Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = fluidic actuation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5666 KiB  
Article
Mechatronic and Robotic Systems Utilizing Pneumatic Artificial Muscles as Actuators
by Željko Šitum, Juraj Benić and Mihael Cipek
Inventions 2025, 10(4), 44; https://doi.org/10.3390/inventions10040044 - 23 Jun 2025
Viewed by 394
Abstract
This article presents a series of innovative systems developed through student laboratory projects, comprising two autonomous vehicles, a quadrupedal walking robot, an active ankle-foot orthosis, a ball-on-beam balancing mechanism, a ball-on-plate system, and a manipulator arm, all actuated by pneumatic artificial muscles (PAMs). [...] Read more.
This article presents a series of innovative systems developed through student laboratory projects, comprising two autonomous vehicles, a quadrupedal walking robot, an active ankle-foot orthosis, a ball-on-beam balancing mechanism, a ball-on-plate system, and a manipulator arm, all actuated by pneumatic artificial muscles (PAMs). Due to their flexibility, low weight, and compliance, fluidic muscles demonstrate substantial potential for integration into various mechatronic systems, robotic platforms, and manipulators. Their capacity to generate smooth and adaptive motion is particularly advantageous in applications requiring natural and human-like movements, such as rehabilitation technologies and assistive devices. Despite the inherent challenges associated with nonlinear behavior in PAM-actuated control systems, their biologically inspired design remains promising for a wide range of future applications. Potential domains include industrial automation, the automotive and aerospace sectors, as well as sports equipment, medical assistive devices, entertainment systems, and animatronics. The integration of self-constructed laboratory systems powered by PAMs into control systems education provides a comprehensive pedagogical framework that merges theoretical instruction with practical implementation. This methodology enhances the skillset of future engineers by deepening their understanding of core technical principles and equipping them to address emerging challenges in engineering practice. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

15 pages, 36663 KiB  
Article
Self-Sensing of Piezoelectric Micropumps: Gas Bubble Detection by Artificial Intelligence Methods on Limited Embedded Systems
by Kristjan Axelsson, Mohammadhossien Sheikhsarraf, Christoph Kutter and Martin Richter
Sensors 2025, 25(12), 3784; https://doi.org/10.3390/s25123784 - 17 Jun 2025
Viewed by 394
Abstract
Gas bubbles are one of the main disturbances encountered when dispensing drugs of microliter volumes using portable miniaturized systems based on piezoelectric diaphragm micropumps. The presence of a gas bubble in the pump chamber leads to the inaccurate administration of the required dose [...] Read more.
Gas bubbles are one of the main disturbances encountered when dispensing drugs of microliter volumes using portable miniaturized systems based on piezoelectric diaphragm micropumps. The presence of a gas bubble in the pump chamber leads to the inaccurate administration of the required dose due to its impact on the flowrate. This is particularly important for highly concentrated drugs such as insulin. Different types of sensors are used to detect gas bubbles: inline on the fluidic channels or inside the pump chamber itself. These solutions increase the complexity, size, and cost of the microdosing system. To address these problems, a radically new approach is taken by utilizing the sensing capability of the piezoelectric diaphragm during micropump actuation. This work demonstrates the workflow to build a self-sensing micropump based on artificial intelligence methods on an embedded system. This is completed by the implementation of an electronic circuit that amplifies and samples the loading current of the piezoelectric ceramic with a microcontroller STM32G491RE. Training datasets of 11 micropumps are generated at an automated testbench for gas bubble injections. The training and hyper-parameter optimization of artificial intelligence algorithms from the TensorFlow and scikit-learn libraries are conducted using a grid search approach. The classification accuracy is determined by a cross-training routine, and model deployment on STM32G491RE is conducted utilizing the STM32Cube.AI framework. The finally deployed model on the embedded system has a memory footprint of 15.23 kB, a runtime of 182 µs, and detects gas bubbles with an accuracy of 99.41%. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

