns between September and November 2022 in northern Germany. Cows’ distance relative to the EC station was controlled by a specialized fencing system and its effect on the measured CH4 fluxes was adjusted by means of footprint (FP) flux allocation based on a two-dimensional FP model. The EC method presented very low daily emissions of 205 g CH4 cow−1 day−1, below the estimations based on the Intergovernmental Panel on Climate Change (IPCC) Tier 2 default values and other equations based on feed intake and feed quality parameters. The results of this study indicated that the EC method, in combination with a specialized fencing design, is an appropriate method to measure enteric CH4 emissions of dairy cows in pasture-based systems. Moreover, this study showed that a comprehensive dataset of animal-related data is a practical tool to contextualize the results. Full article
(This article belongs to the Special Issue Gas Emissions in Agriculture)
Show Figures

Figure 1

25 pages, 9257 KiB  
Article
Investigating Variations in Anthropogenic Heat Flux along Urban–Rural Gradients in 208 Cities in China during 2000–2016
by Ling Cui and Qiang Chen
Buildings 2024, 14(9), 2766; https://doi.org/10.3390/buildings14092766 - 3 Sep 2024
Viewed by 1151
Abstract
Anthropogenic heat emissions, which are quantified as anthropogenic heat flux (AHF), have attracted significant attention due to their pronounced impacts on urban thermal environments and local climates. However, there remains a notable gap in research regarding the distinctions in the distribution of anthropogenic [...] Read more.
Anthropogenic heat emissions, which are quantified as anthropogenic heat flux (AHF), have attracted significant attention due to their pronounced impacts on urban thermal environments and local climates. However, there remains a notable gap in research regarding the distinctions in the distribution of anthropogenic heat emissions (AHEs) along urban–rural gradients. To address this gap, the present study introduces a new concept—the anthropogenic urban heat island (ArUHI)—where the AHF within urban areas is higher than that in background areas. To quantitatively describe the magnitude and spatial extent of the ArUHI effect, two metrics—namely, ArUHI intensity (ArUHII) and ArUHI footprint (ArUHIFP)—are introduced. We conducted a comprehensive study across 208 cities in China to investigate the spatiotemporal patterns of AHF variations along urban–rural gradients during the period of 2000–2016. In addition, we explored how the complex interactions between land cover and building form components affect changes in the AHF along urban–rural gradients. Additionally, we analyzed how economic zones and city sizes alter the ArUHI intensity and ArUHI footprint. The results showed that 97% (201/208) of Chinese cities exhibited a significant ArUHI effect from 2000 to 2016. The modeled ArUHI intensity value exhibited a substantial increase of nearly fivefold, increasing from 5.55 ± 0.19 W/m2 to 26.84 ± 0.99 W/m2 over time. Regarding the spatial distribution of the ArUHI footprint, the analysis revealed that, for the majority of cities (86% or 179 out of 208), the ArUHI footprint ranged from 1.5 to 5.5 times that in urban areas. City sizes and economic zones yielded significant influences on the ArUHI intensity and ArUHI footprint values. Building forms were significantly positively correlated with AHF, with R2 values higher than 0.94. This study contributes to the understanding of ArUHI effects and their driving factors in China, providing valuable insights for urban climate studies and enhancing our understanding of surface urban heat island mechanisms. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop