Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = fluid catalytic cracking residue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1365 KiB  
Article
Hydrocracking of Various Vacuum Residues
by Dicho Stratiev
Fuels 2025, 6(2), 35; https://doi.org/10.3390/fuels6020035 - 7 May 2025
Cited by 1 | Viewed by 644
Abstract
The residue conversion processes, coking, visbreaking, and fluid catalytic cracking (FCC), have demonstrated that feedstock quality is the single factor that most affects process performance. While, for the FCC, it is known that the heavy oil conversion at a maximum gasoline yield point [...] Read more.
The residue conversion processes, coking, visbreaking, and fluid catalytic cracking (FCC), have demonstrated that feedstock quality is the single factor that most affects process performance. While, for the FCC, it is known that the heavy oil conversion at a maximum gasoline yield point can vary between 50 and 85 wt. %, for the vacuum residue hydrocracking, no reports have appeared yet to reveal the dependence of conversion on the quality of vacuum residue being hydrocracked. In order to search for such a dependence, eight vacuum residues derived from medium, heavy, and extra heavy crude oils have been hydrocracked in a laboratory unit at different reaction temperatures. The current study has witnessed that the vacuum residue hydrocracking obeys the same rule as that of the other residue conversion processes, confirming that the feedstock quality has a great influence on the process performance. A conversion variation between 45 and 85 wt. % can be observed when the sediment content in the hydrocracked atmospheric residue is within the acceptable limit, guaranteeing the planned cycle length. An intercriteria analysis was performed, and it revealed that the vacuum residue conversion has negative consonances with the contents of nitrogen and metals. Correlations were developed which predict the conversion at constant operating conditions within the uncertainty of conversion measurement of 1.7 wt. % and correlation coefficient of 0.964. The conversion at constant hydrocracked atmospheric residue (HCAR) sediment content was predicted with a correlation coefficient of 0.985. The correlations developed in this work disclosed that the higher the contents of metals, nitrogen, and asphaltenes, and the lower the content of sulfur, the lower the conversion in the hydrocracking process is. It was also shown that vacuum residues, which have the same reactivity (the same conversion at identical operating conditions), can indicate significant difference in the conversion at the same HCAR sediment content due to their diverse propensity to form sediments in the process of hydrocracking. Full article
Show Figures

Figure 1

18 pages, 1588 KiB  
Article
Root Cause Analysis for Observed Increased Sedimentation in a Commercial Residue Hydrocracker
by Ivelina Shishkova, Dicho Stratiev, Petko Kirov, Rosen Dinkov, Sotir Sotirov, Evdokia Sotirova, Veselina Bureva, Krassimir Atanassov, Vesislava Toteva, Svetlin Vasilev, Dobromir Yordanov, Radoslava Nikolova and Anife Veli
Processes 2025, 13(3), 674; https://doi.org/10.3390/pr13030674 - 27 Feb 2025
Cited by 2 | Viewed by 800
Abstract
Ebullated bed vacuum residue hydrocracking is a well-established technology providing a high conversion level of low-value residue fractions in high-value light fuels. The main challenge in this technology when processing vacuum residues derived from different crude oils is the sediment formation rate that [...] Read more.
Ebullated bed vacuum residue hydrocracking is a well-established technology providing a high conversion level of low-value residue fractions in high-value light fuels. The main challenge in this technology when processing vacuum residues derived from different crude oils is the sediment formation rate that leads to equipment fouling and cycle length shortening. With the severity enhancement, the asphaltenes become more aromatic and less soluble which leads to sediment formation when the difference between solubility parameters of asphaltenes and maltenes goes beyond a threshold value. Although theoretical models have been developed to predict asphaltene precipitation, the great diversity of oils makes it impossible to embrace the full complexity of oil chemistry by any theoretical model making it impractical for using it in all applications. The evaluation of process data of a commercial ebullated bed vacuum residue hydrocracker, properties of different feeds, and product streams by intercriteria and regression analyses enabled us to decipher the reason for hydrocracked oil sediment content rising from 0.06 to 1.15 wt.%. The ICrA identified the presence of statistically meaningful relations between the single variables, while the regression analysis revealed the combination of variables having a statistically meaningful effect on sediment formation rate. In this study, vacuum residues derived from 16 crude oils have been hydrocracked as blends, which also contain fluid catalytic cracking heavy cycle oil and slurry oil (SLO), in a commercial H-Oil plant. It was found that the hydrocracked oil sediment content decreased exponentially with fluid catalytic cracking slurry oil augmentation. It was also established that it increased with the magnification of resin and asphaltene and the reduction in sulfur contents in the H-Oil feed. Full article
(This article belongs to the Special Issue Heat and Mass Transfer Phenomena in Energy Systems)
Show Figures