31 pages, 13407 KiB  
Article
Development of 6D Electromagnetic Actuation for Micro/Nanorobots in High Viscosity Fluids for Drug Delivery
by Maki K. Habib and Mostafa Abdelaziz
Technologies 2025, 13(5), 174; https://doi.org/10.3390/technologies13050174 - 27 Apr 2025
Viewed by 537
Abstract
This research focuses on the development, design, implementation, and testing (with complete hardware and software integration) of a 6D Electromagnetic Actuation (EMA) system for the precise control and navigation of micro/nanorobots (MNRs) in high-viscosity fluids, addressing critical challenges in targeted drug delivery within [...] Read more.
This research focuses on the development, design, implementation, and testing (with complete hardware and software integration) of a 6D Electromagnetic Actuation (EMA) system for the precise control and navigation of micro/nanorobots (MNRs) in high-viscosity fluids, addressing critical challenges in targeted drug delivery within complex biological environments, such as blood vessels. The primary objective is to overcome limitations in the actuation efficiency, trajectory stability, and accurate path-tracking of MNRs. The EMA system utilizes three controllable orthogonal pairs of Helmholtz coils to generate uniform magnetic fields, which magnetize and steer MNRs in 3D for orientation. Another three controllable orthogonal pairs of Helmholtz coils generate uniform magnetic fields for the precise 3D orientation and steering of MNRs. Additionally, three orthogonal pairs of Maxwell coils generate uniform magnetic field gradients, enabling efficient propulsion in dynamic 3D fluidic environments in real time. This hardware configuration is complemented by three high-resolution digital microscopes that provide real-time visual feedback, enable the dynamic tracking of MNRs, and facilitate an effective closed-loop control mechanism. The implemented closed-loop control technique aimed to enhance trajectory accuracy, minimize deviations, and ensure the stable movement of MNRs along predefined paths. The system’s functionality, operation, and performance were tested and verified through various experiments, focusing on hardware, software integration, and the control algorithm. The experimental results show the developed system’s ability to activate MNRs of different sizes (1 mm and 0.5 mm) along selected desired trajectories. Additionally, the EMA system can stably position the MNR at any point within the 3D fluidic environment, effectively counteracting gravitational forces while adhering to established safety standards for electromagnetic exposure to ensure biocompatibility and regulatory compliance. Full article
(This article belongs to the Special Issue IoT-Enabling Technologies and Applications)
Show Figures

Figure 1

14 pages, 2672 KiB  
Article
A Bio-Inspired Flexible Arm for Subsea Inspection: A Water Hydraulically Actuated Continuum Manipulator
by Emanuele Guglielmino, David Branson and Paolo Silvestri
J. Mar. Sci. Eng. 2025, 13(4), 676; https://doi.org/10.3390/jmse13040676 - 27 Mar 2025
Viewed by 506
Abstract
This paper outlines the outcomes of a multidisciplinary initiative aimed at creating flexible arms that leverage key aspects of soft-bodied sea animal anatomy. We designed and prototyped a flexible arm inspired by nature while focusing on integrating practical engineering technologies from a system [...] Read more.
This paper outlines the outcomes of a multidisciplinary initiative aimed at creating flexible arms that leverage key aspects of soft-bodied sea animal anatomy. We designed and prototyped a flexible arm inspired by nature while focusing on integrating practical engineering technologies from a system perspective. The mechanical structure was developed by studying soft-bodied marine animals from the cephalopod order. Simultaneously, we carefully addressed engineering challenges and limitations, including material flexibility, inherent safety, energy efficiency, cost-effectiveness, and manufacturing feasibility. The design process is demonstrated through two successive generations of prototypes utilizing fluidic actuators. The first one exhibited both radial and longitudinal actuators, the second one only longitudinal actuators, thus trading off between bio-inspiration and engineering constraints. Full article
Show Figures

