Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,752)

Search Parameters:
Keywords = flow matching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2785 KB  
Article
Intelligent Optimization of Ground-Source Heat Pump Systems Based on Gray-Box Modeling
by Kui Wang, Zijian Shuai and Ye Yao
Energies 2026, 19(3), 608; https://doi.org/10.3390/en19030608 (registering DOI) - 24 Jan 2026
Abstract
Ground-source heat pump (GSHP) systems are widely regarded as an energy-efficient solution for building heating and cooling. However, their actual performance in large commercial buildings is often limited by rigid control strategies, insufficient equipment coordination, and suboptimal load matching. In the Liuzhou Fengqing [...] Read more.
Ground-source heat pump (GSHP) systems are widely regarded as an energy-efficient solution for building heating and cooling. However, their actual performance in large commercial buildings is often limited by rigid control strategies, insufficient equipment coordination, and suboptimal load matching. In the Liuzhou Fengqing Port commercial complex, the seasonal coefficient of performance (SCOP) of the GSHP system remains at a relatively low level of 3.0–3.5 under conventional operation. To address these challenges, this study proposes a gray-box-model-based cooperative optimization and group control strategy for GSHP systems. A hybrid gray-box modeling approach (YFU model), integrating physical-mechanism modeling with data-driven parameter identification, is developed to characterize the energy consumption behavior of GSHP units and variable-frequency pumps. On this basis, a multi-equipment cooperative optimization framework is established to coordinate GSHP unit on/off scheduling, load allocation, and pump staging. In addition, continuous operational variables (e.g., chilled-water supply temperature and circulation flow rate) are globally optimized within a hierarchical control structure. The proposed strategy is validated through both simulation analysis and on-site field implementation, demonstrating significant improvements in system energy efficiency, with annual electricity savings of no less than 3.6 × 105 kWh and an increase in SCOP from approximately 3.2 to above 4.0. The results indicate that the proposed framework offers strong interpretability, robustness, and engineering applicability. It also provides a reusable technical paradigm for intelligent energy-saving retrofits of GSHP systems in large commercial buildings. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Saving in Buildings)
Show Figures

Figure 1

21 pages, 2949 KB  
Article
Numerical Simulations and Experimental Tests for Tailored Tidal Turbine Design
by Pietro Scandura, Stefano Mauro, Michele Messina and Sebastian Brusca
J. Mar. Sci. Eng. 2026, 14(3), 236; https://doi.org/10.3390/jmse14030236 - 23 Jan 2026
Viewed by 50
Abstract
This paper outlines the design and testing of a horizontal-axis tidal turbine (HATT) at a scale of 1:20, employing numerical simulations and experimental validation. The design employed an in-house code based on the Blade Element Momentum (BEM) theory. As reliable lift and drag [...] Read more.
This paper outlines the design and testing of a horizontal-axis tidal turbine (HATT) at a scale of 1:20, employing numerical simulations and experimental validation. The design employed an in-house code based on the Blade Element Momentum (BEM) theory. As reliable lift and drag coefficients for this scale are not present in the literature due to the low Reynolds number of the airfoil, Computational Fluid Dynamics (CFD) simulations were conducted to generate accurate polar diagrams for the NACA 4412 airfoil. The turbine was then 3D-printed and the rotor tested in a subsonic wind tunnel at various fixed rotational speeds to determine the power coefficient. Fluid dynamic similarity was achieved by matching the Reynolds number and tip-speed ratio in air to their values in water. Three-dimensional CFD simulations were also performed, yielding turbine efficiency results that agreed fairly well with the experimental data. However, both the experimental and numerical simulation results indicated a higher power coefficient than that predicted by BEM theory. The CFD results revealed the presence of radial velocity components and vortex structures that could reduce flow separation. The BEM model does not capture these phenomena, which explains why the power coefficient detected by experiments and numerical simulations is larger than that predicted by the BEM theory. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

