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Abstract: The energy harnessing from flow-induced vibrations (FIV) by an oscillating foil placed
tandemly behind a circular cylinder (which serves as a vortex generator) is investigated. The
foil is submerged in the wake produced by the fixed cylinder and could oscillate in the direction
perpendicular to the incoming flow with single-degree freedom. The spacing ratio ranges from
1.0 to 5.0. The oncoming fluid velocity is U = 1–10 m/s, corresponding to the reduced velocity
Ur = 3.81–38.08 and the Reynolds number Re = 9.58 × 103–9.58 × 104. Four harnessing damping
ratios (ζharness = 0.0054–0.0216) are used to simulate the energy conversion conditions. The main
conclusions are: (1) The optimal oscillation pattern related to the highest harnessed energy emerges
as the spacing ratio close to 1.0. (2) The airflow energy converted by the foil is positively correlated
with the harnessing damping ratio because the amplitude responses are similar at various harnessing
damping ratios. A high velocity yields the highest harnessed power. (3) The harnessing efficiency of
the foil could reach 48.89%, which is much more than that of an isolated flapping foil.

Keywords: flow-induced vibration; oscillating foil; wake; vortex shedding position; energy
conversion

1. Introduction

Flow-induced vibration (FIV) provides an alternative way to harness power from the
flow. This phenomenon is observed in the flow field after a slender structure, with bluff
sections such as circular or square sections. Alternating lift acts on the surfaces of these
structures with vortex shedding from bodies that excited vortex-induced vibration (VIV)
and galloping [1]. The energy exchanges from the flow and the slender body are typically
suppressed in engineering applications [2,3]. Instead of suppressing FIV, Bernitsas et al.
proposed the vortex-induced vibration aquatic clean energy (VIVACE) converter (Figure 1)
for extracting ocean/river current hydrokinetic energy capable of high-efficiency energy at
high-efficiency speeds as low as 0.5 knots by strengthening vortex shedding; the devices
with three tandem cylinders are shown in [4].

Inspired by aquatic animals, insects, and birds that utilize oscillatory motions with
wings or fins to achieve propelling, Wu et al. proposed a concept on which an oscillating
wing could extract energy from a surrounding flow [5]. As a streamlined structure, von
Karmen wake rarely occurs when fluid flows past the wing, which is fixed in a flow
field with zero degrees of the angle-of-attack (AOA). McKinney and DeLaurier verified
the concept by using a windmill to extract energy from the steady flow. A windmill
experimental model which combined plunging and pitching motion was tested in the wind
tunnel, and the highest efficiency was 28.3%, which could compare with that of traditional
rotary turbines [6].

Energies 2024, 17, 1793. https://doi.org/10.3390/en17081793 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17081793
https://doi.org/10.3390/en17081793
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-8855-2288
https://doi.org/10.3390/en17081793
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17081793?type=check_update&version=1


Energies 2024, 17, 1793 2 of 21

Energies 2024, 17, x FOR PEER REVIEW 2 of 24 
 

 

tunnel, and the highest efficiency was 28.3%, which could compare with that of traditional 
rotary turbines [6]. 
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adjusted pitching axis and damping of the system [10]. The third type, a fully passive 
energy converter in which plunging and pitching motions are linked by mechanical struc-
tures such as phase gears, can achieve 26% efficiency. Young et al. raise the efficiency to 
41% with the control of an effective AOA [11]. Extensive research on the flapping wing 
can be found in Bradley et al. [12], Zhu et al. [13], Teng et al. [14], Veilleux et al. [15,16], 
and so on. 
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contrary, the amplitude in galloping is larger than that in VIV and increases with the on-
coming fluid velocity [20]. For imploring the performance of a multiple-bodies configura-
tion consisting of cylinders in FIV, extensive research has been conducted. As we know, 
there are interactions between shear layers and vortexes when fluid flows past multiple 
body configurations that influence the vortex street downstream [21]. Zdravkovich [22] 
divided the flow regime of two stationary cylinders in a tandem arrangement into three 
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The research of the flapping foil energy converters can be classified into three types
based on activating mechanisms: active, semi-active, and fully passive [7]. The active
flapping foil energy converts the heaving and pitching motions, which are driven by the
flow–structure coupling, and the parameters such as the top point of the heaving motion
and the amplitude of the pitching motion are fixed. Jones et al. provided the plunge
amplitude and pitch amplitude with their oscillating foil [8]. Dumas and Kinsey simulated
NACA 0015 foil with a limitation of the angle of pitching in 0–90◦, and the range of reduced
frequency was 0–0.25; the efficiency finally reached as high as about 35% [9]. The pitching
motion of semi-active foils is forced and induces plunging motion. Zhu and Peng studied
the performance of the second type of foil under a low Reynolds number with an adjusted
pitching axis and damping of the system [10]. The third type, a fully passive energy
converter in which plunging and pitching motions are linked by mechanical structures
such as phase gears, can achieve 26% efficiency. Young et al. raise the efficiency to 41%
with the control of an effective AOA [11]. Extensive research on the flapping wing can be
found in Bradley et al. [12], Zhu et al. [13], Teng et al. [14], Veilleux et al. [15,16], and so on.