Figure 1

33 pages, 6114 KiB  
Article
Roles of Catalysts and Feedstock in Optimizing the Performance of Heavy Fraction Conversion Processes: Fluid Catalytic Cracking and Ebullated Bed Vacuum Residue Hydrocracking
by Dicho Stratiev, Ivelina Shishkova, Georgi Argirov, Rosen Dinkov, Mihail Ivanov, Sotir Sotirov, Evdokia Sotirova, Veselina Bureva, Svetoslav Nenov, Krassimir Atanassov, Denis Stratiev and Svetlin Vasilev
Catalysts 2024, 14(9), 616; https://doi.org/10.3390/catal14090616 - 12 Sep 2024
Cited by 3 | Viewed by 1803
Abstract
Petroleum refining has been, is still, and is expected to remain in the next decades the main source of energy required to drive transport for mankind. The demand for automotive and aviation fuels has urged refiners to search for ways to extract more [...] Read more.
Petroleum refining has been, is still, and is expected to remain in the next decades the main source of energy required to drive transport for mankind. The demand for automotive and aviation fuels has urged refiners to search for ways to extract more light oil products per barrel of crude oil. The heavy oil conversion processes of ebullated bed vacuum residue hydrocracking (EBVRHC) and fluid catalytic cracking (FCC) can assist refiners in their aim to produce more transportation fuels and feeds for petrochemistry from a ton of petroleum. However, a good understanding of the roles of feed quality and catalyst characteristics is needed to optimize the performance of both heavy oil conversion processes. Three knowledge discovery database techniques—intercriteria and regression analyses, and artificial neural networks—were used to evaluate the performance of commercial FCC and EBVRHC in processing 19 different heavy oils. Seven diverse FCC catalysts were assessed using a cascade and parallel fresh catalyst addition system in an EBVRHC unit. It was found that the vacuum residue conversion in the EBVRHC depended on feed reactivity, which, calculated on the basis of pilot plant tests, varied by 16.4%; the content of vacuum residue (VR) in the mixed EBVRHC unit feed (each 10% fluctuation in VR content leads to an alteration in VR conversion of 1.6%); the reaction temperature (a 1 °C deviation in reaction temperature is associated with a 0.8% shift in VR conversion); and the liquid hourly space velocity (0.01 h-1 change of LHSV leads to 0.85% conversion alteration). The vacuum gas oil conversion in the FCC unit was determined to correlate with feed crackability, which, calculated on the basis of pilot plant tests, varied by 8.2%, and the catalyst ΔCoke (each 0.03% ΔCoke increase reduces FCC conversion by 1%), which was unveiled to depend on FCC feed density and equilibrium FCC micro-activity. The developed correlations can be used to optimize the performance of FCC and EBVRHC units by selecting the appropriate feed slate and catalyst. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Figure 1