29 pages, 3435 KB  
Article
Passenger-Oriented Interim-Period Train Timetable Synchronization Optimization for Urban Rail Transit Network
by Yan Xu, Haoran Liang, Ziwei Jia, Minghua Li, Jiaxin Bai and Qiyu Liang
Appl. Sci. 2026, 16(2), 1103; https://doi.org/10.3390/app16021103 - 21 Jan 2026
Viewed by 50
Abstract
Interim periods between peak and off-peak operations in urban rail transit networks often suffer from mismatched headways across lines, which increases passenger transfer waiting and operating costs. This paper proposes a passenger-oriented timetable synchronization method for network-wide interim period train service. In this [...] Read more.
Interim periods between peak and off-peak operations in urban rail transit networks often suffer from mismatched headways across lines, which increases passenger transfer waiting and operating costs. This paper proposes a passenger-oriented timetable synchronization method for network-wide interim period train service. In this study, based on the AFC data, passengers are assigned to the shortest travel time paths, and passenger transfer flows are linked to connecting train pairs by consideration of the maximum acceptable waiting time. As a result, the transfer waiting time is accurately calculated by matching passengers’ platform arrival times with the departures of feasible connecting trains. A mixed integer nonlinear programming model then jointly optimizes departure headways at each line’s first station, arrival and departure times at transfer stations, subject to safety headways and time bounds. The objective minimizes total cost, combining transfer waiting time cost and train operating cost (depreciation and distance-related cost). A simulated-annealing-based genetic algorithm (SA-GA) is designed to solve the NP-hard problem. A case study on the Nanjing rail transit network from 6:30 to 7:30 reduces total cost by 6.88%, including 3.77% lower transfer waiting time cost and 14.49% lower operating cost, and shows stable results under typical transfer demand fluctuations. Full article
Show Figures

Figure 1

20 pages, 5007 KB  
Article
Influence Analysis of the Nozzle Numbers, Swirl Ratio and Bore-to-Stroke Ratio on the Performance of Biodiesel Engines Under Saddle-Shaped Injection Conditions
by Lei Zhou, Kun Yang, Jianhua Zhao, Tao Nie, Xiaofeng Li, Xianquan Zheng, Yuwei Zhang, Renjie Wu and Mingzhi Wang
Energies 2026, 19(2), 488; https://doi.org/10.3390/en19020488 - 20 Jan 2026
Viewed by 67
Abstract
With the increasingly stringent mandatory emission regulations for engines and the continuous growth of energy consumption, reducing energy consumption and emission pollution has become an inevitable choice for engine development. Against this backdrop, biodiesel and boot-shaped injection rates have attracted widespread attention. However, [...] Read more.
With the increasingly stringent mandatory emission regulations for engines and the continuous growth of energy consumption, reducing energy consumption and emission pollution has become an inevitable choice for engine development. Against this backdrop, biodiesel and boot-shaped injection rates have attracted widespread attention. However, research results on the combination of boot-shaped injection and biodiesel applied to engines have not yet been reported. In order to provide direction for the optimal matching of the combustion system parameters of biodiesel engines under saddle-shaped injection conditions, this paper achieves boot-shaped injection using a dual solenoid valve control strategy for ultra-high-pressure fuel injection devices, establishes a simulation model of biodiesel engines under saddle-shaped injection conditions using software and validates the model based on experiments. Subsequently, the model is used to study the influence of nozzle numbers, swirl ratio and bore-to-stroke ratio on the performance of biodiesel engines under saddle-shaped injection conditions. The results show that under saddle-shaped injection conditions, appropriately increasing the nozzle hole can refine the fuel spray, which is beneficial for fuel–air mixing and combustion in the cylinder. However, too many nozzle holes can lead to interference between adjacent fuel sprays. When the swirl ratio is large, air flow accelerates, and the oxygen concentration in the cylinder increases, which can effectively control soot formation. When the bore-to-stroke ratio is large, the fuel spray is farther away from the combustion chamber side wall, facilitating sufficient contact between fuel and air, resulting in better fuel–air mixing and effectively reducing soot formation. However, the cylinder temperature also increases, leading to higher NOx formation. Full article
(This article belongs to the Special Issue Combustion Systems for Advanced Engines)
Show Figures

Figure 1

17 pages, 2700 KB  
Article
Trade in Scrap Materials: Looking Beyond Plastics
by Henrique Pacini, Jennifer Golbeck, Kweku Attafuah-Wadee and Elizabeth Dewar
Sustainability 2026, 18(2), 1017; https://doi.org/10.3390/su18021017 - 19 Jan 2026
Viewed by 217
Abstract
Evidence on the environmental and socio-economic harms linked to plastic pollution has prompted major governance responses, including the 2019 Basel Convention amendments on plastic waste and the start of negotiations on a global plastics treaty in 2022. In parallel, many jurisdictions have introduced [...] Read more.
Evidence on the environmental and socio-economic harms linked to plastic pollution has prompted major governance responses, including the 2019 Basel Convention amendments on plastic waste and the start of negotiations on a global plastics treaty in 2022. In parallel, many jurisdictions have introduced minimum recycled-content requirements to curb virgin-material demand and strengthen circularity in plastics. Yet trade statistics show that plastic scrap is only a small fraction of cross-border flows of secondary (recyclable) materials. Policy debates are also increasingly focused on non-plastic alternatives for packaging and other uses, but these substitutes can carry substantial upstream and downstream burdens that may match or exceed plastics depending on production pathways and end-of-life management. This article contrasts global trade patterns for secondary plastics, textiles, paper, and ferrous metals, and highlights how governance frameworks have centered disproportionately on plastics. We argue that the momentum from plastic-waste controls and recycled-content mandates should be used to build more systemic policies that also cover other material streams; otherwise, interventions may simply displace impacts to substitute materials and weaken circular-economy objectives. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

22 pages, 828 KB  
Article
Designing Heterogeneous Electric Vehicle Charging Networks with Endogenous Service Duration
by Chao Tang, Hui Liu and Guanghua Song
World Electr. Veh. J. 2026, 17(1), 46; https://doi.org/10.3390/wevj17010046 - 18 Jan 2026
Viewed by 115
Abstract
The widespread adoption of Electric Vehicles (EVs) is critically dependent on the deployment of efficient charging infrastructure. However, existing facility location models typically treat charging duration as an exogenous parameter, thereby neglecting the traveler’s autonomy to make trade-offs between service time and energy [...] Read more.
The widespread adoption of Electric Vehicles (EVs) is critically dependent on the deployment of efficient charging infrastructure. However, existing facility location models typically treat charging duration as an exogenous parameter, thereby neglecting the traveler’s autonomy to make trade-offs between service time and energy needs based on their Value of Time (VoT). This study addresses this theoretical gap by developing a heterogeneous network design model that endogenizes both charging mode selection and continuous charging duration decisions. A bi-objective optimization framework is formulated to minimize the weighted sum of infrastructure capital expenditure and users’ generalized travel costs. To ensure computational tractability for large-scale networks, an exact linearization technique is applied to reformulate the resulting Mixed-Integer Non-Linear Program (MINLP) into a Mixed-Integer Linear Program (MILP). Application of the model to the Hubei Province highway network reveals a convex Pareto frontier between investment and service quality, providing quantifiable guidance for budget allocation. Empirical results demonstrate that the marginal return on infrastructure investment diminishes rapidly. Specifically, a marginal budget increase from the minimum baseline yields disproportionately large reductions in system-wide dwell time, whereas capital allocation beyond a saturation point yields diminishing returns, offering negligible service gains. Furthermore, sensitivity analysis indicates an asymmetry in technological impact: while extended EV battery ranges significantly reduce user dwell times, they do not proportionally lower the capital required for the foundational infrastructure backbone. These findings suggest that robust infrastructure planning must be decoupled from anticipations of future battery breakthroughs and instead focus on optimizing facility heterogeneity to match evolving traffic flow densities. Full article
(This article belongs to the Section Charging Infrastructure and Grid Integration)
Show Figures

Figure 1

21 pages, 1881 KB  
Article
Geometry-Driven Hydraulic Behavior of Pressure-Compensating Emitters for Water-Saving Agricultural Irrigation Systems
by Mohamed Ghonimy, Abdulaziz Alharbi, Nermin S. Hussein and Hisham M. Imam
Water 2026, 18(2), 244; https://doi.org/10.3390/w18020244 - 16 Jan 2026
Viewed by 228
Abstract
Water-saving agricultural irrigation systems depend heavily on the hydraulic stability of pressure-compensating (PC) emitters, whose performance is fundamentally shaped by internal flow-path geometry. This study analyzes six commercial PC emitters (E1E6) operated under pressures of 0.8–2.0 bar [...] Read more.
Water-saving agricultural irrigation systems depend heavily on the hydraulic stability of pressure-compensating (PC) emitters, whose performance is fundamentally shaped by internal flow-path geometry. This study analyzes six commercial PC emitters (E1E6) operated under pressures of 0.8–2.0 bar to quantify how key geometric descriptors influence hydraulic parameters critical for efficient water use, including actual discharge (qact), discharge coefficient (k), pressure exponent (x), emission uniformity (EU), and flow variability. All emitters had discharge deviations within ±7% of nominal values. Longer and more tortuous labyrinths enhanced compensation stability, while emitters with wider cross-sections and shorter paths produced higher throughput but weaker regulation efficiency. Linear mixed-effects modeling showed that effective flow area increased k, whereas normalized path length and tortuosity reduced both k and x. Predictive equations derived from geometric indicators closely matched measured values, with deviations below ±0.05 L/h for k and ±0.05 for x. These results establish a geometry-based hydraulic framework that supports emitter selection and design in water-saving agricultural irrigation, aligning with broader Agricultural Water–Land–Plant System Engineering objectives and contributing to more efficient and sustainable water-resource utilization. Full article
(This article belongs to the Special Issue Agricultural Water-Land-Plant System Engineering, 2nd Edition)
Show Figures

Figure 1

29 pages, 4507 KB  
Article
Data-Driven Modeling and Simulation for Optimizing Color in Polycarbonate: The Dominant Role of Processing Speed on Pigment Dispersion and Rheology
by Jamal Al Sadi
Materials 2026, 19(2), 366; https://doi.org/10.3390/ma19020366 - 16 Jan 2026
Viewed by 343
Abstract
Maintaining color constancy in polymer extrusion processes is a key difficulty in manufacturing applications, as fluctuations in processing parameters greatly influence pigment dispersion and the quality of the finished product. Preliminary historical data mining analysis was conducted in 2009. This work concentrates on [...] Read more.
Maintaining color constancy in polymer extrusion processes is a key difficulty in manufacturing applications, as fluctuations in processing parameters greatly influence pigment dispersion and the quality of the finished product. Preliminary historical data mining analysis was conducted in 2009. This work concentrates on Opaque PC Grade 5, which constituted 2.43% of the pigment; it contained 10 PPH of resin2 with a Melt Flow Index (MFI) of 6.5 g/10 min and 90 PPH of resin1. It also employs a fixed resin composition with an MFI of 25 g/10 min. This research identified the significant processing parameters (PPs) contributing to the lowest color deviation. Interactions between processing parameters, for the same color formulation, were analyzed using statistical methods under various processing conditions. A principle-driven General Trends (GT) diagnostic procedure was applied, wherein each parameter was individually varied across five levels while holding others constant. Particle size distribution (PSD) and colorimetric data (CIE Lab*) were systematically measured and analyzed. To complete this, correlations for the impact of temperature (Temp) on viscosity, particle characteristics, and color quality were studied by characterizing viscosity, Digital Optical Microscopy (DOM), and particle size distribution at various speeds. The samples were characterized for viscosity at three temperatures (230, 255, 280 °C) and particle size distribution at three speeds: 700, 750, 800 rpm. This study investigates particle processing features, such as screw speed and pigment size distribution. The average pigment diameter and the fraction of small particles were influenced by the speed of 700–775 rpm. At 700 rpm, the mean particle size was 2.4 µm, with 61.3% constituting particle numbers. The mean particle size diminished to 2 µm at 775 rpm; however, the particle count proportion escalated to 66% at 800 rpm. This research ultimately quantifies the relative influence of particle size on the reaction, resulting in a color value of 1.36. The mean particle size and particle counts are positively correlated; thus, reduced pigment size at increased speed influences color response and quality. The weighted contributions of the particles, 51.4% at 700 rpm and 48.6% at 800 rpm, substantiate the hypothesis. Further studies will broaden the GT analysis to encompass multi-parameter interactions through design experiments and will test the diagnostic assessment procedure across various polymer grades and colorants to create robust models of prediction for industrial growth. The global quality of mixing polycarbonate compounding constituents ensured consistent and smooth pigment dispersion, minimizing color streaks and resulting in a significant improvement in color matching for opaque grades. Full article
Show Figures

Graphical abstract

22 pages, 5183 KB  
Article
Fluid Domain Characteristics and Separation Performance of an Eccentric Pipe Separator Handling a Crude Oil-Water Mixture
by Qi-Lin Wu, Zheng-Jia Ou, Ye Liu, Shuo Liu, Meng Yang and Jing-Yu Xu
Separations 2026, 13(1), 33; https://doi.org/10.3390/separations13010033 - 15 Jan 2026
Viewed by 168
Abstract
This study presents an eccentric pipe separator (EPS) designed according to the shallow pool principle and Stokes’ law as a compact alternative to conventional gravitational tank separators for offshore platforms. To investigate the internal oil-water flow characteristics and separation performance of the EPS, [...] Read more.
This study presents an eccentric pipe separator (EPS) designed according to the shallow pool principle and Stokes’ law as a compact alternative to conventional gravitational tank separators for offshore platforms. To investigate the internal oil-water flow characteristics and separation performance of the EPS, both field experiments with crude oil on an offshore platform and computational fluid dynamics (CFD) simulations were conducted, guided by dimensional analysis. Crude oil volume fractions were measured using a Coriolis mass flow meter and the fluorescence method. The CFD analysis employed an Eulerian multiphase model coupled with the renormalization group (RNG) k-ε turbulence model, validated against experimental data. Under the operating conditions examined, the separated water contained less than 50 mg/L of oil, while the separated crude oil achieved a purity of 98%, corresponding to a separation efficiency of 97%. The split ratios between the oil and upper outlets were found to strongly influence the phase distribution, velocity field, and pressure distribution within the EPS. Higher split ratios caused crude oil to accumulate in the upper core region and annulus. Maximum separation efficiency occurred when the combined split ratio of the upper and oil outlets matched the inlet oil volume fraction. Excessively high split ratios led to excessive water entrainment in the separated oil, whereas excessively low ratios resulted in excessive oil entrainment in the separated water. Crude oil density and inlet velocity exhibited an inverse relationship with separation efficiency; as these parameters increased, reduced droplet settling diminished optimal efficiency. In contrast, crude oil viscosity showed a positive correlation with the pressure drop between the inlet and oil outlet. Overall, the EPS demonstrates a viable, space-efficient alternative for oil-water separation in offshore oil production. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

20 pages, 6196 KB  
Article
Subsurface Temperature Distributions Constrain Groundwater Flow in Salar Marginal Environments
by David F. Boutt, Julianna C. Huba, Lee Ann Munk and Kristina L. Butler
Hydrology 2026, 13(1), 32; https://doi.org/10.3390/hydrology13010032 - 15 Jan 2026
Viewed by 159
Abstract
Interactions between surface water and groundwater in arid regions regulate their response to climate and human impacts. In the salar systems of the Altiplano-Puna plateau (Bolivia, Chile, Argentina), understanding how surface waters connect to groundwater is crucial for accurate modeling and assessment. This [...] Read more.
Interactions between surface water and groundwater in arid regions regulate their response to climate and human impacts. In the salar systems of the Altiplano-Puna plateau (Bolivia, Chile, Argentina), understanding how surface waters connect to groundwater is crucial for accurate modeling and assessment. This study introduces new data and analysis using subsurface thermal profiles and modeling to identify flow patterns and possible surface water links. We document, to our knowledge, for the first time in the literature, deep-seated cooling of the subsurface caused by extreme evaporation rates. The subsurface is cooled by 4–5 degrees Celsius below the mean annual air temperature to depths greater than 50 m, even though groundwater inflow waters are elevated by 10 degrees °C due to geothermal heating. Three thermal zones are observed along the southern edge of Salar de Atacama, with temperature dropping from 28 °C to about 12 °C over 2.5 km. A 2D numerical model of groundwater and heat flow was developed to test various hydrological scenarios and understand the factors controlling the thermal regime. Two flow scenarios at the southern margin were examined: a diffuse flow model with uniform flow and flux to the surface and a focused flow model with preferential discharge at a topographic slope break. Results indicate that the focused flow scenario matches thermal data, with warm inflow water discharging into a transition zone between freshwater and brine, cooling through evaporation, re-infiltration, and surface flow, then re-emerging near lagoons at the halite nucleus margin. This research offers valuable insights into the groundwater hydraulics in the Salar de Atacama and can aid in monitoring environmental changes causally linked to lithium mining and upgradient freshwater extraction. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

19 pages, 5793 KB  
Article
Computational Study of Hybrid Propeller Configurations
by Mingtai Chen, Tianming Liu, Jack Edwards and Tiegang Fang
Aerospace 2026, 13(1), 94; https://doi.org/10.3390/aerospace13010094 - 15 Jan 2026
Viewed by 156
Abstract
This study presents the first computational investigation of hybrid propeller configurations that combine toroidal and conventional blade geometries. Using Delayed Detached Eddy Simulation (DDES) with the Shear Stress Transport (SST) kω model for flow analysis and the Ffowcs Williams and Hawkings [...] Read more.
This study presents the first computational investigation of hybrid propeller configurations that combine toroidal and conventional blade geometries. Using Delayed Detached Eddy Simulation (DDES) with the Shear Stress Transport (SST) kω model for flow analysis and the Ffowcs Williams and Hawkings (FW–H) formulation for aeroacoustic prediction, five hybrid propeller designs were evaluated: a baseline model and four variants with modified loop-element spacing. The results show that the V-Gap-S configuration achieves the highest figure of merit (FM), producing over 10% improvement in propeller performance relative to the baseline, while also exhibiting the lowest turbulence kinetic energy (TKE) levels across multiple radial planes. Aeroacoustic analysis reveals quadrupole-like directivity for primary tonal noise, primarily driven by blade tip–vortex interactions, with primary tonal noise strongly correlated with thrust. Broadband noise and overall sound pressure level (OASPL) exhibited dipole-like patterns, influenced by propeller torque and FM, respectively. Comparisons of surface pressure, vorticity, and time derivatives of acoustic pressure further elucidate the mechanisms linking blade spacing to aerodynamic loading and noise generation. The results demonstrate that aerodynamic performance and aeroacoustics are strongly coupled and that meaningful noise reduction claims require performance conditions to be matched. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

36 pages, 23738 KB  
Article
Development of a Numerically Inexpensive 3D CFD Model of Slag Reduction in a Submerged Arc Furnace for Phosphorus Recovery from Sewage Sludge
by Daniel Wieser, Benjamin Ortner, René Prieler, Valentin Mally and Christoph Hochenauer
Processes 2026, 14(2), 289; https://doi.org/10.3390/pr14020289 - 14 Jan 2026
Viewed by 198
Abstract
Phosphorus is an essential resource for numerous industrial applications. However, its uneven global distribution makes Europe heavily dependent on imports. Recovering phosphorus from waste streams is therefore crucial for improving resource security. The FlashPhos project addresses this challenge by developing a process to [...] Read more.
Phosphorus is an essential resource for numerous industrial applications. However, its uneven global distribution makes Europe heavily dependent on imports. Recovering phosphorus from waste streams is therefore crucial for improving resource security. The FlashPhos project addresses this challenge by developing a process to recover phosphorus from sewage sludge, in which phosphorus-rich slag is produced in a flash reactor and subsequently reduced in a Submerged Arc Furnace (SAF). In this process, approximately 250 kg/h of sewage sludge is converted into slag, which is further processed in the SAF to recover about 8 kg/h of white phosphorus. This work focuses on the development of a computational model of the SAF, with particular emphasis on slag behaviour. Due to the extreme operating conditions, which severely limit experimental access, a numerically efficient three-dimensional CFD model was developed to investigate the internal flow of the three-phase, AC-powered SAF. The model accounts for multiphase interactions, dynamic bubble generation and energy sinks associated with the reduction reaction, and Joule heating. A temperature control loop adjusts electrode currents to reach and maintain a prescribed target temperature. To further reduce computational cost, a novel simulation approach is introduced, achieving a reduction in simulation time of up to 300%. This approach replaces the solution of the electric potential equation with time-averaged Joule-heating values obtained from a preceding simulation. The system requires transient simulation and reaches a pseudo-steady state after approximately 337 s. The results demonstrate effective slag mixing, with gas bubbles significantly enhancing flow velocities compared to natural convection alone, leading to maximum slag velocities of 0.9–1.0 m/s. The temperature field is largely uniform and closely matches the target temperature within ±2 K, indicating efficient mixing and control. A parameter study reveals a strong sensitivity of the flow behaviour to the slag viscosity, while electrode spacing shows no clear influence. Overall, the model provides a robust basis for further development and future coupling with the gas phase. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

10 pages, 1263 KB  
Review
Alloimmunization in Pregnancy: A Practical Guide for Transfusion Medicine
by Palma Manduzio, Luigi Ciccone, Valeria Cosima Elisena Cardo, Antonietta Faleo, Antonietta Ferrara, Lucia Simone, Libera Padovano and Tommaso Granato
Hemato 2026, 7(1), 4; https://doi.org/10.3390/hemato7010004 - 13 Jan 2026
Viewed by 217
Abstract
Background: Feto-maternal hemorrhages (FMHs) due to placenta disruption and bleeding from fetal maternal circulation can lead to life-threatening fetal anemia. These hemorrhages are more often of small volume and remain unreported. Sensitization to fetal red blood cell (RBC) antigens can occur during pregnancy, [...] Read more.
Background: Feto-maternal hemorrhages (FMHs) due to placenta disruption and bleeding from fetal maternal circulation can lead to life-threatening fetal anemia. These hemorrhages are more often of small volume and remain unreported. Sensitization to fetal red blood cell (RBC) antigens can occur during pregnancy, at delivery, or after invasive procedures. The sensitized mother produces IgG antibodies (abs) that cross the placenta and cause the hemolysis of fetal RBCs, release of hemoglobin, and increased levels of unconjugated bilirubin in the fetus or neonate. The result is hemolytic disease of the fetus and newborn (HDFN). Methods: In this study, we aim to provide a structured overview of RBC alloimmunization in pregnancy. A literature search was conducted using PubMed. English articles published from January 2010 to October 2025 were selected by the authors. The contributing manuscripts focused on managing RBC alloimmunization in pregnancy, FMH screening and quantification, antenatal and postnatal testing, Rh immune globulin (Rh Ig or Anti-D) prophylaxis, and national registry data. Results: Frequencies of RBC abs vary among American, Caucasian, and Asian populations because of genetic diversity, different antibody detection and antibody identification methods, and FMH tests. More specifically, the erythrocyte rosette is a simple screening test for FMH. A positive rosette must be quantified by the Kleihauer–Betke (KB) or flow cytometry (FC). The KB results may be overestimated or underestimated. The advantages of FC include high accuracy, specificity, and repeatability. Ultimately, anti-D prophylaxis protocol varies from country to country. Conclusion: Maternal alloimmunization is an uncommon and highly variable event. Although introducing anti-D prophylaxis has decreased the Rh immunization rate, it is still an unmet medical need. In brief, mitigation strategies for RBC alloimmunization risk include accurate maternal and neonatal testing at different time points, adequate Rh immune globulin prophylaxis in D-negative pregnant women, preventing sensitizing events, adopting a conservative transfusion policy, and upfront ABO and Rh (C/c, E/e) and Kell matching in females under 50 years of age. Full article
(This article belongs to the Section Non Neoplastic Blood Disorders)
Show Figures

Figure 1

23 pages, 13771 KB  
Article
Oblique Wave Scattering by a Floating Rectangular Porous Box with an Impermeable Bottom
by Yu-Chan Guo, Sarat Chandra Mohapatra and C. Guedes Soares
J. Mar. Sci. Eng. 2026, 14(2), 156; https://doi.org/10.3390/jmse14020156 - 11 Jan 2026
Viewed by 183
Abstract
Based on linear wave theory and potential flow theory, the wave scattering performance of a rectangular floating porous box with an impermeable bottom is investigated analytically. The mathematical formulation of the physical problem is well established and solved, and its analytical solutions are [...] Read more.
Based on linear wave theory and potential flow theory, the wave scattering performance of a rectangular floating porous box with an impermeable bottom is investigated analytically. The mathematical formulation of the physical problem is well established and solved, and its analytical solutions are appropriately obtained using the matched eigenfunction expansion method. The convergency and accuracy of the analytical solutions are carefully verified and thoroughly validated. It is found that the present analytical solutions converge up to three decimal places and agree well with the numerical results published in the previous literature. Furthermore, important numerical results are calculated to thoroughly analyze the oblique wave scattering performance of the proposed rectangular floating porous box with an impermeable bottom and its efficiency in preventing incident waves when used as a floating breakwater. It is concluded that the dimensionless width (L/h), submergence depth (d/h), and frictional coefficient (f) have a significant influence on the scattering performance and the transmission coefficient of the proposed porous box. This work is beneficial for the design and future development of floating rectangular porous box breakwaters. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 2058 KB  
Article
Tiny Language Model Guided Flow Q Learning for Optimal Task Scheduling in Fog Computing
by Bhargavi K and Sajjan G. Shiva
Algorithms 2026, 19(1), 60; https://doi.org/10.3390/a19010060 - 10 Jan 2026
Viewed by 150
Abstract
Fog computing is one of the rapidly growing platforms with an exponentially increasing demand for real-time data processing. The fog computing market is expected to reach USD 8358 million by the year 2030 with a compound annual growth of 50%. The wide adaptation [...] Read more.
Fog computing is one of the rapidly growing platforms with an exponentially increasing demand for real-time data processing. The fog computing market is expected to reach USD 8358 million by the year 2030 with a compound annual growth of 50%. The wide adaptation of fog computing by the industries worldwide is due to the advantages like reduced latency, high operational efficiency, and high-level data privacy. The highly distributed and heterogeneous nature of fog computing leads to significant challenges related to resource management, data security, task scheduling, data privacy, and interoperability. The task typically represents a job generated by the IoT device. The action indicates the way of executing the tasks whose decision is taken by the scheduler. Task scheduling is one of the prominent issues in fog computing which includes the process of effectively scheduling the tasks among fog devices to effectively utilize the resources and meet the Quality of Service (QoS) requirements of the applications. Improper task scheduling leads to increased execution time, overutilization of resources, data loss, and poor scalability. Hence there is a need to do proper task scheduling to make optimal task distribution decisions in a highly dynamic resource-constrained heterogeneous fog computing environment. Flow Q learning (FQL) is a potential form of reinforcement learning algorithm which uses the flow matching policy for action distribution. It can handle complex forms of data and multimodal action distribution which make it suitable for the highly volatile fog computing environment. However, flow Q learning struggles to achieve a proper trade-off between the expressive flow model and a reduction in the Q function, as it relies on a one-step optimization policy that introduces bias into the estimated Q function value. The Tiny Language Model (TLM) is a significantly smaller form of a Large Language Model (LLM) which is designed to operate over the device-constrained environment. It can provide fair and systematic guidance to disproportionally biased deep learning models. In this paper a novel TLM guided flow Q learning framework is designed to address the task scheduling problem in fog computing. The neutrality and fine-tuning capability of the TLM is combined with the quick generable ability of the FQL algorithm. The framework is simulated using the Simcan2Fog simulator considering the dynamic nature of fog environment under finite and infinite resources. The performance is found to be good with respect to parameters like execution time, accuracy, response time, and latency. Further the results obtained are validated using the expected value analysis method which is found to be satisfactory. Full article
Show Figures

Figure 1

Back to TopTop