Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (809)

Search Parameters:
Keywords = flooded buildings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 15658 KiB  
Article
Unifying Flood-Risk Communication: Empowering Community Leaders Through AI-Enhanced, Contextualized Storytelling
by Michal Zajac, Connor Kulawiak, Shenglin Li, Caleb Erickson, Nathan Hubbell and Jiaqi Gong
Hydrology 2025, 12(8), 204; https://doi.org/10.3390/hydrology12080204 - 4 Aug 2025
Abstract
Floods pose a growing threat globally, causing tragic loss of life, billions in economic damage annually, and disproportionately affecting socio-economically vulnerable populations. This paper aims to improve flood-risk communication for community leaders by exploring the application of artificial intelligence. We categorize U.S. flood [...] Read more.
Floods pose a growing threat globally, causing tragic loss of life, billions in economic damage annually, and disproportionately affecting socio-economically vulnerable populations. This paper aims to improve flood-risk communication for community leaders by exploring the application of artificial intelligence. We categorize U.S. flood information sources, review communication modalities and channels, synthesize the literature on community leaders’ roles in risk communication, and analyze existing technological tools. Our analysis reveals three key challenges: the fragmentation of flood information, information overload that impedes decision-making, and the absence of a unified communication platform to address these issues. We find that AI techniques can organize data and significantly enhance communication effectiveness, particularly when delivered through infographics and social media channels. Based on these findings, we propose FLAI (Flood Language AI), an AI-driven flood communication platform that unifies fragmented flood data sources. FLAI employs knowledge graphs to structure fragmented data sources and utilizes a retrieval-augmented generation (RAG) framework to enable large language models (LLMs) to produce contextualized narratives, including infographics, maps, and cost–benefit analyses. Beyond flood management, FLAI’s framework demonstrates how AI can transform public service data management and institutional AI readiness. By centralizing and organizing information, FLAI can significantly reduce the cognitive burden on community leaders, helping them communicate timely, actionable insights to save lives and build flood resilience. Full article
Show Figures

Figure 1

18 pages, 6642 KiB  
Article
Flood Impact and Evacuation Behavior in Toyohashi City, Japan: A Case Study of the 2 June 2023 Heavy Rain Event
by Masaya Toyoda, Reo Minami, Ryoto Asakura and Shigeru Kato
Sustainability 2025, 17(15), 6999; https://doi.org/10.3390/su17156999 - 1 Aug 2025
Viewed by 185
Abstract
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community [...] Read more.
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community resilience, this study contributes to sustainability-focused risk reduction through integrated analysis. This study focuses on the 2 June 2023 heavy rain disaster in Toyohashi City, Japan, which caused extensive damage due to flooding from the Yagyu and Umeda Rivers. Using numerical models, this study accurately reproduces flooding patterns, revealing that high tides amplified the inundation area by 1.5 times at the Yagyu River. A resident questionnaire conducted in collaboration with Toyohashi City identifies key trends in evacuation behavior and disaster information usage. Traditional media such as TV remain dominant, but younger generations leverage electronic devices for disaster updates. These insights emphasize the need for targeted information dissemination and enhanced disaster preparedness strategies, including online materials and flexible training programs. The methods and findings presented in this study can inform local and regional governments in building adaptive disaster management policies, which contribute to a more sustainable society. Full article
Show Figures