9 pages, 1875 KiB  
Article
Influence of Accelerators on Cement Mortars Using Fluid Catalytic Cracking Catalyst Residue (FCC): Enhanced Mechanical Properties at Early Curing Ages
by Lourdes Soriano, María Victoria Borrachero, Ester Giménez-Carbo, Mauro M. Tashima, José María Monzó and Jordi Payá
Materials 2024, 17(5), 1219; https://doi.org/10.3390/ma17051219 - 6 Mar 2024
Viewed by 1436
Abstract
Supplementary cementitious materials (SCMs) have been used in the construction industry to mainly reduce the greenhouse gas emissions associated with Portland cement. Of SCMs, the petrochemical industry waste known as fluid catalytic cracking catalyst residue (FCC) is recognized for its high reactivity. Nevertheless, [...] Read more.
Supplementary cementitious materials (SCMs) have been used in the construction industry to mainly reduce the greenhouse gas emissions associated with Portland cement. Of SCMs, the petrochemical industry waste known as fluid catalytic cracking catalyst residue (FCC) is recognized for its high reactivity. Nevertheless, the binders produced using SCMs usually present low mechanical strength at early curing ages. This study aims to assess the effect of different accelerating additives (KOH, sodium silicate SIL, commercial additive SKR) on the mechanical strength of mortars containing FCC. The results show that after only 8 curing hours, the compressive strength gain of the FCC mortars containing SKR was over 100% compared to the FCC mortar with no additive (26.0 vs. 12.8 MPa). Comparing the compressive strength of FCC mortar containing SKR to the control mortar, the enhancement is spetacular (6.85 vs. 26.03 MPa). The effectiveness of the tested accelerators at 8–24 curing hours was KOH ≈ SIL < SKR, whereas it was KOH < SIL < SKR for 48 h–28 days. The thermogravimetric data confirmed the good compatibility of FCC and the commercial accelerator. Full article
(This article belongs to the Special Issue Advances in the Design and Properties of New Ecoconcrete Formulations)
Show Figures

Figure 1

22 pages, 3045 KiB  
Article
Alternative Options for Ebullated Bed Vacuum Residue Hydrocracker Naphtha Utilization
by Dicho Stratiev, Ivelina Shishkova, Mihail Ivanov, Rosen Dinkov, Vesislava Toteva, Daniela Angelova, Iliyan Kolev, Mariana Tavlieva and Dobromir Yordanov
Processes 2023, 11(12), 3410; https://doi.org/10.3390/pr11123410 - 12 Dec 2023
Cited by 1 | Viewed by 1943
Abstract
The vacuum residue hydrocracker naphtha (VRHN) is a chemically unstable product that during storage changes its colour and forms sediments after two weeks. It cannot be directly exported from the refinery without improving its chemical stability. In this research, the hydrotreatment of H-Oil [...] Read more.
The vacuum residue hydrocracker naphtha (VRHN) is a chemically unstable product that during storage changes its colour and forms sediments after two weeks. It cannot be directly exported from the refinery without improving its chemical stability. In this research, the hydrotreatment of H-Oil naphtha with straight run naphtha in a commercial hydrotreater, its co-processing with fluid catalytic cracking (FCC) gasoline in a commercial Prime-G+ post-treater, and its co-processing with vacuum gas oil (VGO) in a commercial FCC unit were discussed. The hydrotreatment improves the chemical stability of H-Oil naphtha and reduces its sulphur content to 3 ppm. The Prime-G+ co-hydrotreating increases the H-Oil naphtha blending research octane number (RON) by 6 points and motor octane number (MON) by 9 points. The FCC co-cracking with VGO enhances the blending RON by 11.5 points and blending MON by 17.6 points. H-Oil naphtha conversion to gaseous products (C1–C4 hydrocarbons) in the commercial FCC unit was found to be 50%. The use of ZSM 5 containing catalyst additive during processing H-Oil naphtha showed to lead to FCC gasoline blending octane enhancement by 2 points. This enabled an increment of low octane number naphtha in the commodity premium near zero sulphur automotive gasoline by 2.4 vol.% and substantial improvement of refinery margin. The processing of H-Oil naphtha in the FCC unit leads also to energy saving as a result of an equivalent lift steam substitution in the FCC riser. Full article
(This article belongs to the Special Issue Processes in 2023)
Show Figures