Figure 1

25 pages, 4035 KiB  
Review
Review of Electrohydraulic Actuators Inspired by the HASEL Actuator
by Levi Tynan, Upul Gunawardana, Ranjith Liyanapathirana, Osura Perera, Daniele Esposito, Jessica Centracchio and Gaetano Gargiulo
Biomimetics 2025, 10(3), 152; https://doi.org/10.3390/biomimetics10030152 - 2 Mar 2025
Viewed by 1880
Abstract
The muscle-like movement and speed of the electrohydraulic actuator have granted it much attention in soft robotics. Our aim is to review the advancements in electrohydraulic actuators inspired by the Hydraulically Amplified Self-healing Electrostatic (HASEL) actuator. With this paper, we focus on the [...] Read more.
The muscle-like movement and speed of the electrohydraulic actuator have granted it much attention in soft robotics. Our aim is to review the advancements in electrohydraulic actuators inspired by the Hydraulically Amplified Self-healing Electrostatic (HASEL) actuator. With this paper, we focus on the performance of 21 electrohydraulic actuator designs developed across five Universities, ranging from the earliest HASEL designs to the latest electrohydraulic designs. These actuators reported up to 60 N forces and contracting strains of up to 99%. The actuators with the best overall performance so far have been the Quadrant HASEL actuator and the HEXEL actuator, developed at the University of Colorado Boulder. However, notable is also the HALVE actuator (produced by ETH Zürich, Switzerland), which, by using a 5 µm PVDF-TrFE-CTFE film with a relative permittivity of 40, produced 100 times the electrostatic force of any of the electrohydraulic actuators under review. The latter shows that there is room for improvement as low force and displacement still limit the viability of the soft actuators in real-life applications. Full article
Show Figures

Figure 1

35 pages, 2694 KiB  
Review
Synthetic Jet Actuators for Active Flow Control: A Review
by Howard H. Ho, Ali Shirinzad, Ebenezer E. Essel and Pierre E. Sullivan
Fluids 2024, 9(12), 290; https://doi.org/10.3390/fluids9120290 - 6 Dec 2024
Cited by 4 | Viewed by 3239
Abstract
A synthetic jet actuator (SJA) is a fluidic device often consisting of a vibrating diaphragm that alters the volume of a cavity to produce a synthesized jet through an orifice. The cyclic ingestion and expulsion of the working fluid leads to a zero-net [...] Read more.
A synthetic jet actuator (SJA) is a fluidic device often consisting of a vibrating diaphragm that alters the volume of a cavity to produce a synthesized jet through an orifice. The cyclic ingestion and expulsion of the working fluid leads to a zero-net mass-flux and the transfer of linear momentum to the working fluid over an actuation cycle, leaving a train of vortex structures propagating away from the orifice. SJAs are a promising technology for flow control applications due to their unique features, such as no external fluid supply or ducting requirements, short response time, low weight, and compactness. Hence, they have been the focus of many research studies over the past few decades. Despite these advantages, implementing an effective control scheme using SJAs is quite challenging due to the large parameter space involving several geometrical and operational variables. This article aims to explain the working mechanism of SJAs and provide a comprehensive review of the effects of SJA design parameters in quiescent conditions and cross-flow. Full article
Show Figures

Figure 1

12 pages, 796 KiB  
Article
Tug-of-War-Style High-Force Fluidic Actuation for Small Diameter Steerable Instruments
by Robert Lathrop, Mouloud Ourak, Jan Deprest and Emmanuel Vander Poorten
Actuators 2024, 13(11), 444; https://doi.org/10.3390/act13110444 - 7 Nov 2024
Viewed by 1042
Abstract
Miniature steerable instruments have the potential to reduce the invasiveness of therapeutic interventions and enable new treatment options. Traditional ways of driving such instruments rely on extrinsic systems due to the challenge of miniaturizing and embedding intrinsic actuators that are powerful enough near [...] Read more.
Miniature steerable instruments have the potential to reduce the invasiveness of therapeutic interventions and enable new treatment options. Traditional ways of driving such instruments rely on extrinsic systems due to the challenge of miniaturizing and embedding intrinsic actuators that are powerful enough near the instrument tip or within the instrument shaft. This work introduces a method to amplify the output force of fluidic actuators by connecting their outputs in parallel but distributing them serially in currently underutilized space along the device’s long axis. It is shown that this new approach makes it possible to realize a significant force amplification within the same instrument diameter, producing a 380% higher static force and a further driving motion of the steerable bending segment 55.6° than an actuator representing the current state of the art, all while occupying a similar footprint. Full article
Show Figures

