Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = flow-induced vibration (FIV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3506 KiB  
Review
A Review of Electromagnetic Wind Energy Harvesters Based on Flow-Induced Vibrations
by Yidan Zhang, Shen Li, Weilong Wang, Pengfei Zen, Chunlong Li, Yizhou Ye and Xuefeng He
Energies 2025, 18(14), 3835; https://doi.org/10.3390/en18143835 - 18 Jul 2025
Viewed by 239
Abstract
The urgent demand of wireless sensor nodes for long-life and maintenance-free miniature electrical sources with output power ranging from microwatts to milliwatts has accelerated the development of energy harvesting technologies. For the abundant and renewable nature of wind in environments, flow-induced vibration (FIV)-based [...] Read more.
The urgent demand of wireless sensor nodes for long-life and maintenance-free miniature electrical sources with output power ranging from microwatts to milliwatts has accelerated the development of energy harvesting technologies. For the abundant and renewable nature of wind in environments, flow-induced vibration (FIV)-based wind energy harvesting has emerged as a promising approach. Electromagnetic FIV wind energy harvesters (WEHs) show great potential for realistic applications due to their excellent durability and stability. However, electromagnetic WEHs remain less studied than piezoelectric WEHs, with few dedicated review articles available. This review analyzes the working principle, device structure, and performance characteristics of electromagnetic WEHs based on vortex-induced vibration, galloping, flutter, wake galloping vibration, and Helmholtz resonator. The methods to improve the output power, broaden the operational wind speed range, broaden the operational wind direction range, and enhance the durability are then discussed, providing some suggestions for the development of high-performance electromagnetic FIV WEHs. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

35 pages, 4924 KiB  
Review
A State-of-the-Art Review of Wind Turbine Blades: Principles, Flow-Induced Vibrations, Failure, Maintenance, and Vibration Suppression Techniques
by Tahir Muhammad Naqash and Md. Mahbub Alam
Energies 2025, 18(13), 3319; https://doi.org/10.3390/en18133319 - 24 Jun 2025
Viewed by 1681
Abstract
The growing demand for renewable energy has underscored the importance of wind power, with wind turbines playing a pivotal role in sustainable electricity generation. However, wind turbine blades are exposed to various challenges, particularly flow-induced vibrations (FIVs), including vortex-induced vibrations, flutter, and galloping, [...] Read more.
The growing demand for renewable energy has underscored the importance of wind power, with wind turbines playing a pivotal role in sustainable electricity generation. However, wind turbine blades are exposed to various challenges, particularly flow-induced vibrations (FIVs), including vortex-induced vibrations, flutter, and galloping, which significantly impact the performance, efficiency, reliability, and lifespan of turbines. This review presents an in-depth analysis of wind turbine blade technology, covering the fundamental principles of operation, aerodynamic characteristics, material selection, and failure mechanisms. It examines the effects of these vibrations on blade integrity and turbine performance, highlighting the need for effective vibration suppression techniques. The paper also discusses current advancements in maintenance strategies, including active and passive vibration control methods, sensor networks, and drone-based inspections, aimed at improving turbine reliability and reducing operational costs. Furthermore, emerging technologies, such as artificial intelligence (AI)-driven prognostic assessments and novel materials for vibration damping, are explored as potential solutions to enhance turbine performance. The review emphasizes the importance of continued research in addressing the challenges posed by FIVs, particularly for offshore turbines operating in harsh environments. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