Graphical abstract

24 pages, 2861 KiB  
Review
Reusing Ceramic Waste as a Precursor in Alkali-Activated Cements: A Review
by Lourdes Soriano, Mauro M. Tashima, Lucía Reig, Jordi Payá, María V. Borrachero, José M. Monzó and Ángel M. Pitarch
Buildings 2023, 13(12), 3022; https://doi.org/10.3390/buildings13123022 - 4 Dec 2023
Cited by 4 | Viewed by 2073
Abstract
Concrete and ceramic products are among the most widely used materials in the construction sector. The production of ceramic materials has significantly grown in recent years. Concrete is one of the most widely used materials worldwide and most of its carbon dioxide (CO [...] Read more.
Concrete and ceramic products are among the most widely used materials in the construction sector. The production of ceramic materials has significantly grown in recent years. Concrete is one of the most widely used materials worldwide and most of its carbon dioxide (CO2) emissions are attributed to Portland cement (PC) production. This review analyzed previous research works into the use of ceramic waste (CW) as a precursor in alkali-activated (AA) cements. The physico-chemical properties of different CW materials were analyzed, and the properties and environmental impact of three main categories of AA CW cements were explored: those developed solely with CW; hybrid cements combining CW with traditional binders (PC, calcium hydroxide or calcium aluminate cement); combinations of CW with other precursors (i.e., blast furnace slag, fly ash, fluid catalytic cracking residue, etc.). The results evidenced that CW can be successfully employed as a precursor in AA cements, particularly in the context of prefabricated products where thermal curing is a prevalent procedure. When enhanced mechanical strength is requisite, it is feasible to attain improvements by employing hybrid systems or by combining CW with other precursors, such as blast furnace slag. This new alternative reuse option allows progress to be made toward sustainable development by reducing not only CO2 emissions and embodied energy compared to PC but also PC consumption and CW accumulation in landfills. Full article
Show Figures

Figure 1

22 pages, 10819 KiB  
Article
Characterization of Equilibrium Catalysts from the Fluid Catalytic Cracking Process of Atmospheric Residue
by Seybou Yacouba Zakariyaou, Hua Ye, Abdoulaye Dan Makaou Oumarou, Mamane Souley Abdoul Aziz and Shixian Ke
Catalysts 2023, 13(12), 1483; https://doi.org/10.3390/catal13121483 - 29 Nov 2023
Cited by 6 | Viewed by 4662
Abstract
In the FCC conversion of heavy petroleum fractions as atmospheric residues, the main challenge for refiners to achieve the quantity and quality of various commercial products depends essentially on the catalyst used in the process. A deep characterization of the catalyst at different [...] Read more.
In the FCC conversion of heavy petroleum fractions as atmospheric residues, the main challenge for refiners to achieve the quantity and quality of various commercial products depends essentially on the catalyst used in the process. A deep characterization of the catalyst at different steps of the process (fresh, regenerated, and spent catalyst) was investigated to study the catalyst’s behavior including the physicochemical evolution, the deactivation factor, and kinetic–thermodynamic parameters. All samples were characterized using various spectroscopy methods such as N2 adsorption–desorption, UV-visible spectroscopy, Raman spectroscopy, LECO carbon analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), nuclear magnetic resonance spectroscopy (NMR13C) analysis, and thermogravimetric analysis. The results of the N2 adsorption–desorption, UV-vis, Raman, LECO carbon, and SEM imaging showed that the main causes of catalyst deactivation and coking were the deposition of carbon species that covered the active sites and clogged the pores, and the attrition factor due to thermal conditions and poisonous metals. The XRD and XRF results showed the catalyst’s physicochemical evolution during the process and the different interlinks between catalyst and feedstock (Nickel, Vanadium, Sulfur, and Iron) elements which should be responsible for the coking and catalyst attrition factor. It has been found that, in addition to the temperature, the residence time of the catalyst in the process also influences catalyst structure transformation. NMR13C analysis revealed that polyaromatic hydrocarbon is the main component in the deposited coke of the spent catalyst. The pyridine-FTIR indicates that the catalyst thermal treatment has an influence on its Brønsted and Lewis acid sites and the distribution of the products. Thermogravimetric analysis showed that the order of catalyst mass loss was fresh > regenerated > spent catalyst due to the progressive losses of the hydroxyl bonds (OH) and the structure change along the catalyst thermal treatment. Moreover, the kinetic and thermodynamic parameters showed that all zones are non-spontaneous endothermic reactions. Full article
Show Figures