Figure 1

18 pages, 1854 KiB  
Article
Modeling of Actuation Force, Pressure and Contraction of Fluidic Muscles Based on Machine Learning
by Sandi Baressi Šegota, Mario Ključević, Dario Ogrizović and Zlatan Car
Technologies 2024, 12(9), 161; https://doi.org/10.3390/technologies12090161 - 12 Sep 2024
Viewed by 2362
Abstract
In this paper, the dataset is collected from the fluidic muscle datasheet. This dataset is then used to train models predicting the pressure, force, and contraction length of the fluidic muscle, as three separate outputs. This modeling is performed with four algorithms—extreme gradient [...] Read more.
In this paper, the dataset is collected from the fluidic muscle datasheet. This dataset is then used to train models predicting the pressure, force, and contraction length of the fluidic muscle, as three separate outputs. This modeling is performed with four algorithms—extreme gradient boosted trees (XGB), ElasticNet (ENet), support vector regressor (SVR), and multilayer perceptron (MLP) artificial neural network. Each of the four models of fluidic muscles (5-100N, 10-100N, 20-200N, 40-400N) is modeled separately: First, for a later comparison. Then, the combined dataset consisting of data from all the listed datasets is used for training. The results show that it is possible to achieve quality regression performance with the listed algorithms, especially with the general model, which performs better than individual models. Still, room for improvement exists, due to the high variance of the results across validation sets, possibly caused by non-normal data distributions. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

22 pages, 5940 KiB  
Article
Increasing Payload Capacity of a Continuum Soft Robot Using Bio-Inspired Ossicle Reinforcement
by Jacek Garbulinski, Sai C. Balasankula and Norman M. Wereley
Actuators 2024, 13(7), 265; https://doi.org/10.3390/act13070265 - 12 Jul 2024
Cited by 2 | Viewed by 1659
Abstract
Soft continuum robots, characterized by their dexterous and compliant nature, often face limitations due to buckling under small loads. This study explores the enhancement of axial performance in soft robots intrinsically actuated with extensile fluidic artificial muscles (EFAMs) through the incorporation of bio-inspired [...] Read more.
Soft continuum robots, characterized by their dexterous and compliant nature, often face limitations due to buckling under small loads. This study explores the enhancement of axial performance in soft robots intrinsically actuated with extensile fluidic artificial muscles (EFAMs) through the incorporation of bio-inspired radial supports, or ossicles. By conducting quasi-static force response experiments under varying pressure conditions (103.4–517.1 kPa), and a modified Euler column buckling model, we demonstrate that ossicles significantly increase the robots’ resistance to buckling, thereby extending their application scope in payload-carrying tasks. These findings not only underscore the effectiveness of ossicle reinforcement in improving structural robustness but also pave the way for future research to optimize soft robot design for enhanced performance. Full article
(This article belongs to the Special Issue Actuators in 2024)
Show Figures

Figure 1

18 pages, 3200 KiB  
Article
Human Activity Recording Based on Skin-Strain-Actuated Microfluidic Pumping in Asymmetrically Designed Micro-Channels
by Caroline Barbar Askar, Nick Cmager, Rana Altay and I. Emre Araci
Sensors 2024, 24(13), 4207; https://doi.org/10.3390/s24134207 - 28 Jun 2024
Cited by 1 | Viewed by 1595
Abstract
The capability to record data in passive, image-based wearable sensors can simplify data readouts and eliminate the requirement for the integration of electronic components on the skin. Here, we developed a skin-strain-actuated microfluidic pump (SAMP) that utilizes asymmetric aspect ratio channels for the [...] Read more.
The capability to record data in passive, image-based wearable sensors can simplify data readouts and eliminate the requirement for the integration of electronic components on the skin. Here, we developed a skin-strain-actuated microfluidic pump (SAMP) that utilizes asymmetric aspect ratio channels for the recording of human activity in the fluidic domain. An analytical model describing the SAMP’s operation mechanism as a wearable microfluidic device was established. Fabrication of the SAMP was achieved using soft lithography from polydimethylsiloxane (PDMS). Benchtop experimental results and theoretical predictions were shown to be in good agreement. The SAMP was mounted on human skin and experiments conducted on volunteer subjects demonstrated the SAMP’s capability to record human activity for hundreds of cycles in the fluidic domain through the observation of a stable liquid meniscus. Proof-of-concept experiments further revealed that the SAMP could quantify a single wrist activity repetition or distinguish between three different shoulder activities. Full article
(This article belongs to the Special Issue Soft and Wearable Sensors for Human Health Monitoring)
Show Figures

