Replacing Peat with Biochar: Can Adding Biochar to Peat Moss Reduce Carbon Dioxide Fluxes?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Media Preparation and Experimental Treatments and Design
- Irrigation: The tray/mix received 500 mL of water.
- Fertigation: The tray received 500 mL of fertilizer solution (492 mL of water mixed with 8 mL of 20-10-20 (N-P-K) fertilizer).
- Untreated control: No water or fertilizer was added to the tray/mix.
2.2. CO2 Respiration Measurements
2.3. Data Analysis
3. Results
3.1. Effects of Combined Treatments and Biochar Level
3.2. Effects of Treatment Across Biochar Levels
3.3. Temporal Patterns in CO2 Flux
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CO2 | Carbon Dioxide |
GHG | Greenhouse Gas |
N-P-K | Nitrogen–Phosphorus–Potassium |
ppm | Parts per million |
References
- Di Lonardo, S.; Baronti, S.; Vaccari, F.P.; Albanese, L.; Battista, P.; Miglietta, F.; Bacci, L. Biochar-based nursery substrates: The effect of peat substitution on reduced salinity. Urban For. Urban Green. 2017, 23, 27–34. [Google Scholar] [CrossRef]
- Loisel, J.; Gallego-Sala, A. Ecological resilience of restored peatlands to climate change. Commun. Earth Environ. 2022, 3, 208. [Google Scholar] [CrossRef]
- Yu, P.; Qin, K.; Niu, G.; Gu, M. Alleviate environmental concerns with biochar as a container substrate: A review. Front. Plant Sci. 2023, 14, 1176646. [Google Scholar] [CrossRef] [PubMed]
- Brioche, A.; National Minerals Information Center; United States Geological Survey. Peat Statistics and Information. 2022. Available online: https://www.usgs.gov/centers/national-minerals-information-center/peat-statistics-and-information (accessed on 4 November 2024).
- GOV.UK. Sale of Horticultural Peat to Be Banned in Move to Protect England’s Precious Peatlands. Available online: https://www.gov.uk/government/news/sale-of-horticultural-peat-to-be-banned-in-move-to-protect-englands-precious-peatlands (accessed on 4 November 2024).
- Starkey, T.; Enebank, S.; South, D.B. Tree Planters’ Notes—Reforestation, Nurseries and Genetics Resources. Rngr. Net. 2015, 58, 1. Available online: https://rngr.net/publications/tpn/58-1 (accessed on 4 November 2024).
- Meng, W.; He, M.; Li, H.; Hu, B.; Mo, X. Greenhouse gas emissions from different plant production system in China. J. Clean. Prod. 2019, 235, 741–750. [Google Scholar] [CrossRef]
- South, D.B.; Enebak, S.A. Forest Nursery Practices in the Southern United States. Reforesta 2016, 1, 106–146. [Google Scholar] [CrossRef]
- Enebak, S.A.; Newell, A. PMSP for Pine Tree Nursery in the Southeastern United States. National IPM Database. 2022. Available online: https://ipmdata.ipmcenters.org/ (accessed on 17 March 2025).
- Harris, L.I.; Richardson, K.; Bona, K.A.; Davidson, S.J.; Finkelstein, S.A.; Garneau, M.; McLaughlin, J.; Nwaishi, F.; Olefeldt, D.; Packalen, M.; et al. The essential carbon service provided by northern peatlands. Front. Ecol. Environ. 2021, 20, 222–230. [Google Scholar] [CrossRef]
- Hashemi, F.; Mogensen, L.; Smith, A.M.; Larsen, S.U.; Knudsen, M.T. Greenhouse gas emissions from bio-based growing media: A life-cycle assessment. Sci. Total Environ. 2024, 907, 167977. [Google Scholar] [CrossRef]
- Marble, S.C.; Prior, S.A.; Runion, G.B.; Torbert, H.A.; Gilliam, C.H.; Fain, G.B.; Sibley, J.L.; Knight, P.R. Determining Trace Gas Efflux from Container Production of Woody Nursery Crops. J. Environ. Hortic. 2012, 30, 118–124. [Google Scholar] [CrossRef]
- Guo, Y.; Niu, G.; Starman, T.; Volder, A.; Gu, M. Poinsettia Growth and Development Response to Container Root Substrate with Biochar. Horticulturae 2018, 4, 1. [Google Scholar] [CrossRef]
- Huang, L.; Yu, P.; Gu, M. Evaluation of Biochar and Compost Mixes as Substitutes to a Commercial Propagation Mix. Appl. Sci. 2019, 9, 4394. [Google Scholar] [CrossRef]
- Steiner, C.; Harttung, T. Biochar as a growing media additive and peat substitute. Solid Earth 2014, 5, 995–999. [Google Scholar] [CrossRef]
- Dumroese, R.K.; Pinto, J.R.; Heiskanen, J.; Tervahauta, A.; McBurney, K.G.; Page-Dumroese, D.S.; Englund, K. Biochar Can Be a Suitable Replacement for Sphagnum Peat in Nursery Production of Pinus ponderosa Seedlings. Forests 2018, 9, 232. [Google Scholar] [CrossRef]
- Dumroese, R.K.; Page-Dumroese, D.S.; Pinto, J.R. Biochar potential to enhance forest resilience, seedling quality, and nursery efficiency. Tree Plant. Notes 2020, 63, 61–68. [Google Scholar]
- Ali, L.; Xiukang, W.; Naveed, M.; Ashraf, S.; Nadeem, S.M.; Haider, F.U.; Mustafa, A. Impact of Biochar Application on Germination Behavior and Early Growth of Maize Seedlings: Insights from a Growth Room Experiment. Appl. Sci. 2021, 11, 11666. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K.; Avasthe, R. Evaluating biomass-derived biochar on seed germination and early seedling growth of maize and black gram. Biomass Convers. Biorefin. 2020, 12, 5663–5676. [Google Scholar] [CrossRef]
- Murphy, A.-M.; Runion, G.B.; Prior, S.A.; Torbert, H.A.; Sibley, J.L.; Fain, G.B.; Pickens, J.M. Effects of Growth Substrate on Greenhouse Gas Emissions from Three Annual Species1. J. Environ. Hortic. 2021, 39, 53–61. [Google Scholar] [CrossRef]
- Fryda, L.; Visser, R.; Schmidt, J. Biochar replaces peat in horticulture: Environmental impact assessment of combined biochar & bioenergy production. Detritus 2018, 5, 1. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. Change Biol. Bioener. 2015, 8, 512–523. [Google Scholar] [CrossRef]
- Alvarez, J.M.; Pasian, C.; Lal, R.; Lopez-Nuñez, R.; Fernández, M. A biotic strategy to sequester carbon in the ornamental containerized bedding plant production: A review. Span. J. Agric. Res. 2018, 16, e03R01. [Google Scholar] [CrossRef]
- Bolan, S.; Hou, D.; Wang, L.; Hale, L.; Egamberdieva, D.; Tammeorg, P.; Li, R.; Wang, B.; Xu, J.; Wang, T.; et al. The potential of biochar as a microbial carrier for agricultural and environmental applications. Sci. Total Environ. 2023, 886, 163968. [Google Scholar] [CrossRef] [PubMed]
- South, D.; Nadel, R. Irrigation in pine nurseries. Reforesta 2020, 10, 40–83. [Google Scholar] [CrossRef]
- Sainju, U.M.; Jabro, J.D.; Stevens, W.B. Soil Carbon Dioxide Emission and Carbon Content as Affected by Irrigation, Tillage, Cropping System, and Nitrogen Fertilization. J. Environ. Qual. 2008, 37, 98–106. [Google Scholar] [CrossRef]
- Jassal, R.S.; Black, T.A.; Roy, R.; Ethier, G. Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and bole respiration. Geoderma 2011, 162, 182–186. [Google Scholar] [CrossRef]
- Tarkhov, M.O.; Matyshak, G.V.; Ryzhova, I.M.; Goncharova, O.Y.; Chuvanov, S.V.; Timofeeva, M.V. Temperature Sensitivity of Peatland Soils Respiration Across Different Terrestrial Ecosystems. Eurasian Soil Sci. 2024, 57, 1616–1627. [Google Scholar] [CrossRef]
- Knight, S.L. Constructing Specialized Plant Growth Chambers for Gas-exchange Research: Considerations and Concerns. HortScience 1992, 27, 767–769. [Google Scholar] [CrossRef]
- Srivastava, P.; Gadi, Y.; Supriya; Bhojendra; Lytand, W.; Singh, B.V.; Katiyar, D. Biochar’s Influence on Soil Microorganisms: Understanding the Impacts and Mechanisms. Int. J. Plant Soil Sci. 2023, 35, 455–464. [Google Scholar] [CrossRef]
- Graaff M-Ade Classen, A.T.; Castro, H.F.; Schadt, C.W. Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol. 2010, 188, 1055–1064. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Wong, J.T.F.; Hashimoto, Y.; Huang, L.; Rinklebe, J.; Chang, S.X.; Bolan, N.; Wang, H.; Ok, Y.S. Response of microbial communities to biochar-amended soils: A critical review. Biochar 2019, 1, 3–22. [Google Scholar] [CrossRef]
- Atilano-Camino, M.M.; Canizales, A.P.; Ortega, A.M.; Valenzuela, A.K.; Pat-Espadas, A.M. Impact of Soil Amendment with Biochar on Greenhouse Gases Emissions, Metals Availability and Microbial Activity: A Meta-Analysis. Sustainability 2022, 14, 15648. [Google Scholar] [CrossRef]
- Saarnio, S.; Kekkonen, H.; Lång, K. Addition of softwood biochar did not reduce N2O emissions or N leaching from peat soil in the short term. Sci. Total Environ. 2024, 944, 173906. [Google Scholar] [CrossRef] [PubMed]
- Messiga, A.J.; Hao, X.; Noura Ziadi Dorais, M. Reducing peat in growing media: Impact on nitrogen content, microbial activity, and CO2 and N2O emissions. Can. J. Soil Sci. 2022, 102, 77–87. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Wei, X.; Shaukat, N.; Chen, J.; Raza, A.; Younis, A.; Nafees, M.; Abideen, Z.; Zaid, A.; Latif, N.; et al. Effects of Biochar and Biochar–Compost Mix on Growth, Performance and Physiological Responses of Potted Alpinia zerumbet. Sustainability 2021, 13, 11226. [Google Scholar] [CrossRef]
- Prior, S.A.; Runion, G.B.; Murphy, A.-M.; Hoffman, H.; Johnson, M.G.; Torbert, H.A. Influence of Biochar Addition to Nursery Container Media: Trace Gas Efflux, Growth, and Leachate, N. J. Environ. Hortic. 2023, 41, 141–151. [Google Scholar] [CrossRef]
- García-Rodríguez, Á.F.; Moreno-Racero, F.J.; García de Castro Barragán, J.M.; Colmenero-Flores, J.M.; Greggio, N.; Knicker, H.; Rosales, M.A. Influence of Biochar Mixed into Peat Substrate on Lettuce Growth and Nutrient Supply. Horticulturae 2022, 8, 1214. [Google Scholar] [CrossRef]
- Eskandari, S.; Mohammadi, A.; Sandberg, M.; Eckstein, R.L.; Hedberg, K.; Granström, K. Hydrochar-Amended Substrates for Production of Containerized Pine Tree Seedlings under Different Fertilization Regimes. Agronomy 2019, 9, 350. [Google Scholar] [CrossRef]
- Sarauer, J.; Coleman, M. Douglas-fir seedling quality in biochar-amended peat substrates. Reforesta 2019, 7, 1–14. [Google Scholar] [CrossRef]