Figure 1

26 pages, 6163 KiB  
Article
Industrial Investigation of the Combined Action of Vacuum Residue Hydrocracking and Vacuum Gas Oil Catalytic Cracking While Processing Different Feeds and Operating under Distinct Conditions
by Dicho Stratiev, Vesislava Toteva, Ivelina Shishkova, Svetoslav Nenov, Dimitar Pilev, Krassimir Atanassov, Vesselina Bureva, Svetlin Vasilev and Danail Dichev Stratiev
Processes 2023, 11(11), 3174; https://doi.org/10.3390/pr11113174 - 7 Nov 2023
Cited by 12 | Viewed by 3010
Abstract
Ebullated bed vacuum residue hydrocracking and fluid catalytic cracking (FCC) are among the most profitable processes in modern refining. Their optimal performance is vital for petroleum refining profitability. That is why a better understanding of their combined action and the interrelations between these [...] Read more.
Ebullated bed vacuum residue hydrocracking and fluid catalytic cracking (FCC) are among the most profitable processes in modern refining. Their optimal performance is vital for petroleum refining profitability. That is why a better understanding of their combined action and the interrelations between these two heavy oil conversion processes in a real-world refinery could provide valuable information for further performance optimization. Nine distinct petroleum crudes belonging to the extra light, light, and medium petroleum crude types were processed in the LUKOIL Neftohim Burgas refinery to study the combined performance of two processes: FCC of vacuum gas oil and ebullated bed vacuum residue H-Oil hydrocracking. The operating conditions along with the characterization data of the feeds and products of both processes were evaluated through the employment of intercriteria analysis to define the variables with statistically significant relationships. Maple 2023 Academic Edition mathematics software was used to develop models to predict the vacuum residue conversion level under different operating conditions. The plug flow reactor model with an activation energy of 215 kJ/mol and a reaction order of 1.59 was found to provide the highest accuracy of vacuum residue conversion, with an average absolute deviation of 2.2%. H-Oil yields were found to correlate with the vacuum residue conversion level and the content of FCC slurry oil (SLO), the recycling of partially blended fuel oil, a material boiling point below 360 °C, and the vacuum gas oil (VGO) in the H-Oil feed. FCC conversion was found to depend on the H-Oil VGO content in the FCC feed and the content of FCC SLO in the H-Oil feed. Full article
Show Figures

Graphical abstract

24 pages, 1679 KiB  
Article
Effect of Crude Oil Quality on Properties of Hydrocracked Vacuum Residue and Its Blends with Cutter Stocks to Produce Fuel Oil
by Iliyan Kolev, Dicho Stratiev, Ivelina Shishkova, Krassimir Atanassov, Simeon Ribagin, Sotir Sotirov, Evdokia Sotirova and Danail D. Stratiev
Processes 2023, 11(6), 1733; https://doi.org/10.3390/pr11061733 - 6 Jun 2023
Cited by 4 | Viewed by 2749
Abstract
The production of heavy fuel oil from hydrocracked vacuum residue requires dilution of the residue with cutter stocks to reduce viscosity. The hydrocracked residue obtained from different vacuum residue blends originating from diverse crude oils may have divergent properties and interact with the [...] Read more.
The production of heavy fuel oil from hydrocracked vacuum residue requires dilution of the residue with cutter stocks to reduce viscosity. The hydrocracked residue obtained from different vacuum residue blends originating from diverse crude oils may have divergent properties and interact with the variant cutter stocks in a dissimilar way leading to changeable values of density, sediment content, and viscosity of the obtained fuel oil. H-Oil hydrocracked vacuum residues (VTBs) obtained from different crude blends (Urals, Siberian Light (LSCO), and Basrah Heavy) were diluted with the high aromatic fluid catalytic cracking (FCC) light cycle, heavy cycle, and slurry oil, and the low aromatic fluid catalytic cracking feed hydrotreater diesel cutter stocks and their densities, sediment content, and viscosity of the mixtures were investigated. Intercriteria analysis evaluation of the data generated in this study was performed. It was found that the densities of the blends H-Oil VTB/cutter stocks deviate from the regular solution behavior because of the presence of attractive and repulsive forces between the molecules of the H-Oil VTB and the cutter stocks. Urals and Basrah Heavy crude oils were found to enhance the attractive forces, while the LSCO increases the repulsive forces between the molecules of H-Oil VTBs and those of the FCC gas oils. The viscosity of the H-Oil VTB obtained during hydrocracking of straight run vacuum residue blend was established to linearly depend on the viscosity of the H-Oil vacuum residue feed blend. The applied equations to predict viscosity of blends containing straight run and hydrocracked vacuum residues and cutter stocks proved their good prediction ability with an average relative absolute deviation (%AAD) of 8.8%. While the viscosity was found possible to predict, the sediment content of the blends H-Oil VTBs/cutter stocks was recalcitrant to forecast. Full article
Show Figures