Figure 1

21 pages, 9698 KiB  
Article
Soft Electrohydraulic Bending Actuators for Untethered Underwater Robots
by Hao Lin, Yihui Chen and Wei Tang
Actuators 2024, 13(6), 214; https://doi.org/10.3390/act13060214 - 8 Jun 2024
Cited by 1 | Viewed by 1870
Abstract
Traditional underwater rigid robots have some shortcomings that limit their applications in the ocean. In contrast, because of their inherent flexibility, soft robots, which have gained popularity recently, offer greater adaptability, efficiency, and safety than rigid robots. Among them, the soft actuator is [...] Read more.
Traditional underwater rigid robots have some shortcomings that limit their applications in the ocean. In contrast, because of their inherent flexibility, soft robots, which have gained popularity recently, offer greater adaptability, efficiency, and safety than rigid robots. Among them, the soft actuator is the core component to power the soft robot. Here, we propose a class of soft electrohydraulic bending actuators suitable for underwater robots, which realize the bending motion of the actuator by squeezing the working liquid with an electric field. The actuator consists of a silicone rubber film, polydimethylsiloxane (PDMS) films, soft electrodes, silicone oils, an acrylic frame, and a soft flipper. When a square wave voltage is applied, the actuator can generate continuous flapping motions. By mimicking Haliclystus auricula, we designed an underwater robot based on six soft electrohydraulic bending actuators and constructed a mechanical model of the robot. Additionally, a high-voltage square wave circuit board was created to achieve the robot’s untethered motions and remote control using a smart phone via WiFi. The test results show that 1 Hz was the robot’s ideal driving frequency, and the maximum horizontal swimming speed of the robot was 7.3 mm/s. Full article
(This article belongs to the Special Issue Soft Robotics: Actuation, Control, and Application)
Show Figures

Figure 1

13 pages, 3006 KiB  
Article
Optimum Design of Coaxial Hydraulic Sealing Systems Made from Polytetrafluoroethylene and Its Compounds
by Andrea Deaconescu and Tudor Deaconescu
Coatings 2024, 14(6), 723; https://doi.org/10.3390/coatings14060723 - 5 Jun 2024
Viewed by 1384
Abstract
Fluidic actuation systems are optimizable as to energy consumption by reducing the friction in the hydraulic cylinders. Polymeric materials with special antifriction properties and good resistance to hydraulic fluids can be deployed to enhance the performance of hydraulic cylinders. Small friction forces can [...] Read more.
Fluidic actuation systems are optimizable as to energy consumption by reducing the friction in the hydraulic cylinders. Polymeric materials with special antifriction properties and good resistance to hydraulic fluids can be deployed to enhance the performance of hydraulic cylinders. Small friction forces can also be ensured by facilitating the hydrodynamic separation of the elements of the friction tribosystem, namely the seal and sealed-off surface, respectively. The study presented in this paper analyzed the hydrodynamic separation phenomenon in hydraulic cylinders with coaxial sealing systems of the pistons. The process underlying the forming of the fluid film between the seal and its contact surface was considered and the formula for calculating film thickness was deduced. This paper presents graphs that describe the variation of the fluid film thickness versus the dimensional and material characteristics of the sealing systems. The study yielded recommendations as to the most adequate polymeric material to be used and the optimum dimensional characteristics of the seal. Full article
(This article belongs to the Special Issue Friction, Wear, Lubrication and Mechanics of Surfaces and Interfaces)
Show Figures

Figure 1

3 pages, 416 KiB  
Abstract
Fabrication of an Ultrathin PMMA Foil for Sensing Applications in Microfluidic Systems
by Rafael Ecker, Tina Mitteramskogler, Andreas Fuchsluger and Bernhard Jakoby
Proceedings 2024, 97(1), 48; https://doi.org/10.3390/proceedings2024097048 - 19 Mar 2024
Viewed by 901
Abstract
This research work focuses on the fabrication of ultrathin polymethylmethacrylate (PMMA) foils using a spin coating process of in anisole dissolved PMMA on a water-soluble polyvinyl alcohol (PVA) foil. Currently, layer thicknesses as low as 1 µm can be achieved and even thinner [...] Read more.
This research work focuses on the fabrication of ultrathin polymethylmethacrylate (PMMA) foils using a spin coating process of in anisole dissolved PMMA on a water-soluble polyvinyl alcohol (PVA) foil. Currently, layer thicknesses as low as 1 µm can be achieved and even thinner layers appear to be possible. Sensors and actuators can be applied to the foils and directly integrated into the center of the channel of a polymer-based microfluidic chip. Specifically, the foil acts as a supporting structure that helps to position the sensor in the center of the channel. Thermal sensors, in particular, benefit from the low heat capacity of the foil. This will improve the performance and the accuracy of these sensors of which the impact on the fluidic flow is minimized. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