Figure 1

20 pages, 7673 KiB  
Article
Impact of Elevation and Hydrography Data on Modeled Flood Map Accuracy Using ARC and Curve2Flood
by Taylor James Miskin, L. Ricardo Rosas, Riley C. Hales, E. James Nelson, Michael L. Follum, Joseph L. Gutenson, Gustavious P. Williams and Norman L. Jones
Hydrology 2025, 12(8), 202; https://doi.org/10.3390/hydrology12080202 - 1 Aug 2025
Viewed by 291
Abstract
This study assesses the accuracy of flood extent predictions in five U.S. watersheds. We generated flood maps for four return periods using various digital elevation models (DEMs)—FABDEM, SRTM, ALOS, and USGS 3DEP—and two versions of the GEOGLOWS River Forecast System (RFS) hydrography. These [...] Read more.
This study assesses the accuracy of flood extent predictions in five U.S. watersheds. We generated flood maps for four return periods using various digital elevation models (DEMs)—FABDEM, SRTM, ALOS, and USGS 3DEP—and two versions of the GEOGLOWS River Forecast System (RFS) hydrography. These comparisons are notable because they build on operational global hydrology models so subsequent work can develop global modeled flood products. Models were made using the Automated Rating Curve (ARC) and Curve2Flood tools. Accuracy was measured against USGS reference maps using the F-statistic. Our results show that flood map accuracy generally increased with higher return periods. The most consistent and reliable improvements in accuracy occurred when both the DEM and hydrography datasets were upgraded to higher-resolution sources. While DEM improvements generally had a greater impact, hydrography refinements were more important for lower return periods when flood extents were the smallest. Generally, DEM resolution improved accuracy metrics more as the return period increased and hydrography and bare earth DEMs mattered more as the return period decreased. There was a 38.9% increase in the mean F-statistic between the two principal pairings of interest (FABDEM-RFS2 and SRTM 30 m DEM-RFS1). FABDEM’s bare-earth representation combined with RFS2 sometimes outperformed higher-resolution non-bare-earth DEMs, suggesting that there remains a need for site-specific investigation. Using ARC and Curve2Flood with FABDEM and RFS2 is a suitable baseline combination for general flood extent application. Full article
Show Figures

Figure 1

19 pages, 8978 KiB  
Article
Integration of Space and Hydrological Data into System of Monitoring Natural Emergencies (Flood Hazards)
by Natalya Denissova, Ruslan Chettykbayev, Irina Dyomina, Olga Petrova and Nurbek Saparkhojayev
Appl. Sci. 2025, 15(14), 8050; https://doi.org/10.3390/app15148050 - 19 Jul 2025
Viewed by 307
Abstract
Flood hazards have increasingly threatened the East Kazakhstan region in recent decades due to climate change and growing anthropogenic pressures, leading to more frequent and severe flooding events. This article considers an approach to modeling and forecasting river runoff using the example of [...] Read more.
Flood hazards have increasingly threatened the East Kazakhstan region in recent decades due to climate change and growing anthropogenic pressures, leading to more frequent and severe flooding events. This article considers an approach to modeling and forecasting river runoff using the example of the small Kurchum River in the East Kazakhstan region. The main objective of this study was to evaluate the numerical performance of the flood hazard model by comparing simulated flood extents with observed flood data. Two types of data were used as initial data: topographic data (digital elevation models and topographic maps) and hydrological data, including streamflow time series from stream gauges (hourly time steps) and lateral inflows along the river course. Spatially distributed rainfall forcing was not applied. To build the model, we used the software packages of HEC-RAS version 5.0.5 and MIKE version 11. Using retrospective data for 3 years (2019–2021), modeling was performed, the calculated boundaries of possible flooding were obtained, and the highest risk zones were identified. A dynamic map of depth changes in the river system is presented, showing the process of flood wave propagation, the dynamics of depth changes, and the expansion of the flood zone. Temporal flood inundation mapping and performance metrics were evaluated for each individual flood event (2019, 2020, and 2021). The simulation outcomes closely correlate with actual flood events. The assessment showed that the model data coincide with the real ones by 91.89% (2019), 89.09% (2020), and 95.91% (2021). The obtained results allow for a clarification of potential flood zones and can be used in planning measures to reduce flood risks. This study demonstrates the importance of an integrated approach to modeling, combining various software packages and data sources. Full article
Show Figures