VIV and galloping are the most common kinds of FIV for elastically supported struc-
tures. VIV has a limited amplitude and only occurs in the lock-in range [17–19]. On the
contrary, the amplitude in galloping is larger than that in VIV and increases with the oncom-
ing fluid velocity [20]. For imploring the performance of a multiple-bodies configuration
consisting of cylinders in FIV, extensive research has been conducted. As we know, there
are interactions between shear layers and vortexes when fluid flows past multiple body
configurations that influence the vortex street downstream [21]. Zdravkovich [22] divided
the flow regime of two stationary cylinders in a tandem arrangement into three parts
based on the space between two bodies. The three flow regimes are a single slender body
(1 < L/D < 1.2–1.8), reattachment (1.2–1.8 < L/D < 3.4–3.8), and a binary vortex street
(L/D > 3.4–3.8), where L is the distance between the center of the two cylinders and D is
the cylinder diameter. Qin et al. organized an experiment to investigate the flow-induced
vibration of two circular cylinders in tandem at a spacing ratio L/D = 1.2–6.0 and a reduced
velocity Ur = 3.8–47.8. The downstream cylinder underwent divergent violent galloping
at L/D = 2.5 and Ur > 17.3, and the amplitude ratio was exceeding the value of the single
cylinder and increased with velocity [23]. Assi et al. performed a study on the response
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of the downstream cylinder and found that wake unsteadiness plays a critical role in the
wake-induced process [24]. Abundant studies have been conducted on energy conversion
from the FIV. Sun et al. investigated the flow-induced motions of a single rough circular
cylinder by changing the mass ratio, damping, and stiffness and found that the VIV regime
narrowed with increasing harnessing damping ratios, which increased the onset of gal-
loping [25]. Li et al. simulated a single cylinder with larger passive turbulence control
(PTC) at an expanded Re range beyond MRELab and found that the curve of the ampli-
tude ratio showed the back-to-back VIV and galloping at all tested damping ratios; more
power could be extracted from the flow with increasing harnessing damping ratios [26].
Zhang et al. studied the impact of a downstream cylinder on harnessing energy from
VIV, and the results revealed that the spacing ratio has an important influence on energy
conversion [27].

Some scholars utilized the wake effect to enhance the performance of the energy
converter. Alam et al. studied the aerodynamic characteristics of a cylinder submerged in
the wake of another one; the lift force coefficient of the downstream cylinder was twice
that of a single cylinder [28]. Chen et al. tested different diameter cylinders (d/D = 0.4;
d is the diameter of the upstream cylinder which is fixed and D is the diameter of the
other one) that were arranged in tandem in a wind tunnel. The amplitude response of the
oscillators showed VIV, separated VIV and galloping, and combined VIV and galloping
with various spacing ratios and damping ratios that were different from the response of
the single cylinder, which only had a VIV phenomenon at the entire velocity regime [29].
Sun et al. investigated the effect of spacing on hydrokinetic energy conversion by two
rough tandem cylinders and found the gap flow went to the bottom of the downstream
cylinder and pushed its motion at the galloping regime, which meant more energy could
be captured [30]. E. S. K. et al. conducted an experiment with two to four circular cylinders,
and the amplitude of the first cylinder was 7.2% higher than that of a single cylinder [31].
Liao et al. studied the effects of vortex shedding from the upstream cylinder on the vorticity
structure and lift force with flapping foil by changing the relative position between the
cylinder and foil and the AOA of a foil [32]. Ma et al. researched a design of a dual flapping
wings configuration in which the heaving and pitching motions are fully controlled by flow-
induced flapping motions with NACA 0015 foil; the result revealed that a higher harnessing
efficiency could reach smaller R and β values [33]. Li et al. changed two parameters, the
distance between the D-section cylinder and foil and the flapping frequency, to investigate
the performance of flapping foils in the vortex street produced by the D-section cylinder [34].
The maximum efficiency is 39.81% when the flapping frequency is close to the frequency
of wake. The influence of the wake produced by the cylinder is weaker as the distance
increase. However, the type of foils in most wake effect studies is active or semi-active;
fully passive research is rare. Referring to the above literature, the effect of the downstream
vortex or shear layers produced by upstream bluff bodies has been verified. The bluff
bodies arranged downstream could enhance its performance of energy conversion at
certain conditions.

Although the flapping foil can harness energy from plunging and pitching motions, the
plunging motion constitutes the main stimulus for power extraction [35]. In this paper, we
prompt a design on which a fully passive NACA 0016 foil with a single degree of freedom
is placed in the wake produced by a circular cylinder to study the performance of energy
harnessing with the cylinder as a vortex generator. The direction of the single-degree-
of-freedom motion is perpendicular to the oncoming flow. In order to convert kinetic
energy to mechanical energy in foil, additional damping is introduced for simulating the
generator. The distance between the circular cylinder and the foil and the different velocities
of oncoming flow are researched. In Section 2, the simplified model of the system and the
parameters are presented. In Section 3, the numerical method and mathematical modeling
are provided. In Section 4, the amplitude and frequency response of the foil at different
spacing ratios and the performance of energy conversion at S/L = 1.0 for various damping
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ratios are discussed. Section 5 is the conclusion of this research. The proposed application
can be scaled up or down for commercial usage or for the micro sensor.

