Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,310)

Search Parameters:
Keywords = flow battery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 10941 KiB  
Review
Recent Advances in Numerical Modeling of Aqueous Redox Flow Batteries
by Yongfu Liu and Yi He
Energies 2025, 18(15), 4170; https://doi.org/10.3390/en18154170 - 6 Aug 2025
Abstract
Aqueous redox flow batteries (ARFBs) have attracted significant attention in the field of electrochemical energy storage due to their high intrinsic safety, low cost, and flexible system configuration. However, the advancement of this technology is still hindered by several critical challenges, including capacity [...] Read more.
Aqueous redox flow batteries (ARFBs) have attracted significant attention in the field of electrochemical energy storage due to their high intrinsic safety, low cost, and flexible system configuration. However, the advancement of this technology is still hindered by several critical challenges, including capacity decay, structural optimization, and the design and application of key materials as well as their performance within battery systems. Addressing these issues requires systematic theoretical foundations and scientific guidance. Numerical modeling has emerged as a powerful tool for investigating the complex physical and electrochemical processes within flow batteries across multiple spatial and temporal scales. It also enables predictive performance analysis and cost-effective optimization at both the component and system levels, thus accelerating research and development. This review provides a comprehensive overview of recent progress in the modeling of ARFBs. Taking the all-vanadium redox flow battery as a representative example, we summarize the key multiphysics phenomena involved and introduce corresponding multi-scale modeling strategies. Furthermore, specific modeling considerations are discussed for phase-change ARFBs, such as zinc-based ones involving solid–liquid phase transition, and hydrogen–bromine systems characterized by gas–liquid two-phase flow, highlighting their distinctive features compared to vanadium systems. Finally, this paper explores the major challenges and potential opportunities in the modeling of representative ARFB systems, aiming to provide theoretical guidance and technical support for the continued development and practical application of ARFB technology. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

22 pages, 5322 KiB  
Article
Comparative Modeling of Vanadium Redox Flow Batteries Using Multiple Linear Regression and Random Forest Algorithms
by Ammar Ali, Sohel Anwar and Afshin Izadian
Energy Storage Appl. 2025, 2(3), 11; https://doi.org/10.3390/esa2030011 - 5 Aug 2025
Viewed by 89
Abstract
This paper presents a comparative study of data-driven modeling approaches for vanadium redox flow batteries (VRFBs), utilizing Multiple Linear Regression (MLR) and Random Forest (RF) algorithms. Experimental voltage–capacity datasets from a 1 kW/1 kWh VRFB system were digitized, processed, and used for model [...] Read more.
This paper presents a comparative study of data-driven modeling approaches for vanadium redox flow batteries (VRFBs), utilizing Multiple Linear Regression (MLR) and Random Forest (RF) algorithms. Experimental voltage–capacity datasets from a 1 kW/1 kWh VRFB system were digitized, processed, and used for model training, validation, and testing. The MLR model, built using eight optimized features, achieved a mean error (ME) of 0.0204 V, a residual sum of squares (RSS) of 8.87, and a root mean squared error (RMSE) of 0.1796 V on the test data, demonstrating high predictive performance in stationary operating regions. However, it exhibited limited accuracy during dynamic transitions. Optimized through out-of-bag (OOB) error minimization, the Random Forest model achieved a training RMSE of 0.093 V and a test RMSE of 0.110 V, significantly outperforming MLR in capturing dynamic behavior while maintaining comparable performance in steady-state regions. The accuracy remained high even at lower current densities. Feature importance analysis and partial dependence plots (PDPs) confirmed the dominance of current-related features and SOC dynamics in influencing VRFB terminal voltage. Overall, the Random Forest model offers superior accuracy and robustness, making it highly suitable for real-time VRFB system monitoring, control, and digital twin integration. This study highlights the potential of combining machine learning algorithms with electrochemical domain knowledge to enhance battery system modeling for future energy storage applications. Full article
Show Figures