Figure 1

14 pages, 217 KiB  
Article
Eco-Spiritual Threads: Karma, Dharma, and Ecosystem in Amitav Ghosh’s Gun Island
by Muhammad Hafeez ur Rehman
Religions 2025, 16(7), 931; https://doi.org/10.3390/rel16070931 - 18 Jul 2025
Viewed by 319
Abstract
This paper examines Amitav Ghosh’s Gun Island through a Hindu eco-spiritual framework to explore how ancient cosmological concepts illuminate contemporary environmental crises. Building upon the legend of Bonduki Sadagar and Manasa Devi, Ghosh narrates the rupture of sacred human–nature relationships in both colonial [...] Read more.
This paper examines Amitav Ghosh’s Gun Island through a Hindu eco-spiritual framework to explore how ancient cosmological concepts illuminate contemporary environmental crises. Building upon the legend of Bonduki Sadagar and Manasa Devi, Ghosh narrates the rupture of sacred human–nature relationships in both colonial and postcolonial contexts. This study employs a tripartite conceptual lens of karma, dharma, and ecosystem drawn from Hindu philosophy to analyze how the novel frames environmental degradation, human moral failure, and ecological interconnectedness. Karma, as the law of cause and effect, is used to depict the consequences of human exploitation through natural disasters, climate migration, and the collapse of ecosystems. Dharma emerges as a principle advocating ecological responsibility and symbiosis between humans and nonhuman life. This paper argues that Ghosh tactfully intertwines Hindu metaphysics with contemporary ecological science to critique capitalist modernity’s environmental violence. The novel’s depiction of floods, the sinking of Venice, and the global refugee crisis dramatizes karmic consequences, while its evocation of myth–science convergence offers a vision of sacred interdependence. Ultimately, this paper concludes that Gun Island provides an urgent eco-spiritual model for reimagining planetary ethics and responding to the Anthropocene through humility, relationality, and spiritual responsibility. Full article
(This article belongs to the Special Issue Postcolonial Literature and Ecotheology)
14 pages, 2394 KiB  
Article
Digital-Twin-Based Structural Health Monitoring of Dikes
by Marike Bornholdt, Martin Herbrand, Kay Smarsly and Gerhard Zehetmaier
CivilEng 2025, 6(3), 39; https://doi.org/10.3390/civileng6030039 - 18 Jul 2025
Viewed by 400
Abstract
Earthen flood protection structures are planned and constructed with an expected service life of several decades while being exposed to environmental impacts that may lead to structural or hydraulic failure. Current maintenance procedures involve only repairing external damage, leaving internal processes contributing to [...] Read more.
Earthen flood protection structures are planned and constructed with an expected service life of several decades while being exposed to environmental impacts that may lead to structural or hydraulic failure. Current maintenance procedures involve only repairing external damage, leaving internal processes contributing to structural damage often undetected. Through structural health monitoring (SHM), structural deficits can be detected before visible damage occurs. To improve maintenance workflows and support predictive maintenance of dikes, this paper reports on the integration of digital twin concepts with SHM strategies, referred to as “digital-twin-based SHM”. A digital twin concept, including a standard-compliant building information model, is proposed and implemented in terms of a digital twin environment. For integrating monitoring and sensor data into the digital twin environment, a customized webform is designed. A communication protocol links preprocessed sensor data stored on a server with the digital twin environment, enabling model-based visualization and contextualization of the sensor data. As will be shown in this paper, a digital twin environment is set up and managed in the context of SHM in compliance with technical standards and using well-established software tools. In conclusion, digital-twin-based SHM, as proposed in this paper, has proven to advance predictive maintenance of dikes, contributing to the resilience of critical infrastructure against environmental impacts. Full article
(This article belongs to the Section Water Resources and Coastal Engineering)
Show Figures

Figure 1

21 pages, 13177 KiB  
Article
Links Between the Coastal Climate, Landscape Hydrology, and Beach Dynamics near Cape Vidal, South Africa
by Mark R. Jury
Coasts 2025, 5(3), 25; https://doi.org/10.3390/coasts5030025 - 18 Jul 2025
Viewed by 275
Abstract
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport [...] Read more.
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport by near-shore wind-waves and currents. River-borne sediments, eroded coral substrates, and reworked beach sand are mobilized by frequent storms. Surf-zone currents ~0.4 m/s instill the northward transport of ~6 105 kg/yr/m. An analysis of the mean annual cycle over the period of 1997–2024 indicates a crest of rainfall over the Umfolozi catchment during summer (Oct–Mar), whereas coastal suspended sediment, based on satellite red-band reflectivity, rises in winter (Apr–Sep) due to a deeper mixed layer and larger northward wave heights. Sediment input to the beaches near Cape Vidal exhibit a 3–6-year cycle of southeasterly waves and rainy weather associated with cool La Nina tropical sea temperatures. Beachfront sand dunes are wind-swept and release sediment at ~103 m3/yr/m, which builds tall back-dunes and helps replenish the shoreline, especially during anticyclonic dry spells. A wind event in Nov 2018 is analyzed to quantify aeolian transport, and a flood in Jan–Feb 2025 is studied for river plumes that meet with stormy seas. Management efforts to limit development and recreational access have contributed to a sustainable coastal environment despite rising tides and inland temperatures. Full article
Show Figures