23 pages, 7637 KiB  
Article
Flow-Induced Vibrations of Five Cylinders in Uniform Current
by Henry Francis Annapeh, Victoria Kurushina and Guilherme Rosa Franzini
Vibration 2025, 8(2), 31; https://doi.org/10.3390/vibration8020031 - 11 Jun 2025
Viewed by 425
Abstract
Predicting flow-induced vibration (FIV) of multiple slender structures remains a modern challenge in science and engineering due to the phenomenon’s sensitivity to layout parameters and the emergence of oscillations driven by multiple mechanisms. The present study examines the FIV of five circular cylinders [...] Read more.
Predicting flow-induced vibration (FIV) of multiple slender structures remains a modern challenge in science and engineering due to the phenomenon’s sensitivity to layout parameters and the emergence of oscillations driven by multiple mechanisms. The present study examines the FIV of five circular cylinders with two degrees of freedom arranged in a ‘cross’ configuration and subjected to a uniform current. A computational fluid dynamics approach, solving the transient, incompressible 2D Navier–Stokes equations, is employed to analyze the influence of the spacing ratio and reduced velocity Ur on the vibration response and wake dynamics. The investigation includes model verification and parametric studies for several spacing ratios. Results reveal vortex-induced vibrations (VIVs) in some of the cylinders in the arrangement and combined vortex-induced and wake-induced vibration (WIV) in others. Lock-in is observed at Ur = 7 for the upstream cylinder, while the midstream and downstream cylinders exhibit the highest vibration amplitudes due to wake interference. Larger spacing ratios amplify the oscillations of the downstream cylinders, while the side-by-side cylinders display distinct frequency responses. Motion trajectories transition from figure-of-eight patterns to enclosed loops as Ur increases, with specifically complex oscillations emerging at higher velocities. These findings provide insights into multi-body VIV, relevant to offshore structures, marine risers, and heat exchangers. Full article
Show Figures

Figure 1

21 pages, 11237 KiB  
Article
Investigation of Heat Transfer Enhancement Mechanisms in Elastic Tube Bundles Subjected to Exogenous Self-Excited Fluid Oscillation
by Jing Hu, Lei Guo and Shusheng Zhang
Fluids 2025, 10(5), 122; https://doi.org/10.3390/fluids10050122 - 8 May 2025
Viewed by 434
Abstract
Flow-induced vibration (FIV) characteristics are key factors in enhancing heat transfer. However, challenges such as insufficient heat transfer enhancement and the fatigue strength of the tube bundle persist in the context of improving the heat transfer in elastic tube bundle heat exchangers. This [...] Read more.
Flow-induced vibration (FIV) characteristics are key factors in enhancing heat transfer. However, challenges such as insufficient heat transfer enhancement and the fatigue strength of the tube bundle persist in the context of improving the heat transfer in elastic tube bundle heat exchangers. This study proposes a novel passive heat transfer enhancement paradigm for elastic tube bundles based on externally induced self-excited oscillations of fluid. By constructing a non-contact energy transfer system, the external oscillation energy is directed into the elastic tube bundle heat exchanger, achieving dynamic stress buffering and breaking through the steady-state flow heat transfer boundary layer. A three-dimensional fluid–structure interaction numerical model is established using Star CCM+2021.3 (16.06.008) to conduct a comparative analysis of the flow characteristics and heat transfer performance between the original structure without an oscillator and the improved structure equipped with a fluid oscillator. The results indicate that the improved structure, through the periodic unsteady jet induced by the fluid oscillator, significantly enhances the turbulence intensity of the shell-side fluid, with the turbulent kinetic energy increasing by over 50%. The radial flow area is notably expanded, thereby reducing the thermal resistance of the boundary layer. At cooling fluid velocities of 6 to 9 m/s, the heat transfer capability of the improved structure is enhanced by more than 50%. Compared with the original structure, the new structure, due to the loading of an external oscillation structure, causes the cold air to present a periodic up and down jet phenomenon. This jet phenomenon, on the one hand, increases the heat exchange area between the cold air and the outer surface of the tube bundle, thereby enhancing the heat exchange capacity. On the other hand, the large-area impact of the fluid reduces the thickness of the boundary layer, lowers the thermal resistance and thereby enhances the heat exchange capacity. Furthermore, this improved structure buffers the mechanical vibrations through self-excited oscillations of the fluid medium, ensuring that the stress levels in the tube bundle remain below the fatigue threshold, effectively mitigating the failure risks associated with traditional active vibration strategies. Full article
Show Figures