14 pages, 4933 KiB  
Article
Quasi-Static Modeling Framework for Soft Bellow-Based Biomimetic Actuators
by Kelvin HoLam Heung, Ting Lei, Kaixin Liang, Jiye Xu, Joonoh Seo and Heng Li
Biomimetics 2024, 9(3), 160; https://doi.org/10.3390/biomimetics9030160 - 4 Mar 2024
Cited by 5 | Viewed by 2495
Abstract
Soft robots that incorporate elastomeric matrices and flexible materials have gained attention for their unique capabilities, surpassing those of rigid robots, with increased degrees of freedom and movement. Research has highlighted the adaptability, agility, and sensitivity of soft robotic actuators in various applications, [...] Read more.
Soft robots that incorporate elastomeric matrices and flexible materials have gained attention for their unique capabilities, surpassing those of rigid robots, with increased degrees of freedom and movement. Research has highlighted the adaptability, agility, and sensitivity of soft robotic actuators in various applications, including industrial grippers, locomotive robots, wearable assistive devices, and more. It has been demonstrated that bellow-shaped actuators exhibit greater efficiency compared to uniformly shaped fiber-reinforced actuators as they require less input pressure to achieve a comparable range of motion (ROM). Nevertheless, the mathematical quantification of the performance of bellow-based soft fluidic actuators is not well established due to their inherent non-uniform and complex structure, particularly when compared to fiber-reinforced actuators. Furthermore, the design of bellow dimensions is mostly based on intuition without standardized guidance and criteria. This article presents a comprehensive description of the quasi-static analytical modeling process used to analyze bellow-based soft actuators with linear extension. The results of the models are validated through finite element method (FEM) simulations and experimental testing, considering elongation in free space under fluidic pressurization. This study facilitates the determination of optimal geometrical parameters for bellow-based actuators, allowing for effective biomimetic robot design optimization and performance prediction. Full article
(This article belongs to the Special Issue Bioinspired Structures for Soft Actuators)
Show Figures

Figure 1

26 pages, 5185 KiB  
Review
Bioinspired Stimuli-Responsive Materials for Soft Actuators
by Zhongbao Wang, Yixin Chen, Yuan Ma and Jing Wang
Biomimetics 2024, 9(3), 128; https://doi.org/10.3390/biomimetics9030128 - 21 Feb 2024
Cited by 13 | Viewed by 6723
Abstract
Biological species can walk, swim, fly, jump, and climb with fast response speeds and motion complexity. These remarkable functions are accomplished by means of soft actuation organisms, which are commonly composed of muscle tissue systems. To achieve the creation of their biomimetic artificial [...] Read more.
Biological species can walk, swim, fly, jump, and climb with fast response speeds and motion complexity. These remarkable functions are accomplished by means of soft actuation organisms, which are commonly composed of muscle tissue systems. To achieve the creation of their biomimetic artificial counterparts, various biomimetic stimuli-responsive materials have been synthesized and developed in recent decades. They can respond to various external stimuli in the form of structural or morphological transformations by actively or passively converting input energy into mechanical energy. They are the core element of soft actuators for typical smart devices like soft robots, artificial muscles, intelligent sensors and nanogenerators. Significant progress has been made in the development of bioinspired stimuli-responsive materials. However, these materials have not been comprehensively summarized with specific actuation mechanisms in the literature. In this review, we will discuss recent advances in biomimetic stimuli-responsive materials that are instrumental for soft actuators. Firstly, different stimuli-responsive principles for soft actuators are discussed, including fluidic, electrical, thermal, magnetic, light, and chemical stimuli. We further summarize the state-of-the-art stimuli-responsive materials for soft actuators and explore the advantages and disadvantages of using electroactive polymers, magnetic soft composites, photo-thermal responsive polymers, shape memory alloys and other responsive soft materials. Finally, we provide a critical outlook on the field of stimuli-responsive soft actuators and emphasize the challenges in the process of their implementation to various industries. Full article
(This article belongs to the Special Issue Bioinspired Interfacial Materials)
Show Figures

Graphical abstract

Back to TopTop