Figure 1

16 pages, 516 KiB  
Article
The Rebuilding of the Kaʻba During the Period of Sulṭān Murād IV in the Context of the ʻUlamāʼ-Umarāʼ Discussions
by Abdullah Çakmak
Religions 2025, 16(7), 915; https://doi.org/10.3390/rel16070915 - 16 Jul 2025
Viewed by 409
Abstract
The last stop on the Muslim pilgrimage is the Kaʻba. Like all other holy and religious places, the Kaʻba has survived due to the repairs it has undergone since its construction. However, the Kaʻba has been rebuilt at times when it was destroyed [...] Read more.
The last stop on the Muslim pilgrimage is the Kaʻba. Like all other holy and religious places, the Kaʻba has survived due to the repairs it has undergone since its construction. However, the Kaʻba has been rebuilt at times when it was destroyed for various reasons. Since the interruption of the pilgrimage would undermine the legitimacy of the caliph, Muslims attached great importance to rebuilding the Kaʻba in such cases. The Kaʻba was last rebuilt by the Ottoman Sulṭān Murād IV after the flood of 1039/1630. However, the rebuilding process has not been without its controversies. Although the Ottoman Empire attempted to rebuild the Kaʻba out of necessity, some scholars objected to this initiative. Ibn ʻAllān, one of the leading Shafiʻi muftis of Mecca, followed the rebuilding work day by day and did not hesitate to intervene when necessary. Riḍwān Agha, who carried out the rebuilding of the Kaʻba, was able to overcome Ibn ʻAllān’s objections with fatwas from the muftis of the four sects (four Sunni schools of law) and thus completed the building work. After the Kaʻba was rebuilt, Turkish works on its history began to be produced. In this way, the public was informed that the Kaʻba could be rebuilt if necessary, and attempts were made to anticipate and prevent any potential reactions. This study aims to contribute to the history of the Kaʻba by analysing its rebuilding after the flood of 1039/1630 through debates between scholars (ʻulamāʼ) and administrators (umarāʼ) during this period. Access to the details of this issue from the works of the ʻulamāʼ who witnessed the rebuilding makes this paper unique. Full article
(This article belongs to the Special Issue Pilgrimage: Diversity, Past and Present of Sacred Routes)
Show Figures

Figure 1

16 pages, 3611 KiB  
Article
Study on the Effectiveness of Multi-Dimensional Approaches to Urban Flood Risk Assessment
by Hyung Jun Park, Su Min Song, Dong Hyun Kim and Seung Oh Lee
Appl. Sci. 2025, 15(14), 7777; https://doi.org/10.3390/app15147777 - 11 Jul 2025
Viewed by 330
Abstract
Increasing frequency and severity of urban flooding, driven by climate change and urban population growth, present major challenges. Traditional flood control infrastructure alone cannot fully prevent flood damage, highlighting the need for a comprehensive and multi-dimensional disaster management approach. This study proposes the [...] Read more.
Increasing frequency and severity of urban flooding, driven by climate change and urban population growth, present major challenges. Traditional flood control infrastructure alone cannot fully prevent flood damage, highlighting the need for a comprehensive and multi-dimensional disaster management approach. This study proposes the Flood Risk Index for Building (FRIB)—a building-level assessment framework that integrates vulnerability, hazard, and exposure. FRIB assigns customized risk levels to individual buildings and evaluates the effectiveness of a multi-dimensional method. Compared to traditional indicators like flood depth, FRIB more accurately identifies high-risk areas by incorporating diverse risk factors. It also enables efficient resource allocation by excluding low-risk buildings, focusing efforts on high-risk zones. For example, in a case where 5124 buildings were targeted based on 1 m flood depth, applying FRIB excluded 24 buildings with “low” risk and up to 530 with “high” risk, reducing unnecessary interventions. Moreover, quantitative metrics like entropy and variance showed that as FRIB levels rise, flood depth distributions become more balanced—demonstrating that depth alone does not determine risk. In conclusion, while qualitative labels such as “very low” to “very high” aid intuitive understanding, FRIB’s quantitative, multi-dimensional approach enhances precision in urban flood management. Future research may expand FRIB’s application to varied regions, supporting tailored flood response strategies. Full article
Show Figures