Figure 1

13 pages, 3116 KiB  
Article
Selective Leaching of Valuable Metals from Spent Fluid Catalytic Cracking Catalyst with Oxalic Acid
by Dalong Zheng, Yimin Zhang, Tao Liu, Jing Huang, Zhenlei Cai and Ruobing Zhang
Minerals 2022, 12(6), 748; https://doi.org/10.3390/min12060748 - 13 Jun 2022
Cited by 7 | Viewed by 2541
Abstract
The problem of spent fluid catalytic cracking (SFCC) catalyst resource utilization, draws more and more attention to system analysis. SFCC was leached in an oxalic solution for comprehensive utilization. The results showed that for a D50 ≤ 17.34 μm, the catalyst leached for [...] Read more.
The problem of spent fluid catalytic cracking (SFCC) catalyst resource utilization, draws more and more attention to system analysis. SFCC was leached in an oxalic solution for comprehensive utilization. The results showed that for a D50 ≤ 17.34 μm, the catalyst leached for 240 min at 95 °C in the presence of a 2 mol/L oxalic acid solution, and the extent of leaching of V, Ni, Fe, and Al was 73.4%, 32.4%, 48.2%, and 36.8%, respectively. Studies on the occurrence state of the main ions (V, Ni, Fe, and Al) in the leaching solution were presented. Additionally, the separation of the main ions from such a solution by the “solvent extraction-stripping-hydrothermal precipitation-comprehensive recovery of valuable metal” process was studied. The immobilization rates of vanadium and nickel in geopolymers can be obtained using the toxicity characteristic leaching procedure (TCLP) test, and the geopolymers prepared by SFCC leaching residues can be considered a non-hazardous material. A process diagram of the comprehensive utilization of SFCC catalysts is presented. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

14 pages, 2896 KiB  
Article
Hybrid Lime–Pozzolan Geopolymer Systems: Microstructural, Mechanical and Durability Studies
by Ariel Rey Villca, Lourdes Soriano, María Victoria Borrachero, Jordi Payá, José María Monzó and Mauro Mitsuuchi Tashima
Materials 2022, 15(8), 2736; https://doi.org/10.3390/ma15082736 - 8 Apr 2022
Cited by 5 | Viewed by 2019
Abstract
This work studies the possibility of using geopolymer materials to enhance the mechanical and durability properties of hydrated lime–pozzolan mixtures, which gave rise to the so-called “hybrid systems”. Two different waste types were used as pozzolan in the lime–pozzolan system: rice husk ash [...] Read more.
This work studies the possibility of using geopolymer materials to enhance the mechanical and durability properties of hydrated lime–pozzolan mixtures, which gave rise to the so-called “hybrid systems”. Two different waste types were used as pozzolan in the lime–pozzolan system: rice husk ash (RHA) and spent fluid catalytic cracking (FCC). The geopolymer fabricated with FCC was activated with commercial reagents (NaOH and Na2SiO3), and also with alternative sources of silica to obtain a lower carbon footprint in these mixtures. The alternative silica sources were RHA and residual diatomaceous earth (RDE) from the beer industry. The geopolymer mixture substituted the lime–pozzolan mixture for 30% replacement in weight. The hybrid systems showed better mechanical strengths for the short and medium curing ages in relation to the lime–pozzolan mixtures. Thermogravimetric analyses were performed to characterise the types of products formed in these mixtures. In the durability studies, hybrid systems better performed in freeze–thaw cycles and obtained lower capillarity water absorption values. Full article
(This article belongs to the Special Issue The Durability Characteristics of Advanced Building Materials)
Show Figures