Figure 1

48 pages, 6986 KiB  
Review
Fluid Flow-Based Vibration Energy Harvesters: A Critical Review of State-of-the-Art Technologies
by Sadia Bakhtiar, Farid Ullah Khan, Hailing Fu, Amal Z. Hajjaj and Stephanos Theodossiades
Appl. Sci. 2024, 14(23), 11452; https://doi.org/10.3390/app142311452 - 9 Dec 2024
Cited by 4 | Viewed by 4418
Abstract
Energy harvesting technology plays an important role in converting ambient energy into useful electrical energy to power wireless sensing and system monitoring, especially for systems operating in isolated, abandoned or embedded locations where battery replacement or recharging is not a feasible solution. This [...] Read more.
Energy harvesting technology plays an important role in converting ambient energy into useful electrical energy to power wireless sensing and system monitoring, especially for systems operating in isolated, abandoned or embedded locations where battery replacement or recharging is not a feasible solution. This paper provides an integrative study of the methodologies and technologies of energy harvesting from fluid flow-induced vibration (FIV). The recent research endeavors contributing to flow-based energy harvesting have been reviewed to present the state-of-the-art issues and challenges. Several mechanisms on FIVs including vortex-induced vibrations (VIVs), flutter, galloping and wake galloping are thoroughly discussed in terms of device architecture, operating principles, energy transduction, voltage production and power generation. Additionally, advantages and disadvantages of each FIV energy harvesting mechanism are also talked about. Power enhancement methods, such as induced nonlinearities, optimized harvester’s configuration, hybridization and coupling of aerodynamic instabilities, for boosting the harvester’s output are also elucidated and categorized. Moreover, rotary wind energy harvesters are reviewed and discussed. Finally, the challenges and potential directions related to the flow-based energy harvesters (FBEHs) are also mentioned to provide an insight to researchers on the development of sustainable energy solutions for remote wireless sensing and monitoring systems. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

19 pages, 10890 KiB  
Article
Insights into the Vibration Characteristics of Spatial Radial Gate Affected by Fluid–Structure Interaction
by Feng Liu, Chao Xu, Min Liu, Ruiji Yi and Yu Zhang
J. Mar. Sci. Eng. 2024, 12(10), 1804; https://doi.org/10.3390/jmse12101804 - 10 Oct 2024
Cited by 1 | Viewed by 1443
Abstract
Radial gate, a spatial frame structure, is the key factor to control water discharge in dam structure and storm surge barriers. However, the fluid-induced vibration (FIV) problem always occurs owing to fluctuation loads exerted on the gate, threatening the safety of hydropower stations. [...] Read more.
Radial gate, a spatial frame structure, is the key factor to control water discharge in dam structure and storm surge barriers. However, the fluid-induced vibration (FIV) problem always occurs owing to fluctuation loads exerted on the gate, threatening the safety of hydropower stations. In this work, two fluid–structure interaction (FSI) modal analysis methods—the coupled acoustics–structure method and the added-mass method—are provided. Further, a comprehensive investigation on the vibration characteristics of the spatial radial gate, considering spatial structural characteristics and the FSI effect, is conducted. The numerical results revealed that the feasibility of the proposed coupled acoustics–structure method in analyzing FSI modal analysis was demonstrated; moreover, a reasonable length of the fluid domain in front of the skinplate existed for efficient computation. Meanwhile, through the added-mass method, the rational added-mass discount factor of hydrodynamic loads obtained from the Westergaard formula was provided. The FSI effect induced whole-gate rotation vibration streamwise around trunnion pins, significantly reducing the gate’s fundamental vibration frequency. In addition, three typical dynamic-instability vibration patterns of radial gates were presented. These patterns were affected by spatial structural characteristics and FSI. It was demonstrated that the struts and skinplate coupled bending–torsional vibration would cause the radial gate frame structure to fail catastrophically. The proposed insights can provide guidelines of vibration characteristics analysis of the radial gate submerged in flow water in reservoir and storm surge barriers. Full article
Show Figures

Figure 1

19 pages, 6931 KiB  
Article
The Effect of Reynolds Numbers on Flow-Induced Vibrations: A Numerical Study of a Cylinder on Elastic Supports
by Chunhui Ma, Fenglai Huang, Bin Li, Xujian Li and Yu Liu
Water 2024, 16(19), 2765; https://doi.org/10.3390/w16192765 - 28 Sep 2024
Viewed by 1801
Abstract
In the field of fluid dynamics, the Reynolds number is a key parameter that influences the flow characteristics around bluff bodies. While its impact on flow around stationary cylinders has been extensively studied, systematic research into flow-induced vibrations (FIVs) under these conditions remains [...] Read more.
In the field of fluid dynamics, the Reynolds number is a key parameter that influences the flow characteristics around bluff bodies. While its impact on flow around stationary cylinders has been extensively studied, systematic research into flow-induced vibrations (FIVs) under these conditions remains limited. This study utilizes numerical simulations to explore the FIV characteristics of smooth cylinders and passive turbulence control (PTC) cylinders supported elastically within a Reynolds number range from 0.8 × 104 to 1.1 × 105. By comparing the vibration responses, lift coefficients, and wake structures of these cylinders across various Reynolds numbers, this paper aims to elucidate how Reynolds numbers affect the flow and vibration characteristics of these structures. The research employs images of instantaneous lift changes and vortex shedding across multiple sections to visually demonstrate the dynamic changes in flow states. The findings are expected to provide theoretical support for optimizing structural design and vibration control strategies in high-Reynolds-number environments, emphasizing the importance of considering Reynolds numbers in structural safety and design optimization. Full article
(This article belongs to the Special Issue Design and Optimization of Fluid Machinery, 2nd Edition)
Show Figures