Figure 1

23 pages, 1592 KiB  
Article
Training of Volunteer Fire Brigades in Civil Protection and Crisis Management: Assessments and Applicable Recommendations Based on the Cracow Poviat in Poland
by Radosław Harabin, Grzegorz Wilk-Jakubowski, Jacek Wilk-Jakubowski, Artur Kuchciński, Anna Szemraj and Wiktoria Świderska
Fire 2025, 8(7), 260; https://doi.org/10.3390/fire8070260 - 30 Jun 2025
Viewed by 481
Abstract
Applicable recommendations play a key role in improving training and procedures used in civil protection. Since 1 January 2025, the Law on Civil Protection and Civil Defense has been in force in Poland. It responds to the experience of current threats, including the [...] Read more.
Applicable recommendations play a key role in improving training and procedures used in civil protection. Since 1 January 2025, the Law on Civil Protection and Civil Defense has been in force in Poland. It responds to the experience of current threats, including the war in Ukraine, the 2024 floods in Western Poland, the COVID-19 pandemic, and other crises. The Act systemically regulates the problem of building social resilience, which must be developed and applied regarding today’s modern threats. The primary actor in civil protection is the fire brigade system, in which volunteer firefighters are recruited from local communities and act for their benefit. In this context, it is interesting to ask whether and what solutions should be applied in order to improve the effectiveness of the training and exercise system of volunteer fire brigades (TSOs) in the field of civil protection and crisis management. The aim of this investigation was to develop evaluations and applicable recommendations to improve the effectiveness of the training system for volunteer firefighters based on a survey of volunteer firefighters in the Cracow Poviat. Two survey diagnostic techniques were used: expert interviews and questionnaire research. The findings were compared with the results of an analysis of source documents obtained in TSO units. The expert interviews covered all chief fire officers of the municipalities in the Cracow Poviat. The paper begins with an introduction and a systematic literature review. The conclusions consist of the proposal of applicable changes in the scope of basic, specialist, and additional training. Areas of missing training are also identified. The firefighters’ knowledge of crisis management procedures is verified, deficiencies are identified, and applicable changes in the organization of field exercises are proposed. Full article
Show Figures

Figure 1

29 pages, 4941 KiB  
Article
Development of a Statewide Climate Change Vulnerability Index for Heat and Flood: A Comprehensive Assessment of Connecticut for Resiliency Planning
by Yaprak Onat, Nicole Govert, Mary Buchanan, David Murphy, Meghan McGaffin, Conner Dickes, Libbie Duskin, Victoria Vetre, John Truscinski and James O’Donnell
Geographies 2025, 5(3), 28; https://doi.org/10.3390/geographies5030028 - 25 Jun 2025
Viewed by 684
Abstract
The vulnerability framework developed by the Intergovernmental Panel on Climate Change (IPCC) defines vulnerability as a function of exposure, sensitivity, and adaptive capacity. Building off this framework, the Connecticut Institute for Resilience and Climate Adaptation (CIRCA) developed a Climate Change Vulnerability Index (CCVI) [...] Read more.
The vulnerability framework developed by the Intergovernmental Panel on Climate Change (IPCC) defines vulnerability as a function of exposure, sensitivity, and adaptive capacity. Building off this framework, the Connecticut Institute for Resilience and Climate Adaptation (CIRCA) developed a Climate Change Vulnerability Index (CCVI) for the state of Connecticut, designed to integrate flood and extreme heat-related climate exposure with impacted socioeconomic, infrastructure, and ecological variables into a single comprehensive index that can guide resilience planning and prioritization at multiple levels. The index serves as a central component of the Resilient Connecticut project, a statewide initiative to advance climate adaptation and resilience planning through data-driven tools, community engagement, and strategies to address flood and heat risks across vulnerable communities. In this article, we detail the development of the CCVI, including earlier iterations, methodology, stakeholder engagement activities, and lessons learned that can impact resiliency planning in Connecticut. Preliminary statistical analyses, notable regional trends, data limitations, and future areas for research advancement are also discussed. The CCVI framework detailed here can be used in the process of identifying priority areas for intervention and supporting the selection and design of targeted resilience projects, and can also be adapted for other states. Full article
Show Figures