Figure 1

17 pages, 2444 KiB  
Article
Crude Slate, FCC Slurry Oil, Recycle, and Operating Conditions Effects on H-Oil® Product Quality
by Dicho Stoyanov Stratiev, Ivelina Kostova Shishkova, Rosen Kocev Dinkov, Ivan Petrov Petrov, Iliyan Venkov Kolev, Dobromir Yordanov, Sotir Sotirov, Evdokia Nikolaeva Sotirova, Vassia Krassimirova Atanassova, Simeon Ribagin, Krassimir Todorov Atanassov, Danail Dichev Stratiev and Svetoslav Nenov
Processes 2021, 9(6), 952; https://doi.org/10.3390/pr9060952 - 27 May 2021
Cited by 11 | Viewed by 6102
Abstract
This paper evaluates the influence of crude oil (vacuum residue) properties, the processing of fluid catalytic cracking slurry oil, and recycle of hydrocracked vacuum residue diluted with fluid catalytic cracking heavy cycle oil, and the operating conditions of the H-Oil vacuum residue hydrocracking [...] Read more.
This paper evaluates the influence of crude oil (vacuum residue) properties, the processing of fluid catalytic cracking slurry oil, and recycle of hydrocracked vacuum residue diluted with fluid catalytic cracking heavy cycle oil, and the operating conditions of the H-Oil vacuum residue hydrocracking on the quality of the H-Oil liquid products. 36 cases of operation of a commercial H-Oil® ebullated bed hydrocracker were studied at different feed composition, and different operating conditions. Intercriteria analysis was employed to define the statistically meaningful relations between 135 parameters including operating conditions, feed and products characteristics. Correlations and regression equations which related the H-Oil® mixed feed quality and the operating conditions (reaction temperature, and reaction time (throughput)) to the liquid H-Oil® products quality were developed. The developed equations can be used to find the optimal performance of the whole refinery considering that the H-Oil liquid products are part of the feed for the units: fluid catalytic cracking, hydrotreating, road pavement bitumen, and blending. Full article
Show Figures

Figure 1

13 pages, 4274 KiB  
Article
Reuse of Industrial and Agricultural Waste in the Fabrication of Geopolymeric Binders: Mechanical and Microstructural Behavior
by Jordi Payá, Lourdes Soriano, Alba Font, Maria Victoria Borrachero Rosado, Javier Alejandro Nande and Jose María Monzo Balbuena
Materials 2021, 14(9), 2089; https://doi.org/10.3390/ma14092089 - 21 Apr 2021
Cited by 11 | Viewed by 2730
Abstract
Resource recovery from waste is one of the most important ways to implement the so-called circular economy, and the use of alkali activated materials can become an alternative for traditional PC-based materials. These types of materials are based on waste resources involving a [...] Read more.
Resource recovery from waste is one of the most important ways to implement the so-called circular economy, and the use of alkali activated materials can become an alternative for traditional PC-based materials. These types of materials are based on waste resources involving a lower carbon footprint and present similar or high properties and good durability compared to that Portland cement (PC). This research work proposes using new waste generated in different types of industries. Four waste types were employed: fluid catalytic cracking residue (FCC) from the petrochemical industry; ceramic sanitary ware (CSW) from the construction industry; rice husk ash (RHA); diatomaceous waste from beer filtration (DB) (food industry). FCC and CSW were employed as precursor materials, and mixtures of both showed good properties of the obtained alkali activated materials generated with commercial products as activators (NaOH/waterglass). RHA and DB were herein used as an alternative silica source to prepare the alkaline activating solution. Mechanical behavior was studied by the compressive strength development of mortars. The corresponding pastes were characterized by X-ray diffraction, thermogravimetric analysis, and microscopy studies. The results were satisfactory, and demonstrated that employing these alternative activators from waste produces alkali activated materials with good mechanical properties, which were sometimes similar or even better than those obtained with commercial reagents. Full article
(This article belongs to the Special Issue Recycled Concrete with Waste and By-Products)
Show Figures