Figure 1

8 pages, 3398 KiB  
Proceeding Paper
Investigation of Bluff Body Size Effects on Piezoelectric Performance Using Flow-Induced Vibration
by Muhammad Mahad Shah, Moeen Mahboob, Usman Latif, Emad Uddin, Muhammad Rizwan Siddiqui and Muhammad Zulfiqar
Eng. Proc. 2024, 75(1), 21; https://doi.org/10.3390/engproc2024075021 - 24 Sep 2024
Viewed by 3339
Abstract
An experimental analysis of the effect of size variation for a cylindrical-shaped bluff body in flow-induced vibration (FIV) for the purposes of harvesting ambient energy is explored in this study. The research was conducted at a very low Reynold’s number in a closed-loop [...] Read more.
An experimental analysis of the effect of size variation for a cylindrical-shaped bluff body in flow-induced vibration (FIV) for the purposes of harvesting ambient energy is explored in this study. The research was conducted at a very low Reynold’s number in a closed-loop tunnel operating at a very low speed. An investigation of the power generation potential achieved by varying the size of the bluff body was conducted. A comparative study is also presented for varying the diameter configuration against the distance of the energy-harvesting piezoelectric flag from the cylindrical bluff body. At distances other than the optimal distance of the piezoelectric harvester from the bluff body, reduced efficacy of the power generation is observed. The results show a 17% increase in power with the use of 2x the size of the reference bluff body. Full article
Show Figures

Figure 1

17 pages, 5368 KiB  
Article
The Suppression of Flow-Induced Vibrations for a Single and Two Tandem-Arrangement Cylinders Using Three Splitter Plates
by Zhongming Hu, Jiasong Wang, Yuankun Sun and Ke Lin
J. Mar. Sci. Eng. 2024, 12(9), 1487; https://doi.org/10.3390/jmse12091487 - 28 Aug 2024
Cited by 2 | Viewed by 1423
Abstract
Some very useful methods for suppressing the flow-induced vibration (FIV) of a single cylinder are known to potentially have a limited efficiency for tandem-arrangement cylinders. In this paper, three splitter plates uniformly attached around a cylinder with an angle of 120° are proposed [...] Read more.
Some very useful methods for suppressing the flow-induced vibration (FIV) of a single cylinder are known to potentially have a limited efficiency for tandem-arrangement cylinders. In this paper, three splitter plates uniformly attached around a cylinder with an angle of 120° are proposed to suppress the FIVs of both a single cylinder and two tandem-arrangement cylinders in a wind tunnel at Re = 4000–45,200. The splitter plates’ length to diameter ratios, L/Ds (where L is the length of the splitter plate and D is the cylinder diameter), are set from 0.1 to 0.8. The results show that the proposed method not only effectively suppresses the vortex-induced vibration (VIV) for a single cylinder, but also successfully mitigates the wake-induced galloping (WIG) for two tandem-arrangement cylinders. The vibrations of the single cylinders are effectively suppressed, consistently achieving suppression efficiencies over 95% for L/Ds = 0.2–0.8, with a notable peak efficiency of 98.4% at L/D = 0.2. For the two tandem-arrangement cylinders at S/D = 4.0 (where S is the center-to-center spacing between the two cylinders), the suppression efficiencies of the upstream cylinder exceed 96% for L/D = 0.2–0.8, with an optimal efficiency of 97.4% at L/D = 0.6. The downstream cylinder exhibits vibration only at L/Ds = 0.1, 0.2, and 0.4, resulting in suppression efficiencies of 80.3%, 67.1%, and 91.0%. The vibrations remain fully suppressed throughout the entire reduced velocity range for L/Ds = 0.6–0.8, reaching an optimal efficiency of 98.7% at L/D = 0.6. Three regimes of fs/fn characteristics can be classified for the single cylinder, and the wake structures show that shear layers develop along the front plate before attaching on the cylinder and are then offset to either side of the cylinder by the two rear splitter plates, contributing to the absence of periodic vortex shedding. Full article
(This article belongs to the Special Issue The State of the Art of Marine Risers and Pipelines)
Show Figures