- Demirkaya, S.; Ay, A.; Gülser, C.; Kızılkaya, R. Enhancing Clay Soil Productivity with Fresh and Aged Biochar: A Two-Year Field Study on Soil Quality and Wheat Yield. Sustainability 2025, 17, 642. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Yang, Q.; Xu, H.; Shen, G.; Chen, Q. Optimizing Biochar Application Rates to Improve Soil Properties and Crop Growth in Saline–Alkali Soil. Sustainability 2024, 16, 2523. [Google Scholar] [CrossRef]
- Helliwell, R. Effect of biochar on plant growth. Arboric. J. 2015, 37, 238–242. [Google Scholar] [CrossRef]
- Gale, N.V.; Sackett, T.E.; Thomas, S.C. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds. Peer J. 2016, 4, e2385. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Glaser, B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutr. Soil Sci. 2012, 175, 410–422. [Google Scholar] [CrossRef]
- Fidel, R.; Laird, D.; Parkin, T. Effect of Biochar on Soil Greenhouse Gas Emissions at the Laboratory and Field Scales. Soil Syst. 2019, 3, 8. [Google Scholar] [CrossRef]
- Shaukat, M.; Samoy-Pascual, K.; Maas, E.D.; Ahmad, A. Simultaneous effects of biochar and nitrogen fertilization on nitrous oxide and methane emissions from paddy rice. J. Environ. Manag. 2019, 248, 109242. [Google Scholar] [CrossRef]
Biochar Level | |||||
---|---|---|---|---|---|
0% | 25% | 50% | 75% | 100% | |
pH | 6.77 | 7.22 | 7.59 | 8.36 | 8.91 |
Electrical Conductance (mmhos/cm) | 1.05 | 0.70 | 0.64 | 0.85 | 0.78 |
Soluble Salts (ppm) | 735 | 490 | 448 | 595 | 546 |
Nitrate Nitrogen (ppm) | <0.05 | 0.08 | 0.06 | <0.05 | <0.05 |
Phosphorus (ppm) | 9.6 | 2.7 | 1.9 | 1.6 | 0.4 |
Potassium (ppm) | 84.0 | 83.5 | 85.1 | 132.0 | 138.6 |
Magnesium (ppm) | 46.7 | 17.4 | 10.9 | 9.5 | 5.2 |
Calcium (ppm) | 100.2 | 32.1 | 21.8 | 16.7 | 4.1 |
Boron (ppm) | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
Copper (ppm) | 0.14 | 0.06 | 0.05 | <0.05 | <0.05 |
Iron (ppm) | <0.05 | 0.07 | 0.09 | 0.04 | 0.24 |
Manganese (ppm) | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
Zinc (ppm) | 0.08 | 0.04 | 0.02 | <0.05 | <0.05 |
Sodium (ppm) | 43.0 | 46.5 | 52.9 | 82.3 | 85.0 |
Aluminum (ppm) | <0.05 | 0.12 | 0.16 | 0.09 | 0.52 |
Df | SS | MS | F | p-Value | |
---|---|---|---|---|---|
Biochar Level | 4 | 0.021 | 0.005 | 28.103 | <0.001 |
Treatment | 2 | 0.009 | 0.005 | 25.476 | <0.001 |
Day | 3 | 0.004 | 0.001 | 8.074 | <0.001 |
Biochar Level/Treatment | 8 | 0.01 | 0.001 | 6.581 | <0.001 |
Biochar Level/Day | 12 | 0.01 | 0.001 | 4.716 | <0.001 |
Treatment/Day | 3 | 0 | 0 | 0.324 | >0.05 |
Biochar Level/Treatment/Day | 12 | 0.004 | 0 | 1.695 | >0.05 |
Residuals | 90 | 0.017 | 0 | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leopard, J.; Sharma, A.; Maggard, A.; Ding, C.; Cristan, R.; Vogel, J. Replacing Peat with Biochar: Can Adding Biochar to Peat Moss Reduce Carbon Dioxide Fluxes? Sustainability 2025, 17, 4139. https://doi.org/10.3390/su17094139
Leopard J, Sharma A, Maggard A, Ding C, Cristan R, Vogel J. Replacing Peat with Biochar: Can Adding Biochar to Peat Moss Reduce Carbon Dioxide Fluxes? Sustainability. 2025; 17(9):4139. https://doi.org/10.3390/su17094139
Chicago/Turabian StyleLeopard, John, Ajay Sharma, Adam Maggard, Chen Ding, Richard Cristan, and Jason Vogel. 2025. "Replacing Peat with Biochar: Can Adding Biochar to Peat Moss Reduce Carbon Dioxide Fluxes?" Sustainability 17, no. 9: 4139. https://doi.org/10.3390/su17094139
APA StyleLeopard, J., Sharma, A., Maggard, A., Ding, C., Cristan, R., & Vogel, J. (2025). Replacing Peat with Biochar: Can Adding Biochar to Peat Moss Reduce Carbon Dioxide Fluxes? Sustainability, 17(9), 4139. https://doi.org/10.3390/su17094139