Figure 1

13 pages, 5180 KiB  
Article
Assessment of the Rheological and Mechanical Properties of Geopolymer Concrete Comprising Fly Ash and Fluid Catalytic Cracking Residue as Aluminosilicate Precursor
by Tuan Anh Le, Sinh Hoang Le, Thuy Ninh Nguyen and Khoa Tan Nguyen
Appl. Sci. 2021, 11(7), 3032; https://doi.org/10.3390/app11073032 - 29 Mar 2021
Cited by 11 | Viewed by 3141
Abstract
The use of fluid catalytic cracking (FCC) by-products as aluminosilicate precursors in geopolymer binders has attracted significant interest from researchers in recent years owing to their high alumina and silica contents. Introduced in this study is the use of geopolymer concrete comprising FCC [...] Read more.
The use of fluid catalytic cracking (FCC) by-products as aluminosilicate precursors in geopolymer binders has attracted significant interest from researchers in recent years owing to their high alumina and silica contents. Introduced in this study is the use of geopolymer concrete comprising FCC residue combined with fly ash as the requisite source of aluminosilicate. Fly ash was replaced with various FCC residue contents ranging from 0–100% by mass of binder. Results from standard testing methods showed that geopolymer concrete rheological properties such as yield stress and plastic viscosity as well as mechanical properties including compressive strength, flexural strength, and elastic modulus were affected significantly by the FCC residue content. With alkali liquid to geopolymer solid ratios (AL:GS) of 0.4 and 0.5, a reduction in compressive and flexural strength was observed in the case of geopolymer concrete with increasing FCC residue content. On the contrary, geopolymer concrete with increasing FCC residue content exhibited improved strength with an AL:GS ratio of 0.65. Relationships enabling estimation of geopolymer elastic modulus based on compressive strength were investigated. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) patterns revealed that the final product from the geopolymerization process consisting of FCC residue was similar to fly ash-based geopolymer concrete. These observations highlight the potential of FCC residue as an aluminosilicate source for geopolymer products. Full article
(This article belongs to the Special Issue Recent Advances in the Research of CO2-Concrete Interaction)
Show Figures

Figure 1

10 pages, 2378 KiB  
Article
Experimental Study on Spent FCC Catalysts for the Catalytic Cracking Process of Waste Tires
by Chuansheng Wang, Xiaolong Tian, Baishun Zhao, Lin Zhu and Shaoming Li
Processes 2019, 7(6), 335; https://doi.org/10.3390/pr7060335 - 1 Jun 2019
Cited by 17 | Viewed by 4532
Abstract
Research on the synergistic high-value reuse of waste tires and used catalysts in spent fluid catalytic cracking (FCC) catalysts was carried out in this study to address the serious ecological and environmental problems caused by waste tires and spent FCC catalysts. The experiment, [...] Read more.
Research on the synergistic high-value reuse of waste tires and used catalysts in spent fluid catalytic cracking (FCC) catalysts was carried out in this study to address the serious ecological and environmental problems caused by waste tires and spent FCC catalysts. The experiment, in which a spent FCC catalyst was applied to the catalytic cracking of waste tires, fully utilized the residual activity of the spent FCC catalyst and was compared with a waste tire pyrolysis experiment. The comparative experimental results indicated that the spent FCC catalyst could improve the cracking efficiency of waste tires, increase the output of light oil in pyrolysis products, and improve the quality of pyrolysis oil. It could also be used for the conversion of sulfur compounds during cracking. The content of 2-methyl-1-propylene in catalytic cracking gas was found to be up to 65.59%, so a new method for producing high-value chemical raw materials by the catalytic cracking of waste tires with spent FCC catalysts is proposed. Full article
(This article belongs to the Special Issue Energy, Economic and Environment for Industrial Production Processes)
Show Figures

Figure 1

Back to TopTop