Figure 1

23 pages, 4451 KiB  
Article
Energy Management and Power Distribution for Battery/Ultracapacitor Hybrid Energy Storage System in Electric Vehicles with Regenerative Braking Control
by Abdelsalam A. Ahmed, Young Il Lee, Saleh Al Dawsari, Ahmed A. Zaki Diab and Abdelsalam A. Ezzat
Math. Comput. Appl. 2025, 30(4), 82; https://doi.org/10.3390/mca30040082 - 3 Aug 2025
Viewed by 262
Abstract
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking [...] Read more.
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking control strategy is developed to maximize kinetic energy recovery using an induction motor, efficiently distributing the recovered energy between the UC and battery. Additionally, a power flow management approach is introduced for both motoring (discharge) and braking (charge) operations via bidirectional buck–boost DC-DC converters. In discharge mode, an optimal distribution factor is dynamically adjusted to balance power delivery between the battery and UC, maximizing efficiency. During charging, a DC link voltage control mechanism prioritizes UC charging over the battery, reducing stress and enhancing energy recovery efficiency. The proposed EMS is validated through simulations and experiments, demonstrating significant improvements in vehicle acceleration, energy efficiency, and battery lifespan. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

31 pages, 4347 KiB  
Article
Optimizing Passive Thermal Enhancement via Embedded Fins: A Multi-Parametric Study of Natural Convection in Square Cavities
by Saleh A. Bawazeer
Energies 2025, 18(15), 4098; https://doi.org/10.3390/en18154098 - 1 Aug 2025
Viewed by 135
Abstract
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a [...] Read more.
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a single horizontal fin on the hot wall. Over 9000 simulations were conducted, methodically varying the Rayleigh number (Ra = 10 to 105), Prandtl number (Pr = 0.1 to 10), and fin characteristics, such as length, vertical position, thickness, and the thermal conductivity ratio (up to 1000), to assess their overall impact on thermal efficiency. Thermal enhancements compared to scenarios without fins are quantified using local and average Nusselt numbers, as well as a Nusselt number ratio (NNR). The results reveal that, contrary to conventional beliefs, long fins positioned centrally can actually decrease heat transfer by up to 11.8% at high Ra and Pr due to the disruption of thermal plumes and diminished circulation. Conversely, shorter fins located near the cavity’s top and bottom wall edges can enhance the Nusselt numbers for the hot wall by up to 8.4%, thereby positively affecting the development of thermal boundary layers. A U-shaped Nusselt number distribution related to fin placement appears at Ra ≥ 103, where edge-aligned fins consistently outperform those positioned mid-height. The benefits of high-conductivity fins become increasingly nonlinear at larger Ra, with advantages limited to designs that minimally disrupt core convective patterns. These findings challenge established notions regarding passive thermal enhancement and provide a predictive thermogeometric framework for designing enclosures. The results can be directly applied to passive cooling systems in electronics, battery packs, solar thermal collectors, and energy-efficient buildings, where optimizing heat transfer is vital without employing active control methods. Full article
Show Figures

Figure 1

13 pages, 3774 KiB  
Article
Design of TEMPO-Based Polymer Cathode Materials for pH-Neutral Aqueous Organic Redox Flow Batteries
by Yanwen Ren, Qianqian Zheng, Cuicui He, Jingjing Nie and Binyang Du
Materials 2025, 18(15), 3624; https://doi.org/10.3390/ma18153624 - 1 Aug 2025
Viewed by 218
Abstract
Aqueous organic redox flow batteries (AORFBs) represent an advancing class of electrochemical energy storage systems showing considerable promise for large-scale grid integration due to their unique aqueous organic chemistry. However, the use of small-molecule active materials in AORFBs is significantly limited by the [...] Read more.
Aqueous organic redox flow batteries (AORFBs) represent an advancing class of electrochemical energy storage systems showing considerable promise for large-scale grid integration due to their unique aqueous organic chemistry. However, the use of small-molecule active materials in AORFBs is significantly limited by the issue of stability and crossover. To address these challenges, we designed a high-water-solubility polymer cathode material, P-T-S, which features a polyvinylimidazole backbone functionalized with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and sulfonate groups. P-T-S exhibits a solubility of 34 Ah L−1 in water and 31 Ah L−1 in 1.0 M NaCl aqueous solution (NaClaq). When paired with methyl viologen to assemble a pH-neutral AORFB with a theoretical capacity of 15 Ah L−1, the system exhibits a material utilization rate of 92.0%, an average capacity retention rate of 99.74% per cycle (99.74% per hour), and an average Coulombic efficiency of 98.69% over 300 consecutive cycles at 30 mA cm−2. This work provides a new design strategy for polymer materials for high-performance AORFBs. Full article
Show Figures

Graphical abstract

25 pages, 2661 KiB  
Article
Fuzzy Logic-Based Energy Management Strategy for Hybrid Renewable System with Dual Storage Dedicated to Railway Application
by Ismail Hacini, Sofia Lalouni Belaid, Kassa Idjdarene, Hammoudi Abderazek and Kahina Berabez
Technologies 2025, 13(8), 334; https://doi.org/10.3390/technologies13080334 - 1 Aug 2025
Viewed by 229
Abstract
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents [...] Read more.
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents a promising avenue to improve the sustainability, reliability, and efficiency of urban transport networks. A storage system is needed to both ensure a continuous power supply and meet train demand at the station. Batteries (BTs) offer high energy density, while supercapacitors (SCs) offer both a large number of charge and discharge cycles, and high-power density. This paper proposes a hybrid RES (photovoltaic and wind), combined with batteries and supercapacitors constituting the hybrid energy storage system (HESS). One major drawback of trains is the long charging time required in stations, so they have been fitted with SCs to allow them to charge up quickly. A new fuzzy energy management strategy (F-EMS) is proposed. This supervision strategy optimizes the power flow between renewable energy sources, HESS, and trains. DC bus voltage regulation is involved, maintaining BT and SC charging levels within acceptable ranges. The simulation results, carried out using MATLAB/Simulink, demonstrate the effectiveness of the suggested fuzzy energy management strategy for various production conditions and train demand. Full article
Show Figures

Figure 1

20 pages, 2981 KiB  
Article
Data-Driven Modelling and Simulation of Fuel Cell Hybrid Electric Powertrain
by Mehroze Iqbal, Amel Benmouna and Mohamed Becherif
Hydrogen 2025, 6(3), 53; https://doi.org/10.3390/hydrogen6030053 - 1 Aug 2025
Viewed by 122
Abstract
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle [...] Read more.
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle subsystems as data-driven entities. The simulation framework is developed in the MATLAB/Simulink environment and is based on a power dynamics approach, capturing nonlinear interactions and performance intricacies between different powertrain elements. This study investigates subsystem synergies and performance boundaries under a combined driving cycle composed of the NEDC, WLTP Class 3 and US06 profiles, representing urban, extra-urban and aggressive highway conditions. To emulate the real-world load-following strategy, a state transition power management and allocation method is synthesised. The proposed method dynamically governs the power flow between the fuel cell stack and the traction battery across three operational states, allowing the battery to stay within its allocated bounds. This simulation framework offers a near-accurate and computationally efficient digital counterpart to a commercial hybrid powertrain, serving as a valuable tool for educational and research purposes. Full article
Show Figures

Figure 1

24 pages, 3325 KiB  
Article
Multi-Energy Flow Optimal Dispatch of a Building Integrated Energy System Based on Thermal Comfort and Network Flexibility
by Jian Sun, Bingrui Sun, Xiaolong Cai, Dingqun Liu and Yongping Yang
Energies 2025, 18(15), 4051; https://doi.org/10.3390/en18154051 - 30 Jul 2025
Viewed by 251
Abstract
An efficient integrated energy system (IES) can enhance the potential of building energy conservation and carbon mitigation. However, imbalances between user-side demand and supply side output present formidable challenges to the operational dispatch of building energy systems. To mitigate heat rejection and improve [...] Read more.
An efficient integrated energy system (IES) can enhance the potential of building energy conservation and carbon mitigation. However, imbalances between user-side demand and supply side output present formidable challenges to the operational dispatch of building energy systems. To mitigate heat rejection and improve dispatch optimization, an integrated building energy system incorporating waste heat recovery via an absorption heat pump based on the flow temperature model is adopted. A comprehensive analysis was conducted to investigate the correlation among heat pump operational strategies, thermal comfort, and the dynamic thermal storage capacity of piping network systems. The optimization calculations and comparative analyses were conducted across five cases on typical season days via the CPLEX solver with MATLAB R2018a. The simulation results indicate that the operational modes of absorption heat pump reduced the costs by 4.4–8.5%, while the absorption rate of waste heat increased from 37.02% to 51.46%. Additionally, the utilization ratio of battery and thermal storage units decreased by up to 69.82% at most after considering the pipeline thermal inertia and thermal comfort, thus increasing the system’s energy-saving ability and reducing the pressure of energy storage equipment, ultimately increasing the scheduling flexibility of the integrated building energy system. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Figure 1

17 pages, 4618 KiB  
Article
ANN-Enhanced Modulated Model Predictive Control for AC-DC Converters in Grid-Connected Battery Systems
by Andrea Volpini, Samuela Rokocakau, Giulia Tresca, Filippo Gemma and Pericle Zanchetta
Energies 2025, 18(15), 3996; https://doi.org/10.3390/en18153996 - 27 Jul 2025
Viewed by 280
Abstract
With the increasing integration of renewable energy sources (RESs) into power systems, batteries are playing a critical role in ensuring grid reliability and flexibility. Among them, vanadium redox flow batteries (VRFBs) have emerged as a promising solution for large-scale storage due to their [...] Read more.
With the increasing integration of renewable energy sources (RESs) into power systems, batteries are playing a critical role in ensuring grid reliability and flexibility. Among them, vanadium redox flow batteries (VRFBs) have emerged as a promising solution for large-scale storage due to their long cycle life, scalability, and deep discharge capability. However, achieving optimal control and system-level integration of VRFBs requires accurate, real-time modeling and parameter estimation, challenging tasks given the multi-physics nature and time-varying dynamics of such systems. This paper presents a lightweight physics-informed neural network (PINN) framework tailored for VRFBs, which directly embeds the discrete-time state-space dynamics into the network architecture. The model simultaneously predicts terminal voltage and estimates five discrete-time physical parameters associated with RC dynamics and internal resistance, while avoiding hidden layers to enhance interpretability and computational efficiency. The resulting PINN model is integrated into a modulated model predictive control (MMPC) scheme for a dual-stage DC-AC converter interfacing the VRFB with low-voltage AC grids. Simulation and hardware-in-the-loop results demonstrate that adaptive tuning of the PINN-estimated parameters enables precise tracking of battery parameter variations, thereby improving the robustness and performance of the MMPC controller under varying operating conditions. Full article
Show Figures

Figure 1

16 pages, 3383 KiB  
Article
Thermal and Electrical Design Considerations for a Flexible Energy Storage System Utilizing Second-Life Electric Vehicle Batteries
by Rouven Christen, Simon Nigsch, Clemens Mathis and Martin Stöck
Batteries 2025, 11(8), 287; https://doi.org/10.3390/batteries11080287 - 26 Jul 2025
Viewed by 313
Abstract
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These [...] Read more.
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These batteries, no longer suitable for traction applications due to a reduced state of health (SoH) below 80%, retain sufficient capacity for less demanding stationary applications. The proposed system is designed to be flexible and scalable, serving both research and commercial purposes. Key challenges include heterogeneous battery characteristics, safety considerations due to increased internal resistance and battery aging, and the need for flexible power electronics. An optimized dual active bridge (DAB) converter topology is introduced to connect several batteries in parallel and to ensure efficient bidirectional power flow over a wide voltage range. A first prototype, rated at 50 kW, has been built and tested in the laboratory. This study contributes to sustainable energy storage solutions by extending battery life cycles, reducing waste, and promoting economic viability for industrial partners. Full article
Show Figures

Figure 1

38 pages, 2182 KiB  
Article
Smart Grid Strategies for Tackling the Duck Curve: A Qualitative Assessment of Digitalization, Battery Energy Storage, and Managed Rebound Effects Benefits
by Joseph Nyangon
Energies 2025, 18(15), 3988; https://doi.org/10.3390/en18153988 - 25 Jul 2025
Viewed by 394
Abstract
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the [...] Read more.
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the U.S. electricity market, triggering significant changes in electricity production, transmission, and consumption. Utilities are embracing digital twins and repurposed Utility 2.0 concepts—distributed energy resources, microgrids, innovative electricity market designs, real-time automated monitoring, smart meters, machine learning, artificial intelligence, and advanced data and predictive analytics—to foster operational flexibility and market efficiency. This analysis qualitatively evaluates how digitalization, Battery Energy Storage Systems (BESSs), and adaptive strategies to mitigate rebound effects collectively advance smart duck curve management. By leveraging digital platforms for real-time monitoring and predictive analytics, utilities can optimize energy flows and make data-driven decisions. BESS technologies capture surplus renewable energy during off-peak periods and discharge it when demand spikes, thereby smoothing grid fluctuations. This review explores the benefits of targeted digital transformation, BESSs, and managed rebound effects in mitigating the duck curve problem, ensuring that energy efficiency gains translate into actual savings. Furthermore, this integrated approach not only reduces energy wastage and lowers operational costs but also enhances grid resilience, establishing a robust framework for sustainable energy management in an evolving market landscape. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
Show Figures

Figure 1

21 pages, 10456 KiB  
Article
Experimental Validation of a Modular Skid for Hydrogen Production in a Hybrid Microgrid
by Gustavo Teodoro Bustamante, Jamil Haddad, Bruno Pinto Braga Guimaraes, Ronny Francis Ribeiro Junior, Frederico de Oliveira Assuncao, Erik Leandro Bonaldi, Luiz Eduardo Borges-da-Silva, Fabio Monteiro Steiner, Jaime Jose de Oliveira Junior and Claudio Inacio de Almeida Costa
Energies 2025, 18(15), 3910; https://doi.org/10.3390/en18153910 - 22 Jul 2025
Viewed by 284
Abstract
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered [...] Read more.
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered on a six-compartment skid, it integrates photovoltaic generation, battery storage, and a liquefied petroleum gas generator to emulate typical cogeneration conditions, together with a high-purity proton exchange membrane electrolyzer. A supervisory control module ensures real-time monitoring and energy flow management, following international safety standards. The study also explores the incorporation of blockchain technology to certify the renewable origin of hydrogen, enhancing traceability and transparency in the green hydrogen market. The experimental results confirm the system’s technical feasibility, demonstrating stable hydrogen production, efficient energy management, and islanded-mode operation with preserved grid stability. These findings highlight the strategic role of hydrogen as an energy vector in the transition to a cleaner energy matrix and support the proposed architecture as a replicable model for industrial facilities seeking to combine hydrogen production with advanced microgrid technologies. Future work will address large-scale validation and performance optimization, including advanced energy management algorithms to ensure economic viability and sustainability in diverse industrial contexts. Full article
Show Figures

Figure 1

20 pages, 1487 KiB  
Article
Structural Evolution and Factors of the Electric Vehicle Lithium-Ion Battery Trade Network Among European Union Member States
by Liqiao Yang, Ni Shen, Izabella Szakálné Kanó, Andreász Kosztopulosz and Jianhao Hu
Sustainability 2025, 17(15), 6675; https://doi.org/10.3390/su17156675 - 22 Jul 2025
Viewed by 387
Abstract
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European [...] Read more.
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European Union (EU) member states from 2012 to 2023, employing social network analysis and the multiple regression quadratic assignment procedure method. The findings demonstrate the transformation of the network from a centralized and loosely connected structure, with Germany as the dominant hub, to a more interconnected and decentralized system in which Poland and Hungary emerge as the leading players. Key network metrics, such as the density, clustering coefficients, and average path lengths, reveal increased regional trade connectivity and enhanced supply chain efficiency. The analysis identifies geographic and economic proximity, logistics performance, labor cost differentials, energy resource availability, and venture capital investment as significant drivers of trade flows, highlighting the interaction among spatial, economic, and infrastructural factors in shaping the network. Based on these findings, this study underscores the need for targeted policy measures to support Central and Eastern European countries, including investment in logistics infrastructure, technological innovation, and regional cooperation initiatives, to strengthen their integration into the supply chain and bolster their export capacity. Furthermore, fostering balanced inter-regional collaborations is essential in building a resilient trade network. Continued investment in transportation infrastructure and innovation is recommended to sustain the EU’s competitive advantage in the global electric vehicle lithium-ion battery supply chain. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

30 pages, 1981 KiB  
Article
Stochastic Control for Sustainable Hydrogen Generation in Standalone PV–Battery–PEM Electrolyzer Systems
by Mohamed Aatabe, Wissam Jenkal, Mohamed I. Mosaad and Shimaa A. Hussien
Energies 2025, 18(15), 3899; https://doi.org/10.3390/en18153899 - 22 Jul 2025
Viewed by 406
Abstract
Standalone photovoltaic (PV) systems offer a viable path to decentralized energy access but face limitations during periods of low solar irradiance. While batteries provide short-term storage, their capacity constraints often restrict the use of surplus energy, highlighting the need for long-duration solutions. Green [...] Read more.
Standalone photovoltaic (PV) systems offer a viable path to decentralized energy access but face limitations during periods of low solar irradiance. While batteries provide short-term storage, their capacity constraints often restrict the use of surplus energy, highlighting the need for long-duration solutions. Green hydrogen, generated via proton exchange membrane (PEM) electrolyzers, offers a scalable alternative. This study proposes a stochastic energy management framework that leverages a Markov decision process (MDP) to coordinate PV generation, battery storage, and hydrogen production under variable irradiance and uncertain load demand. The strategy dynamically allocates power flows, ensuring system stability and efficient energy utilization. Real-time weather data from Goiás, Brazil, is used to simulate system behavior under realistic conditions. Compared to the conventional perturb and observe (P&O) technique, the proposed method significantly improves system performance, achieving a 99.9% average efficiency (vs. 98.64%) and a drastically lower average tracking error of 0.3125 (vs. 9.8836). This enhanced tracking accuracy ensures faster convergence to the maximum power point, even during abrupt load changes, thereby increasing the effective use of solar energy. As a direct consequence, green hydrogen production is maximized while energy curtailment is minimized. The results confirm the robustness of the MDP-based control, demonstrating improved responsiveness, reduced downtime, and enhanced hydrogen yield, thus supporting sustainable energy conversion in off-grid environments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 5202 KiB  
Article
Optimizing Energy/Current Fluctuation of RF-Powered Secure Adiabatic Logic for IoT Devices
by Bendito Freitas Ribeiro and Yasuhiro Takahashi
Sensors 2025, 25(14), 4419; https://doi.org/10.3390/s25144419 - 16 Jul 2025
Viewed by 416
Abstract
The advancement of Internet of Things (IoT) technology has enabled battery-powered devices to be deployed across a wide range of applications; however, it also introduces challenges such as high energy consumption and security vulnerabilities. To address these issues, adiabatic logic circuits offer a [...] Read more.
The advancement of Internet of Things (IoT) technology has enabled battery-powered devices to be deployed across a wide range of applications; however, it also introduces challenges such as high energy consumption and security vulnerabilities. To address these issues, adiabatic logic circuits offer a promising solution for achieving energy efficiency and enhancing the security of IoT devices. Adiabatic logic circuits are well suited for energy harvesting systems, especially in applications such as sensor nodes, RFID tags, and other IoT implementations. In these systems, the harvested bipolar sinusoidal RF power is directly used as the power supply for the adiabatic logic circuit. However, adiabatic circuits require a peak detector to provide bulk biasing for pMOS transistors. To meet this requirement, a diode-connected MOS transistor-based voltage doubler circuit is used to convert the sinusoidal input into a usable DC signal. In this paper, we propose a novel adiabatic logic design that maintains low power consumption while optimizing energy and current fluctuations across various input transitions. By ensuring uniform and complementary current flow in each transition within the logic circuit’s functional blocks, the design reduces energy variation and enhances resistance against power analysis attacks. Evaluation under different clock frequencies and load capacitances demonstrates that the proposed adiabatic logic circuit exhibits lower fluctuation and improved security, particularly at load capacitances of 50 fF and 100 fF. The results show that the proposed circuit achieves lower power dissipation compared to conventional designs. As an application example, we implemented an ultrasonic transmitter circuit within a LoRaWAN network at the end-node sensor level, which serves as both a communication protocol and system architecture for long-range communication systems. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors 2025)
Show Figures

Figure 1

Back to TopTop