2. Physical Model

The physical model is simplified to a two-dimensional model. The physical model
consists of a rigid circular cylinder, an oscillating foil, and a supporting linear spring, as
shown in Figure 2. The diameter of the cylinder is D, and L and H are the chord length
and the maximum thickness of the foil, respectively. S is the distance from the cylinder’s
center to the foil’s leading-edge point. K is the stiffness of the spring, and c is the damping
of the system.
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Figure 2. Schematic of the physical model and the numerical setup.

The cylinder and the foil are arranged in tandem, and the foil oscillates in the y-
direction. The parameters of the system are listed in Table 1.

Table 1. The parameters of the system.

Item Symbol Value

Diameter of the upstream cylinder D [m] 0.14
Chord length of the wing L [m] 0.14
The maximum thickness of the wing H [m] 0.0227
Space S [m] 0.14–0.7
Mass of the foil mfoil [kg] 0.462
Spring constant K [N/m] 64.14
The damping ratio of the structure ζstructure [Ns/m] 0.0054
The damping ratio of harnessing ζharness [Ns/m] 0.0054–0.0216
Natural frequency fn [Hz] 1.8756

The damping ratio of the structure is 0.0054, which was used in an experiment con-
ducted by Khalak et al. [36]. Four values from 0.0054 to 0.0216 are harnessing damping
ratios that are adopted to simulate the condition of harvesting energy from flowing fluid.

3. Numerical Method and Mathematical Modeling

The numerical method of this simulation is introduced in this section. The mathemati-
cal modeling of the fluid dynamics and the oscillating foil, the computational domain, the
grid generation, the grid sensitivity, and the validation are presented as well in this section.
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3.1. Governing Equations
3.1.1. Fluid Dynamics

In the simulation, the air is employed as the medium of the flow field, and the velocity
of incoming flow is much less than Ma 0.3, so we consider the flow incompressible in the
flow field. The basic Reynolds-Averaged Navier–Stokes equations are:

∂ρui
∂xi

= 0 (1)

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂(2µSij − ρu′
iu′

j)

∂xi
(2)

where u is the time-average velocity of the fluid particle; p is the time-average pressure of
the fluid particle; µ is the molecular viscosity; Sij is the mean stress tensor; and u′

iu′
j is the

Reynolds-stress tensor.

3.1.2. Turbulence Model and Numerical Schemes

The turbulence model employed in this simulation is the SST (Shear-Stress Transport)
k-ω model, which is a two-equation model for solving the two transport equations of the
kinematic eddy viscosity k and the specific dissipation rate ω. Detailed descriptions of
this model can be found in Menter’s research [37]. For the problem of flow around the
bluff body, the SST k-ω model shows good agreement with the initial VIV branch and
lower branch [38] and can predict the separation phenomenon when undergoing adverse
pressure gradient flows accurately. The SST k-ω model combines the k-ω model and the k-ε
model with a mixed function, it applies k-ω the model in the boundary layer, and the k-ε
model is used in the region out of the boundary layer. The transport equations of k and
ω are:

∂(ρk)
∂t

+
∂(ρUjk)

∂xj
=

∂

∂xj
·[(µ + σkµt)

∂k
∂xj

] + P̃k − β∗ρωk (3)

∂(ρω)

∂t
+

∂(ρUjω)

∂xj
=

∂

∂xj
[(µ + σkµt)

∂ω

∂xj
] +

α

µt
P̃k − βρω2 + 2(1 − F1)

ρσω2

ω

∂k
∂xj

∂ω

∂xj
(4)

The equation P̃k is:
P̃k = min(Pk, 10β∗ρkω) (5)

Pk = µt
∂Ui
∂xj

(
∂Ui
∂xj

+
∂Uj

∂xi
) (6)

where F1 in Equation (4) is the first mix function, F1 = 0, and the equations are the k-ε model.
On the contrary, F1 = 1, and the equations are the k-ω model. F1 is:

F1 = tanh(arg4
1) (7)

where arg1 is the function of the distance y from the node of the grid to the nearest wall:

arg1 = min[max(

√
k

β∗ωy
,

500µ

y2ω
),

4ρσω2k
CDkωy2 ] (8)

CDkω = max(2
ρσω2

ω

∂k
∂xj

∂ω

∂xj
, 10−10) (9)

The viscosity of the turbulence eddy is defined as:

νt =
µt

ρ
=

a1k
max(a1ω, SF2)

(10)
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where S is the invariant of the strain rate, and F2 is the second mix function:

F2 = tanh(arg2
2) (11)

arg2 = max(2

√
k

0.09ωy
,

500µ

y2ω
) (12)

Set ϕ1 as the empirical parameters of the standard k-ω model (β1, σk1, . . ., α1) ϕ2 as the
empirical parameters of the k-ε model transformed into k-ω form (β2, σk2, . . ., α2), and ϕ as
the empirical parameters of the SST k-ω model. The relationship is:

ϕ = F1ϕ1 + (1 − F1)ϕ2 (13)

The coefficients in the above equations are: β* = 0.09, β1 = 0.075, β2 = 0.0828,
σk1 = 0.85, σk2 = 1.0, σω1 = 0.5, σω2 = 0.856, α1 = 5/9, α2 = 0.44, and a1 = 0.31.