Figure 1

18 pages, 7142 KiB  
Article
Research on the Flow-Induced Vibration of Cylindrical Structures Using Lagrangian-Based Dynamic Mode Decomposition
by Xueji Shi, Zhongxiang Liu, Tong Guo, Wanjin Li, Zhiwei Niu and Feng Ling
J. Mar. Sci. Eng. 2024, 12(8), 1378; https://doi.org/10.3390/jmse12081378 - 12 Aug 2024
Cited by 2 | Viewed by 1310
Abstract
An oscillating flow past a structure represents a complex, high-dimensional, and nonlinear flow phenomenon, which can lead to the failure of structures due to material fatigue or constraint relaxation. In order to better understand flow-induced vibration (FIV) and coupled flow fields, a numerical [...] Read more.
An oscillating flow past a structure represents a complex, high-dimensional, and nonlinear flow phenomenon, which can lead to the failure of structures due to material fatigue or constraint relaxation. In order to better understand flow-induced vibration (FIV) and coupled flow fields, a numerical simulation of a two-degrees-of-freedom FIV in a cylinder was conducted. Based on the Lagrangian-based dynamic mode decomposition (L-DMD) method, the vorticity field and motion characteristics of a cylinder were decomposed, reconstructed, and predicted. A comparison was made to the traditional Eulerian-based dynamic mode decomposition (E-DMD) method. The research results show that the first-order mode in the stable phase represents the mean flow field, showcasing the slander tail vortex structure during the vortex-shedding period and the average displacement in the in-line direction. The second mode predominantly captures the crossflow displacement, with a frequency of approximately 0.43 Hz, closely matching the corresponding frequency observed in the CFD results. The higher dominant modes mainly capture outward-spreading, smaller-scale vortex structures with detail displacement characteristics. The motion of the cylinder in the in-line direction was accompanied by symmetric vortex structures, while the motion of the cylinder in the crossflow direction was associated with anti-symmetric vortex structures. Additionally, crossflow displacement will cause a symmetrical vortex structure that spreads laterally along the axis behind the cylinder. Finally, when compared with E-DMD, the L-DMD method demonstrates a notable advantage in analyzing the nonlinear characteristics of FIV. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 11838 KiB  
Article
Numerical Simulation on the Two-Degree-of-Freedom Flow-Induced Vibration of a Submerged Floating Tunnel under Current
by Guannan Wang, Ningchuan Zhang, Guoxing Huang and Zhuowei Zhou
J. Mar. Sci. Eng. 2024, 12(5), 759; https://doi.org/10.3390/jmse12050759 - 30 Apr 2024
Viewed by 1346
Abstract
The submerged floating tunnel (SFT) is a novel form of transportation infrastructure for crossing deeper and wider seas. One of the primary challenges in designing SFTs is understanding their hydrodynamic response to complex environmental loads. In order to investigate the two-degree-of-freedom (2-DOF) flow-induced [...] Read more.
The submerged floating tunnel (SFT) is a novel form of transportation infrastructure for crossing deeper and wider seas. One of the primary challenges in designing SFTs is understanding their hydrodynamic response to complex environmental loads. In order to investigate the two-degree-of-freedom (2-DOF) flow-induced vibration (FIV) response of SFTs under current, a two-dimensional (2D) numerical model was developed using the Reynolds-averaged Navier–Stokes (RANS) method combined with the fourth-order Runge–Kutta method. The numerical results were validated by comparing them with the existing literature. The study then addressed the effects of coupled vibration and structural parameters, i.e., the mass ratio and natural frequency ratio, on the response and wake pattern of SFTs, numerically. The results indicated that coupled vibration had a significant impact on the SFT response at reduced velocities of Urwx ≥ 4.4. A decrease in mass ratio (m* < 1) notably amplified the 2-DOF vibration amplitudes of SFTs at Urwx ≥ 4.4, particularly for in-line vibration. Similarly, a decrease in natural frequency ratio (Rf < 1) significantly suppressed the in-line vibration of SFTs at Urwx ≥ 2.5. Therefore, for the design of SFTs, careful consideration should be given to the effect of mass ratio and natural frequency ratio on in-line vibration. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

13 pages, 3202 KiB  
Article
Fluid Flow to Electricity: Capturing Flow-Induced Vibrations with Micro-Electromechanical-System-Based Piezoelectric Energy Harvester
by Jin Gu Kang, Hyeukgyu Kim, Sangwoo Shin and Beom Seok Kim
Micromachines 2024, 15(5), 581; https://doi.org/10.3390/mi15050581 - 27 Apr 2024
Cited by 6 | Viewed by 3595
Abstract
We introduce a micro-electromechanical system (MEMS) energy harvester, designed for capturing flow energy. Moving beyond traditional vibration-based energy harvesting, our approach incorporates a cylindrical oscillator mounted on an MEMS chip, effectively harnessing wind energy through flow-induced vibration (FIV). A highlight of our research [...] Read more.
We introduce a micro-electromechanical system (MEMS) energy harvester, designed for capturing flow energy. Moving beyond traditional vibration-based energy harvesting, our approach incorporates a cylindrical oscillator mounted on an MEMS chip, effectively harnessing wind energy through flow-induced vibration (FIV). A highlight of our research is the development of a comprehensive fabrication process, utilizing a 5.00 µm thick cantilever beam and piezoelectric film, optimized through advanced micromachining techniques. This process ensures the harvester’s alignment with theoretical predictions and enhances its operational efficiency. Our wind tunnel experiments confirmed the harvester’s capability to generate a notable electrical output, with a peak voltage of 2.56 mV at an 8.00 m/s wind speed. Furthermore, we observed a strong correlation between the experimentally measured voltage frequencies and the lift force frequency observed by CFD analysis, with dominant frequencies identified in the range of 830 Hz to 867 Hz, demonstrating the potential application in actual flow environments. By demonstrating the feasibility of efficient energy conversion from ambient wind, our research contributes to the development of sustainable energy solutions and low-power wireless electron devices. Full article
(This article belongs to the Special Issue MEMS Nano/Microfabrication)
Show Figures

Figure 1

21 pages, 10346 KiB  
Article
Energy Harnessing Performance of Oscillating Foil Submerged in the Wake of a Fixed Cylinder
by Yongqing Luo, Houxian Wu, Shuhan Huang and Hai Sun
Energies 2024, 17(8), 1793; https://doi.org/10.3390/en17081793 - 9 Apr 2024
Cited by 1 | Viewed by 973
Abstract
The energy harnessing from flow-induced vibrations (FIV) by an oscillating foil placed tandemly behind a circular cylinder (which serves as a vortex generator) is investigated. The foil is submerged in the wake produced by the fixed cylinder and could oscillate in the direction [...] Read more.
The energy harnessing from flow-induced vibrations (FIV) by an oscillating foil placed tandemly behind a circular cylinder (which serves as a vortex generator) is investigated. The foil is submerged in the wake produced by the fixed cylinder and could oscillate in the direction perpendicular to the incoming flow with single-degree freedom. The spacing ratio ranges from 1.0 to 5.0. The oncoming fluid velocity is U = 1–10 m/s, corresponding to the reduced velocity Ur = 3.81–38.08 and the Reynolds number Re = 9.58 × 103–9.58 × 104. Four harnessing damping ratios (ζharness = 0.0054–0.0216) are used to simulate the energy conversion conditions. The main conclusions are: (1) The optimal oscillation pattern related to the highest harnessed energy emerges as the spacing ratio close to 1.0. (2) The airflow energy converted by the foil is positively correlated with the harnessing damping ratio because the amplitude responses are similar at various harnessing damping ratios. A high velocity yields the highest harnessed power. (3) The harnessing efficiency of the foil could reach 48.89%, which is much more than that of an isolated flapping foil. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

15 pages, 10721 KiB  
Article
Fretting Corrosion Performance Evaluation of Uncoated Cladding, Cr Coating Cladding and AlCrNbSiTi Coating Cladding
by Xin Liu, Shen Li, Hui Wang, Menghe Tu, Bokai Zhou and Yong Hu
Alloys 2023, 2(4), 227-241; https://doi.org/10.3390/alloys2040016 - 28 Sep 2023
Cited by 3 | Viewed by 1894
Abstract
In pressurized water reactors (PWRs), flow-induced vibration (FIV) induces the fretting wear of fuel rods and supporting grids, and the process is accompanied by corrosion, which is called fretting corrosion. In this paper, fretting corrosion experiments were carried out in a simulated cladding [...] Read more.
In pressurized water reactors (PWRs), flow-induced vibration (FIV) induces the fretting wear of fuel rods and supporting grids, and the process is accompanied by corrosion, which is called fretting corrosion. In this paper, fretting corrosion experiments were carried out in a simulated cladding service environment, and the fretting corrosion performance of AlCrNbSiTi coating cladding, Cr coating cladding and uncoated cladding with the supporting grids were investigated using a three-dimensional white light interferometer and a scanning electron microscope (SEM). The results showed that the AlCrNbSiTi coating cladding has the strongest fretting corrosion performance, the Cr coating cladding has the second best fretting corrosion performance and the uncoated cladding has the worst fretting corrosion performance. The coating also changes the wear mechanism of the cladding and improves the corrosion resistance of the cladding, which is responsible for the improvement in the fretting corrosion performance of the cladding. By comparing the AlCrNbSiTi coating with the Cr coating, it was found that the AlCrNbSiTi coating has a better fretting corrosion performance than the Cr coating due to its higher hardness and stronger corrosion resistance. Full article
(This article belongs to the Special Issue New Alloys for Surface Engineered Coatings, Interfaces and Films)
Show Figures

Figure 1

14 pages, 6914 KiB  
Article
Experimental Study on the Effect of the Angle of Attack on the Flow-Induced Vibration of a Harbor Seal’s Whisker
by Yuhan Wei, Chunning Ji, Dekui Yuan, Liqun Song and Dong Xu
Fluids 2023, 8(7), 206; https://doi.org/10.3390/fluids8070206 - 14 Jul 2023
Cited by 6 | Viewed by 2264
Abstract
A harbor seal’s whisker is able to sense the trailing vortices of marine organisms due to its unique three-dimensional wavy shape, which suppresses the vibrations caused by its own vortex-shedding, while exciting large-amplitude and synchronized vibrations in a wake flow. This provides insight [...] Read more.
A harbor seal’s whisker is able to sense the trailing vortices of marine organisms due to its unique three-dimensional wavy shape, which suppresses the vibrations caused by its own vortex-shedding, while exciting large-amplitude and synchronized vibrations in a wake flow. This provides insight into the development of whisker-inspired sensors, which have broad applications in the fields of ocean exploration and marine surveys. However, the harbor seal’s whisker may lose its vibration suppression ability when the angle of attack (AoA) of the incoming flow is large. In order to explore the flow-induced vibration (FIV) features of a harbor seal’s whisker at various angles of attack (θ=090), this study experimentally investigates the effect of AoA on the vibration response of a whisker model in a wide range of reduced velocities (Ur = 3–32.2) and the Reynolds number, Re = 400–7000, in a circulating water flume. Meanwhile, for the sake of comparison, the FIV response of an elliptical cylinder with the same equivalent diameters is also presented. The results indicate that an increase in AoA enhances the vibration amplitude and expands the lock-in range for both the whisker model and the elliptical cylinder. The whisker model effectively suppresses vibration responses at θ=0 due to its unique three-dimensional wavy shape. However, when θ30, the wavy surface structure gradually loses its suppression ability, resulting in large-amplitude vibration responses similar to those of the elliptical cylinder. For θ = 30 and 45, the vibration responses of the whisker model and the elliptical cylinder undergo three vibration regimes, i.e., vortex-induced vibration, transition response, and turbulent-induced vibration, with the increasing Ur. However, at θ = 60 and 90, the vortex-shedding gradually controls the FIV response, and only the vortex-induced vibration is observed. Full article
(This article belongs to the Special Issue Biological Fluid Dynamics)
Show Figures

Figure 1

Back to TopTop