Figure 1

27 pages, 898 KiB  
Review
A No-Regrets Framework for Sustainable Individual and Collective Flood Preparedness Under Uncertainty
by Joy Ommer, Milan Kalas, Jessica Neumann, Sophie Blackburn and Hannah L. Cloke
Sustainability 2025, 17(13), 5828; https://doi.org/10.3390/su17135828 - 25 Jun 2025
Viewed by 337
Abstract
Why should we prepare for a flood which might never happen? Uncertainty around potential future hazards significantly limits citizens’ disaster preparedness, as it influences decision-making and action-taking greatly. To bridge this knowledge–action gap, we developed a novel, no-regrets framework for sustainable flood preparedness [...] Read more.
Why should we prepare for a flood which might never happen? Uncertainty around potential future hazards significantly limits citizens’ disaster preparedness, as it influences decision-making and action-taking greatly. To bridge this knowledge–action gap, we developed a novel, no-regrets framework for sustainable flood preparedness under uncertainty, building on a systematic literature review (PRISMA method) and an integrative review of preparedness actions. The review of 364 articles revealed that while no-regrets principles are widely applied in climate policy and risk management, they are not tailored to personal preparedness. Our resulting framework defines clear no-regrets criteria for individual and household-level preparedness (robustness, flexibility, cost-effectiveness, co-benefits, and ease of implementation) and categorizes 80+ flood preparedness actions according to four levels of uncertainty, from unknown futures to imminent hazards. Notably, we found that long-term preparedness actions remain underutilized, psychological preparedness is largely absent, and existing guidance is biased toward physical risk reduction in high-income contexts. This framework offers a practical tool for practitioners, local authorities, and community groups to promote actionable, context-sensitive flood preparedness worldwide and can be adapted to other hazards in future work. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

16 pages, 7677 KiB  
Article
Evaluating the Booster Grant’s Impact on YouthMappers’ Climate Activism and Climate Education in Sri Lanka
by Ibra Lebbe Mohamed Zahir, Suthakaran Sundaralingam, Meerasa Lewai Fowzul Ameer, Sriram Sindhuja and Atham Lebbe Iyoob
Youth 2025, 5(2), 61; https://doi.org/10.3390/youth5020061 - 19 Jun 2025
Viewed by 905
Abstract
YouthMappers chapters, utilizing OpenStreetMap (OSM), play a pivotal role in tackling climate challenges through education and activism. This study investigates the influence of a booster grant project on enhancing Climate Activism and Education efforts through YouthMappers chapters in Sri Lanka. Through a geometric [...] Read more.
YouthMappers chapters, utilizing OpenStreetMap (OSM), play a pivotal role in tackling climate challenges through education and activism. This study investigates the influence of a booster grant project on enhancing Climate Activism and Education efforts through YouthMappers chapters in Sri Lanka. Through a geometric approach, the research integrates measurable survey data from OSM platform data from 223 YouthMappers chapter respondents at four (04) universities in Sri Lanka to evaluate five critical factors/dimensions: Capacity Building and Funding Support (CBFS), Climate Activism and Education (CAE), Community Engagement and Collaboration (CEC), Technical Skills and Resources (TSR), and Sustainability and Policy Integration (SPI). The Friedman test confirmed statistically significant differences across all factors’ variables (p < 0.001), highlighting strengths in technical competence and educational integration, with gaps identified in community engagement and sustainability. A Radial Basis Function (RBF) model revealed moderate predictive accuracy, excelling in variables like CAE and TSR but indicating higher error rates in SPI and CEC. Practical outcomes include flood risk maps, curriculum-integrated teaching schemes, and localized mapping workshops. These results underscore the booster grant’s role in enabling impactful, youth-led geospatial initiatives. However, challenges such as internet access, training gaps, and language barriers remain. This study recommends expanding student and community participation, refining training strategies, and integrating OSM into university curricula. These scalable interventions offer valuable insights for replication in other vulnerable regions, enhancing climate resilience through community-driven, data-informed youth engagement. Full article
Show Figures