The dimensionless time step ∆t∗ for each tested case is 0.005 (∆t∗ = ∆tU/L; ∆t is the
time step of the actual calculation). In addition, a second-order upwind spatial discrete
scheme and a second-order implicit time discretization are applied to discrete the governing
equations, and the SIMPLEC (SIMPLE-Consistent [39]; SIMPLE is a Semi-Implicit Method
for Pressure Linked Equations [40]) algorithm of pressure–velocity coupling is employed
for the simulation. The ANSYS Fluent software (19.3) is adopted to realize the function.
Because the oscillation foil is set in the wind tunnel in this research, the Reynolds number
is set around 98,000; in higher Reynolds numbers, the mathematical model would not hold.

3.1.3. Motion Kinematics

As mentioned above, the model has been simplified to a mass-spring-damper oscillator
model. The foil has a single degree of freedom and oscillates transversely to the free stream;
the modeling equation is:

m
..
y + c

.
y + Ky = Fy (14)

where
.
y is the velocity of the foil,

..
y is the acceleration of the foil, and Fy is the force applied

on the foil by fluid in the y-direction.
The damping ratio ζ and natural frequency ω0 are introduced into Equation (14):

..
y + 2ζω0

.
y + ω2

0y = Fy/m (15)

Due to the medium of fluid being air, the added mass is relatively small compared with
the mass of foil, so here, the added mass influence is ignored. A fourth-order Runge–Kutta
algorithm is used to solve Equation (15) with a small-time step, and the y-direction motion
of the foil and the fluid force are solved in a couple of ways.

3.2. Computational Domain

The computational domain dimensions are 40D × 20D (Diameter), as shown in
Figure 3. The inlet boundary is set 10D upstream from the center of the front cylinder and
the velocity–inlet boundary condition is specified at the inlet boundary. 30D is the distance
from the center of the cylinder to the outlet boundary whose boundary condition is the
pressure outlet. The upper and lower boundaries are symmetry boundary conditions, and
the distances are both 10D. The no-slip boundary condition is employed in the surfaces of
the cylinder and the foil.

3.3. Grid Generation

The global grid generated mesh structured for each case in Figure 4a. To achieve the
motion of the foil, the overset mesh and dynamic mesh technologies are applied. The overset
grid method is dividing the complex area into sub-areas with simple geometric boundaries,
and each sub-area generates an independent computational grid. The flow field information
between different grids is transferred by interpolation at the overset domain boundaries.
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Figure 4b displays the close-up of the overset area; the overset boundary is the junction of
the foil grid and the background grid. The background mesh of this numerical investigation
includes the circular cylinder, and the foreground mesh is the grid around the foil. The
moving velocity of the foil is calculated by the User-Defined Function (UDF) routine.
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Due to the SST k-ω model being adopted, the first grid point away from the wall needs
a viscous sublayer to solve the flow in the boundary layer. When <5, the first layer of
the grid is located in the viscous sublayer; when 30 < y+ < 300, the first layer of the grid
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is located in the log-law layer. This article selects the SST k-w turbulence model for the
simulation, which can be solved for the viscous bottom layer. So, the y+ (non-dimensional
distance to the wall, Equation (16)) which is used to estimate the first grid spacing near the
wall calculated is set in the order of one. If the y+ exceeds the range when we simulate in
some cases, we adjust the spacing of the first grid near the wall and repeat the procedures
until the y+ meets the requirement.

y+ =
∆yρuτ

µ
(16)

µτ =

√
τw

ρ
(17)

where ∆y is the grid distance to the wall; uτ is the wall friction velocity; and τw is the wall
shear stress.

3.4. Validation of the Numerical Model

The grid sensitivity is discussed before the validation. A coarse mesh (circumferential
× radial = 208 × 125), a medium mesh (248 × 145), and a high mesh (288 × 165) around
the cylinder are studied first.

Three different grid levels are mentioned above a smooth stationary cylinder under
the condition of Re = 3900, which is applied to verify the independence of the grid. The
present results are compared with previous experimental and numerical results which
employed different turbulence models. The time-averaged drag coefficient (Cd,ave) and
Strouhal number (St) of each case are presented in Table 2. There is a large deviation in
results between the experiment and the simulations due to three-dimensional characters
of vortex shedding from the spanwise direction of a circular cylinder [41]. As shown in
Table 2, the deviation of Cd,ave and St for the medium-density grid is 0.26% and 0.92%,
compared with that of the high-density grid, respectively. Three types of grids give close
results; hence, the medium-density grid is selected for the following simulations.

Table 2. Results compared with the experiment and simulations at Re = 3900.

Data Source Dimension Turbulence Model Cd,ave (Drag Coefficient) St

Parnaudeau [42] Exp. 3D - 0.99 0.215
Franke J. and W. [43] 3D LES 0.99 0.209

Lysenko [44] 3D LES 1.18 0.190
Zhou [45] 2D SST 1.5 0.215

Present (coarse) 2D SST 1.534 0.221
Present (medium) 2D SST 1.526 0.218

Present (high) 2D SST 1.522 0.216

Cd,ave is the fast Fourier transform (FFT) of the cylinder resistance coefficient time
history curve after the vibration is stabilized. A user-defined function (UDF) is written
to calculate the displacement of the foil forced by fluid force. For testing the accuracy
of the code, a series of simulations regarding a single cylinder is performed, with the
parameters setting referred to by Williamson et al. [36]. The amplitude ratios (A* = y(t)/D;
D is the diameter of the single cylinder) and frequency ratios (f * = fosc/fn) variations with a
reduced velocity (Ur = U/fnD) of the present study are compared with experimental data
by Williamson et al. [36] and simulation data by Pan [38] and Zeng [46]; the results are
shown in [46]. Although the present amplitude decreases suddenly between Ur = 9 and 11,
the trends are captured well with experiments and simulations. There is an upper branch in
the experiment that cannot be reached by all simulations. For the numerical solutions with
the SST k-ω model, the reason for not capturing the upper branch is that the random effect
of turbulence is neglected with the introduction of the model. However, the overall trend
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aside from the upper branch is in good agreement with the numerical and experimental
data found in the literature [46].

Figure 5, the Ur corresponds to two amplitude and frequency ratios. This phenomenon
is caused by the alternation of the VIV branch. As Ur changes, the initial branch changes to
the upper branch and the lower branch changes to the desynchronized branch; the same Ur
will appear with two frequencies, one frequency ratio falling on the solid line (the solid line
is based on the Strouhal number, the relationship between the estimated frequency ratio
and Ur), and the other frequency ratio falling on the dotted line (f * = 1.0).
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4. Results and Analysis
4.1. Amplitude Responses

A series of numerical tests are conducted at S/L = 1.0–5.0 and ζstructure = 0.0054 for
U = 1–10 m/s (corresponding to a reduced velocity Ur = 3.81–38.08 and Reynolds numbers
Re = 9.58 × 103–9.58 × 104). The amplitude A is calculated by the displacement root-mean-
square (RMS) value of the foil times

√
2. The variation in amplitude responses with a

reduced velocity is shown in Figure 6.

1. At S/L ≤ 3.0, the amplitude ratio first increases with an increasing reduced velocity
and then drops suddenly to around 0.15 at S/L = 1.5–3.0. The A* drops earlier
as the S/L increases because the effect of vortexes shedding from the cylinder is
weaker when the gap is larger between the cylinder and the foil at the same Ur.
Bokaian et al. investigated the behavior of an oscillating circular cylinder submerged
in the wake of a stationary rigid body with various values of cylinder separation
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ranging from 0.59 to 3, and the system mass-damping ratio is 0.109 [47]. The cylinder
exhibited four types of resonances, including vortex-resonance (S/L > 2.5), galloping
(S/L = 0.59), combined vortex-resonance and galloping (S/L = 1.0), and separated
vortex-resonance and galloping (1.5 < S/L < 2.5). In the present study, the amplitude
ratio at S/L = 1.0 first increases until Ur = 11.43 and declines at Ur = 11.43–19.04; then,
it rises at a smaller rate again as Ur grows. The trend at S/L = 1.0 can be divided
into combined vortex-resonance and galloping, which is in good agreement with the
previous conclusion. However, the amplitude resonances at the other space ratios
in Figure 6 are different from Bokaian’s results, which can be attributed to the shape
differences in oscillators between the two investigations.
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2. The amplitude ratios of the foil reach about 0.6 when S/L = 4.0 and S/L = 5.0 at
Ur = 3.81, which are obvious differences from the conditions on which S/L ≤ 3.0
corresponds to A* < 0.1. Figure 7 shows the vorticity contours at the moment, pointing
at the maximum displacement of the foil at Ur = 3.81 and every space ratio, respectively.
The dashed line in the picture is the initial position of the foil. Figure 7a–d shows that
the vortex shedding position is located downstream of the foil, and the shear layer
affected by the foil is prolonged by the present configuration, which is considered as
a whole body consisting of the cylinder. As shown in Figure 7e,f, the vortexes shed
in the gap between two rigid bodies and flow downstream along the direction of the
incoming velocity, finally forcing the foil to oscillate in the y-direction with a higher
amplitude than the former.

Energies 2024, 17, x FOR PEER REVIEW 12 of 24 
 

 

  
(a) (b) 

  
(c) (d) 

 
(e) (f) 

Figure 7. The vorticity contours at the maximum displacement moment of the foil at S/L = 1.0-5.0 
and Ur = 3.81 (the dotted line is the mean position). 

3. With the changes in space ratios and reduced velocities, the maximum amplitude 
ratio (A* = 1.43) appears at Ur = 15.23 and S/L = 1.0. For exploring the phenomenon, 
the lift coefficient curves of the cylinder and the foil in 5 s at the present parameters 
are plotted in Figure 8 first, the phase difference is 131.77° between the two life coef-
ficient curves. However, the phase difference is not the determinate factor of this re-
sult; the corresponding value is 140.73°, S/L = 1.5, which has a much smaller ampli-
tude ratio (A* = 0.22). 

 
Figure 8. The time history curves of the lift coefficient of the cylinder and the foil at S/L = 1.0 and Ur 
= 15.23. 

Figure 7. Cont.



Energies 2024, 17, 1793 11 of 21

Energies 2024, 17, x FOR PEER REVIEW 12 of 24 
 

 

  
(a) (b) 

  
(c) (d) 

 
(e) (f) 

Figure 7. The vorticity contours at the maximum displacement moment of the foil at S/L = 1.0-5.0 
and Ur = 3.81 (the dotted line is the mean position). 

3. With the changes in space ratios and reduced velocities, the maximum amplitude 
ratio (A* = 1.43) appears at Ur = 15.23 and S/L = 1.0. For exploring the phenomenon, 
the lift coefficient curves of the cylinder and the foil in 5 s at the present parameters 
are plotted in Figure 8 first, the phase difference is 131.77° between the two life coef-
ficient curves. However, the phase difference is not the determinate factor of this re-
sult; the corresponding value is 140.73°, S/L = 1.5, which has a much smaller ampli-
tude ratio (A* = 0.22). 

 
Figure 8. The time history curves of the lift coefficient of the cylinder and the foil at S/L = 1.0 and Ur 
= 15.23. 

Figure 7. The vorticity contours at the maximum displacement moment of the foil at S/L = 1.0–5.0
and Ur = 3.81 (the dotted line is the mean position).

3. With the changes in space ratios and reduced velocities, the maximum amplitude ratio
(A* = 1.43) appears at Ur = 15.23 and S/L = 1.0. For exploring the phenomenon, the
lift coefficient curves of the cylinder and the foil in 5 s at the present parameters are
plotted in Figure 8 first, the phase difference is 131.77◦ between the two life coefficient
curves. However, the phase difference is not the determinate factor of this result; the
corresponding value is 140.73◦, S/L = 1.5, which has a much smaller amplitude ratio
(A* = 0.22).
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Hence, the vorticity contours are plotted in an oscillating period at S/L = 1.0 and Ur
= 15.23, which are shown in Figure 9 (which are at difference period within one cycle).
During this period, the motion of the foil is completely affected by the vortex (A1, B1, A2,
and B2) shedding from the cylinder. At the beginning (T = 0), A1 has been generated and
moves downstream; the foil is close to the equilibrium position at this time. B1 is generated
at the bottom cylinder and causes a trend of moving upward for the foil. When T = π/2,
B1 reaches the bottom of the foil, which is pointing at the upward extreme position. As B1
extends and moves with the flow downstream, the foil turns the direction downward and
reaches the extreme position of downward motion at T = 3π/2 under the joint action of B1
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and A2. Finally, the foil returns to its initial position and completes the vibration process in
a cycle under the effect of B2. It should be noted that a portion of B2 moves to the top of
the foil through the gap between the two bodies, which makes the counterclockwise vortex
flowing under the foil smaller than the time at T = π/2, which also causes the upward
motion of the foil to be reduced by 27.94% compared with the previous period. It can be
seen that the motion of the foil is completely affected by vortex shedding at the present
parameters. The process of vortex generation and shedding affect the direction and trend
of motion.
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4. The amplitude ratios A* are ≤ 0.2 at space ratios S/L > 1.0 and the reduced velocity is
Ur ≥ 15.23; as the reduced velocity increases, the amplitude ratio tends to be stable.
This is due to the vortex shedding frequency, which increases with the incoming flow
velocity. It speeds up the flow field variation frequency around the foil but reduces
the oscillating amplitude.

4.2. Frequency Responses

The frequency spectrums are obtained by the Fast Fourier Transform (FFT) of the
amplitude responses of the foil at different spacing ratios and reduced velocities, as shown
in Figure 10. The dashed line in every figure is the natural oscillating frequency, defined as

fn =
1

2π

√
K
m

(18)
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(a) At each spacing ratio, the oscillating frequency of the foil increases with the growth
in the reduced velocity. The phenomenon can be attributed to the increasing vortex
shedding frequency. As described in Section 4.1, the motion of the oscillator is
completely affected by the vortex shedding, so its oscillating frequency shows a
gradual increase trend with the incremental oncoming flow velocity.

(b) The increasing rate of oscillating frequency at S/L ≤ 3.0 is smaller than S/L ≥ 4.0 with
the changes in reduced velocity, as shown in Figure 8. At the former spacing ratio
(S/L ≤ 3.0), because of the influence of the position of the foil, the vortex shedding
position located downstream of the foil and the shear layer is extended, which needs
more time to isolate from the rigid body, so the vortex shedding frequency at the same
reduced velocity is smaller than the latter space ratio (S/L ≥ 4.0). When S/L ≥ 4.0,
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the vortex shedding position is in the gap between the cylinder and the foil; the vortex
sheds earlier and improves the vortex shedding frequency.

(c) At the corresponding time of the maximum amplitude at each spacing ratio, the
amplitude response has more than two oscillating frequencies. When the spacing
ratio S/L = 5.0 and Ur = 11.43, the instantaneous vorticity contours of the two vortex-
shedding cycles of the upstream cylinder and the corresponding foil displacement
time history curve are shown in Figure 11. At the moment shown in Figure 11a, the
foil is at the extreme value of upward movement under the effect of the previous
vortex. When it comes to Figure 11b, vortex V1 is cut apart into two sub-vortexes by
the foil. The upper sub-vortex V1-1 plays a key role in forcing the foil to gradually
move downward and reach the extreme value. The lower vortex V1-2 is dissipated
under the influence of surrounding vortices. In the same way, vortexes V2, V3, and
V4 similarly displace the foil. It should be noted that after the vortex is split, the
sub-vortex plays a role in the foil displacement, which is on the same side as the
original vortex, and the sub-vortex on the other side is gradually dissipated under
the influence of the residual part of the previous vortex. On the one hand, with the
alternating influence of vortices, the foil oscillator makes a reciprocating motion, so
one frequency of the displacement curve is equal to the vortex shedding frequency
at this time. On the other hand, when a current vortex makes the foil move to the
extreme value, as shown in Figure 11b, the subsequent vortex V2 has been affected by
the foil, which leads to the sub vortex V2-1 of V2 being smaller than the sub vortex of
V1-1. During the upward movement of the flapping wing caused by V2-1, V3 is cut
off to make the foil move downward so that the displacement time history curve of
the foil shows a rising trend of fluctuation, which also makes the displacement have
multiple frequencies.
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(d) As shown in Figure 11e,f, when the spacing ratio is equal to 4.0 and 5.0, and the reduced
velocity Ur = 11.43, a larger amplitude is less than the natural frequency and a smaller
amplitude is equal to the upstream cylinder vortex shedding frequency, which appears
on the FFT curve. This is due to the alternating rise and fall of the oscillator under the
action of the vortex at this reduced velocity. In Figure 11b, the oscillator is at the limit
value of the downward motion, and then the wave rises to the extreme value of the
upward motion; this process is about three to four cylindrical vortex shedding cycles.
In the vortex shedding period close to the initial position of the foil, the amplitude of
the vibration is small, so there is a peak on the FFT curve on the right side close to the
vortex shedding frequency, but the amplitude is relatively small.

4.3. Harnessed Energy and Efficiency
4.3.1. Harnessed Energy

Four harness damping ratios (ζharness) and S/L = 1.0, which has the maximum am-
plitude, are employed to simulate the energy harvesting conditions. With the periodic
oscillating motions of the foil, the fluid kinematic energy is converted to the foil mechanical
energy. The dynamics model in Equation (14) is employed to compute the converted power,
as given by [17]; the equation of the total converted power is

Ptotal =
1

Tosc

∫ Tosc

0
(m

..
y + Ctotal

.
y + Ky)

.
ydt (19)

The excitation and response are assumed as sinusoidal motion with a frequency fosc,
and the instantaneous transverse displacement of the foil is expressed as

y(t) = A sin(2π fosct) (20)

The total converted power obtained by introducing Equation (20) into Equation (19) is

Ptotal =
1

Tosc

∫ Tosc

0
(4πmζtotal

.
y fn)

.
ydt = 8π3mζtotal(A fosc)

2 fn (21)

where ζtotal = ζstructure + ζharness. Thus, the harnessing power is

Pharness = 8π3mζharness(A fosc)
2 fn (22)

The curves of the harnessed energy at different damping ratios in the present simula-
tions are shown in Figure 12a.
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Figure 12. (a) Harnessed energy at different damping ratios for S/L = 1.0. (b) Amplitude ratios at
different harnessed damping ratios for S/L = 1.0.

The highest energy harnessed by the foil reaches 0.055 W at ζharness = 0.0216 in the
current tested condition. In Equation (22), the harnessed power is proportional to ζharness,
A, and fosc. For all three cases investigated, the Pharness is higher as the damping ratio
increases at the entire reduced velocity range, which can be attributed to the amplitudes of
three harnessed damping ratios which have few differences, which is shown in Figure 12.
The trend of Pharness varies with Ur and is suited with the corresponding variation in the
amplitude. At Ur = 3.81–11.43, the harnessed power increases at a smaller rate and then
swerves downward and enhances at a greater rate again at Ur = 19.04; then, it finally reaches
a much bigger value than the former extreme one. As seen in the frequency spectrums of
amplitudes (Figure 13), the oscillating frequencies at Ur = 7.62–11.43 are nearly the same
and are locked in around the natural frequency that indicated the flow pattern at this
moment in the VIV regime. The lines of frequency fluctuate at Ur = 26.66–38.08, and no
main frequency occurs at this range. Though the RMS values of amplitude at these flow
speeds are relatively small compared to Ur = 11.43, the fluctuation is more intensive and
violent at a higher damping ratio, which results in the rapid growth of Pharness.
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4.3.2. Harnessed Efficiency

The fluid kinematic energy through the area Sfoil swept by the foil with oscillations
is given.

Pf luid =
1
2

ρU3S f oil (23)

For a consistent comparison with the area swept by a propeller or a cylinder in FIV [34],
Sfoil in the present work is expressed as (2A + H)L; hence, we have

Pf luid =
1
2

ρU3(2A + H)L (24)

The swept area changes with the foil amplitude, which is different from turbines and
propellers that have a fixed value of the area. There is a theoretical maximum efficiency
that extracts energy from open flow, and the value is equal to 59.26%. Based on the Betz
limit, the total energy-converted efficiency from the fluid ηtotal and the harnessing efficiency
ηharness are calculated as

ηtotal =
Ptotal

Pf luid × Betz Limit
(25)

ηharness =
Pharness

Pf luid × Betz Limit
(26)

As described in the previous section, the harnessed energy is on the dependence of Ur
and ζharness, and the available energy of the incoming flow is the function as the cube of
the approaching velocity (Equation (24)) if the harnessed efficiency has the same trend as
harnessed power. Figure 14 shows the curves of the harnessed efficiency changes with Ur
for various ζharness values.

Similar to the harnessed energy curves, a higher damping ratio has a higher efficiency
in the entire flow range. The efficiency increases first with Ur and then declines at a reduced
velocity range from 7.62 to 19.04; finally, it remains at a weaker rate, descending until
the last test speed. All the efficiency curves show a peak at Ur = 7.62; the corresponding
frequency of the oscillating amplitude is closest to the natural frequency, which indicated
that the optimal efficiency for harnessed energy occurs at this regime, and the maximum
harnessed efficiency is equal to 48.89% at ζharness = 0.0216. The reduced velocity is close to
the top of the upper branch (VIV); in other words, the vortex shedding frequency is close
to the natural frequency of the oscillating foil. As a consequence, the harnessing efficiency
tends to be higher here due to the denominator being relatively lower. In the numerical
study conducted by Wang et al. [16], they studied the energy harvesting performance of a
fully passive flapping foil, and the highest efficiency was observed to be 32%, which was
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slightly lower than that of 34% in Kinsey and Dumas [9]. The discrepancy in harnessed
efficiency between the present study and that of Wang et al. could be due to the difference
in the oscillating motions, Reynolds numbers, etc.
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At Ur ≥ 19.04, the harnessed efficiencies have a smooth trend, and the values are small
(around 1.2% at ζharness = 0.0162); ηharness is even smaller than 0.6% at ζharness = 0.0054 and
Ur ≥ 26.66. However, the harnessed energy in this regime of reduced velocity (Ur ≥ 26.66)
is much greater due to the higher velocity of the free stream. This means the foil could
convert more energy from the fluid as long as the incoming flow carries enough kinematic
energy, even if the efficiency at Ur ≥ 26.66 is relatively low compared with the regime
7.62 ≤ Ur ≤ 19.04.

5. Conclusions

A series of simulations are conducted to investigate the FIVs for a foil that has a
single degree of freedom and is submerged in the wake of a circular cylinder in this
paper by changing system parameters such as the space between two rigid bodies. The
amplitude and frequency responses are tested for S/L = 1.0–5.0 and Ur = 3.81–38.08. Four
various harnessed energy damping ratios (ζharness = 0.0054–0.0216) are adopted to study
the character of the configuration for harvesting energy from the free stream. Overall, the
cylinder serves as the vortex generator and has a positive impact on the harnessing energy
of the oscillating foil; by adjusting the spacing ratios, the efficiency is affected positively as
well. The conclusions are:

(1) High energy conversion occurred at a close spacing, which has a relatively higher
amplitude response. At low spacing ratios, there is a dramatic disturbance in the area
behind the cylinder because of the vortex shedding. Hence, the foil could utilize the
effect and oscillates with a higher amplitude, which could harness more power from
the fluid.

(2) A critical spacing ratio for the vortex shedding position is between 3.0 and 4.0. Due to
the change in the position, the oscillation of the foil is suppressed with an increasing
velocity for S/L ≥ 4.0, which means less energy can be captured.

(3) There are two local high values for harnessed power with an increasing velocity. One
is around Ur = 11.43, which could be seen as the end of VIV. The other one occurs at
Ur = 38.08 which is the upper limit of the tested velocity. According to the current
trend, more power may be harnessed with the continuous increase in velocity.

(4) A higher harnessing damping ratio converts more energy essentially. The highest
harnessed power in the conducted simulations is 0.055 W at ζharness = 0.0216, which is
about four times the value at ζharness = 0.0054.
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(5) The highest harnessed efficiencies reach the maximum of about 12.3–48.8% and occur
at the oscillating frequency that is close to the natural frequency. The efficiency of the
foil with a fixed cylinder is higher compared to that of the single isolated flapping foil,
where the optimal efficiency is 34%.

Based on the current research, some interesting phenomena can be further investi-
gated—for instance, more foil can be added either in tandem or parallel-placed, and the
interaction can be beneficial for a higher harness energy. The practical application can be
scaled up for higher consumer energy usage or scaled down for a micro sensor power
supply, depending on the situation.
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Nomenclature

A The amplitude of the foil
A∗ Amplitude ratio
Cl Lift coefficient
ζstructure Structure damping ratio
ζharness Added damping ratio to harness energy
D Cylinder diameter
fn The natural frequency of foil
fosc The oscillating frequency of foil
f * Frequency ratio
H The maximum thickness of foil
K Spring const
L Foil chord length
m Foil mass
ma Added mass
Ptotal Total converted energy from the flow
Pharness Harnessing energy
Re Reynolds number
S Space between the center of the cylinder and the foil
Sfoil Area swept by the foil
S/L Space ratio
St Strouhal number
U Fluid incoming velocity
Ur Reduced velocity
y+ Nondimensional first grid spacing
µt Turbulent eddy viscosity
ρ Density of fluid
∆t∗ Dimensionless time step
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