Figure 1

16 pages, 3247 KiB  
Article
New Territorial Unit of the Urban Structure of Cities—The Urbocell
by Liucijus Dringelis and Evaldas Ramanauskas
Urban Sci. 2025, 9(6), 227; https://doi.org/10.3390/urbansci9060227 - 16 Jun 2025
Viewed by 844
Abstract
One of the most significant factors shaping the formation of new urban structures is climate change—including global warming and the associated emerging issues—heatwaves, storms, hurricanes, floods, droughts, fires and others. In recent times, new threats have emerged, including war risks, radiation, pandemics and [...] Read more.
One of the most significant factors shaping the formation of new urban structures is climate change—including global warming and the associated emerging issues—heatwaves, storms, hurricanes, floods, droughts, fires and others. In recent times, new threats have emerged, including war risks, radiation, pandemics and other potential factors, whose devastating consequences are no less severe than those of climate change. Concerning these and other potential threats, this work aims to develop a new, sustainable urban structure element—a territorial unit or complex to be used in creating a new city planning framework. The formation of this sustainable urban unit or complex is based on three fundamental sustainability principles—social, ecological and economic—the harmonious interaction of which can enable the creation of a safe, healthy and convenient urban environment for living, working and leisure. Such a structural urban complex would consist of a group of neighbourhoods with various building densities, enclosed by public transport streets that integrate the complex into the city’s overall spatial structure. To support the complex’s functioning, a structural element—a green core—is planned at its centre, serving as a space for residents’ recreation, protection from various threats and social interaction. Given that this technical, structural and urban territorial unit, in terms of its autonomous functionality, structure, composition, significance and other characteristics, is identical to a natural cell, it is proposed (based on the principles of bionics) to name this structural urban territorial unit an ‘urban cell’ or ‘urbocell’ for semantic clarity. Full article
Show Figures

Figure 1

20 pages, 7811 KiB  
Article
Assessment of Flood Risk of Residential Buildings by Using the AHP-CRITIC Method: A Case Study of the Katsushika Ward, Tokyo
by Lianxiao, Takehiro Morimoto, Hugejiletu Jin, Siqin Tong and Yuhai Bao
Buildings 2025, 15(12), 2016; https://doi.org/10.3390/buildings15122016 - 11 Jun 2025
Viewed by 692
Abstract
The flood risk of urban buildings has been continuously increasing, owing to the increasing frequency and severity of floods. There is an urgent need to implement precise mitigation strategies to address the unique characteristics of urban residential structures. In this study, an indicator [...] Read more.
The flood risk of urban buildings has been continuously increasing, owing to the increasing frequency and severity of floods. There is an urgent need to implement precise mitigation strategies to address the unique characteristics of urban residential structures. In this study, an indicator system consisting of 17 indicators in four dimensions (extent of hazard, degree of exposure, vulnerability, and response ability) was developed for the flood risk of residential buildings. The assessment was conducted in Katsushika Ward, Tokyo, and the ANALYTIC HIERARCHY PROCESS(AHP)—Criteria Importance Through Intercriteria Correlation (CRITIC) method was integrated with Geographic Information System(GIS) technology. The spatial distribution of residential flood risk exhibits marked heterogeneity, with ‘extremely high’ and ‘high’ risk areas concentrated in northwestern and southwestern riverine zones. These regions exhibit dense populations, substantial assets, deep immersion depths, prolonged inundation durations, high proportions of wooden houses, and narrow roads impeding rescue operations. The mitigation priorities are the following: Enhance flood-resistant building heights and quality in riverside areas, strengthen vacant house management, widen rescue access routes, promote mid-/high-rise buildings, and optimize subsidies for tenants and single-person households to minimize losses. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop